Лимбическая система мозга. Функции лимбической системы

Лимбическая система мозга – это часть высшей нервной системы, отвечающая за множество функций организма. Особенность этой части мозга заключается в том, что она представляет совокупность структур. Этим объясняется ее многофункциональность. Какое строение имеет это часть мозга и насколько опасны нарушения в ее работе?

Это своеобразная совокупность нервных структур, которые связаны между собой. Всего в систему входит около 12 «подразделений», хотя изначально считалось, что эта часть мозга отвечает исключительно за обоняние.

Несомненно, головной мозг человека имеет сложное строение, но не стоит забывать, что все структуры имеют определенную связь между собой. Те «подразделения», что входят в состав этой системы, находятся «на грани». С точки зрения неврологии и анатомии, такой термин говорит о том, что нервные структуры имеют связь с корой головного мозга.

Связи между нейронами в этой части головного мозга плотные, имеющие кольцевое строение. Это также считают особенностью.

История возникновения системы

Впервые описания, касающиеся этой части мозга, появились в 1952 году, они были неточными. Но по мере прогресса и развития цивилизации удалось подкорректировать сведения и получить точное представление о системе и ее функционировании.

Изначально говорилось, что главная и единственная функция этой части мозга заключается в обработке информации. В целом описание верное, но не точное. Поскольку предполагалось, что информацию человек получает путем анализа запахов.

Обонятельная способность, оценка получаемой информации и связь с корой головного мозга – вот все, что удалось установить первооткрывателю системы, П. Маклину. Он описал ряд структур, которые образовывали единое целое и находились «на грани», то есть в непосредственной близости к коре головного мозга. Месторасположение нервных структур повлияло на название системы.

Изначально врач предполагал, что в лимбической системе головного мозга соединились несколько нервных структур, образовав плотные нейронные связи. Позже удалось получить более полную информацию.

По мере развития медицины удалось установить, что структура отвечает не только за обоняние, но и за память как краткосрочную, так и долгосрочную.

Строение системы

Считается, что эта часть головного мозга имеет особое, «древнее» строение, поскольку она связана с корковой частью главного органа, расположенная на внутренних полушариях.

Система отвечает за вегетативные функции, в ее состав входят следующие части:

  1. Поясная извилина.
  2. Гиппокамп.
  3. Миндалевидные ядра, их также называют полушариями.
  4. Грушевидная извилина.

Плотные нейронные связи получают импульсы от следующих частей головного мозга человека:

  • гипоталамус;
  • гипофиз;
  • подкорковых ядер;
  • таламус;
  • гиппокамп.

При проведении исследований на животных удалось установить, что раздражение различных частей этой системы приводит к изменениям поведения:

  1. Появляется агрессия, обостряются оборонительные функции.
  2. Усиливается раздражение, изменяется социальная функция.

В первую очередь страдают эмоции, а также память. Но при этом воспоминания остаются у человека.

Поскольку строение этой части мозга сложное, чаще встречается описание, говорящее о том, что это «связка» нервных структур, образующая систему. Импульсы передаются от коры головного мозга, и не только. В «связку» вовлечены различные части этого органа.

Функционал лимбической системы

Эта часть вегетативной нервной системы по мнению медиков выполняет множество функций. Посредством опытов удалось доказать, что нарушения в работе взаимосвязанных структур приводят к проблемам с жизненно важными органами.

Опишем подробно функции этой части головного мозга:

  • отвечает за память и восприятие информации, за способность к обучению и познанию;
  • регулирует работу и анализирует получаемую информацию из органов обоняния;
  • участвует в организации простейшей мотивационно-информационной деятельности;
  • отвечает за социализацию человека, в частности, общение и эмоциональную составляющую;
  • участвует в способности формирования исследовательской деятельности.

Через связь с гипоталамусом, кору головного мозга нейроны получают импульсы, влияющие на работу жизненно важных органов. Они также воздействуют через связь с гипофизом на гормональный фон человека.

Стоит отметить, что система участвует в процессе формирования пищевых и половых инстинктов. Но это участие считают косвенным, а не прямым.

За что еще отвечает система, и какие функции выполняет:

  1. Считается, что нейронные связи образуют связку: бодрствование – сон.
  2. Регулирует обменные процессы в организме, в том числе и водно-солевой баланс.
  3. Помогает приспособиться к внешним раздражителям.

Считается, что строение системы таково, что позволяет головному мозгу не только анализировать полученную информацию, но и воспринимать команды, выдавать адекватный ответ. Это позволяет судить о способности системы влиять на восприятие и анализ получаемой извне информации. А это значит, что система в случаях изменения помогает человеку приспособиться к факторам внешней среды. Эта функция называется адаптацией.

Многозначительный функционал позволяет утверждать, что совокупность структур участвует в работе различных органов, отвечающих за жизнеобеспечение организма.

Нарушения и их последствия

Если возникают , то нарушения затрагивают весь организм. В большинстве случаев подобная ситуация складывается в результате:

  • развития инфекционных заболеваний, поражающих нервную систему;
  • серьезных отравлений, приводящих к тяжелой интоксикации;
  • длительного и чрезмерного употребления алкогольных напитков;
  • приема некоторых медикаментозных препаратов в случае передозировки;
  • развития психологических расстройств;
  • получения серьезных травм головы.

В результате подобных, неблагоприятных обстоятельств в организме происходят следующие изменения:

  1. Появляются проблемы с памятью. Нередко больной не может выстроить логическую цепочку событий или связать их воедино. При этом у него есть воспоминания, но проанализировать события у него получается с трудом.
  2. Возникают проблемы с обонянием, нарушаются работа органов зрения и слуха. Проблемы могут носить локальный характер, вплоть до развития слепоты или глухоты. Человек может предъявлять жалобы на то, что ничего не чувствует (запах, вкус).
  3. Нарушения затрагивают мелкую моторику, влияют на коррекцию движений. Больше всего страдает эмоциональная составляющая. Поведение человека изменяется, он начинает проявлять агрессию, но чаще такие люди страдают от перемены настроений.
  4. Возникают проблемы со сном (пожалуй, самое распространенное нарушение). Подобные проблемы встречаются часто, но придется обратить внимание и на наличие других проявлений.

Впрочем, «страдать» могут и другие функции организма, нарушения затрагивают работу органов пищеварительной системы, гормонального фона. Сложно сказать какие нарушения появятся в работе организма и к чему они произведут.

Список возможных осложнений:

  • слуховые и зрительные галлюцинации, реже вкусовые;
  • потеря ориентации в пространстве;
  • частые перемены настроения с развитием депрессивных состояний;
  • спутанность сознания;
  • невозможность воспринимать и анализировать информацию;
  • развитие эпилептических припадков (в особых случаях).

Нарушения могут носить различный характер, начиная от проблем в работе кишечника и желудка, заканчивая сбоями в иммунной, сердечно-сосудистой и эндокринной системе.

Взаимодействие с неокортексом

Неокортексом называют «новую кору», покрывающую весь мозг, как плащ. Взаимосвязь системы заключается в том, что нейронные связи, находящиеся «на грани», и новая кора образуют соединение, путем передачи импульсов.

Получая «сигналы», головной мозг начинает функционировать, причем деятельность эта затрагивает не функциональную часть, а эмоциональную.

Поскольку лимбическая система отвечает за эмоциональную составляющую, соединение посредством нейронной связи с новой корой делает человека «самим собой.

Неокортекс

Довольно сложно понять, что классифицирует этот термин, его значение станет яснее, если перевести слово с латинского языка, дословно – это новая кора. Но допустимо и другое
интерпретирование термина «избранная кора», но оно считается неточным. Это часть головного мозга человека, которая окутывает весь орган, словно плащом, образуя своеобразную «шапку», которая участвует в нейронных процессах и выполняет определенные функции.

История возникновения

Термин известен довольно давно, но недостаток информации был компенсирован сравнительно недавно.

Теория, объясняющая функционал новой коры, была разработана в Менло Парке. Она объясняла алгоритм работы, причем представлена теория была в форме компьютерной презентации. Эта презентация помогла понять, как функционирует новая кора и стала настоящим прорывом.

Суть алгоритма и представленной теории:

  1. Объединяет все органы чувств человека в единое целое.
  2. Нейроны обладают памятью и складываются в крупные соединения, своего рода причинно-следственная связь.

Из чего состоит

Эта часть головного мозга состоит из трех разновидностей нейронов, которые образуют связи с другими участками органа.

В состав входят:

  • первая и, пожалуй, самая многочисленная группа, составляющая 70 и более процентов всех нейронов – это пирамидальные;
  • на уровне 15-20% находится группа звездчатых нейронов;
  • на долю веретенообразных нейронов приходится всего около 5%, эта группа самая немногочисленная.

Какие функции выполняет

Есть мнение, что головной мозг выполняет множество функций, что верно, но какая роль отводиться в этой системе новой коре?

Если говорить просто, не вдаваясь в научные термины, то без неокортекса человек вполне может существовать, выполнять обычные функции: есть, размножаться, добывать пищу. Но его жизнь будет подчинена инстинктам сродни животным.

А вот когда новая кора «включается» в работу, появляется мышление, отличающее человека от приматов.

Неокортекс выполняет следующие функции:

  1. Отвечает за мыслительные и интеллектуальные способности индивида.
  2. Влияет на его творческое развитие.
  3. Воздействует на эмоциональную составляющую, позволяя человеку испытывать чувства.
  4. А также под воздействием этой части головного мозга оказалась мелкая моторика.

Если говорить просто, то без новой коры человек бы не смог писать, рисовать, музицировать, воспринимать и анализировать информацию. Его движения были бы грубыми, неаккуратными, производимыми на автомате.

Можно на примере рассмотреть деятельность новой коры:

  • в головном мозге, в конкретной его части «рождается» импульс;
  • он постепенно достигает мышц гортани и языка;
  • раздается звук, появляется песня.

Примерно по такому алгоритму «работает» неокортекс. Под его контролем находится вся мыслительная деятельность, отвечающая за индивидуальные особенности человека.

Разбираясь в строении лимбической системы головного мозга человека и, сравнивая ее с неокортексом, не стоит забывать, что первый термин – это древняя кора, а второй – это новая кора. Взаимосвязь между этими частями органа обусловлена даже терминологией.

Поскольку главный орган в организме человека – это головной мозг, его строение априори считают сложным. Неокортекс и древняя кора – это всего лишь часть системы, отвечающей за работу организма и выполнение его функций.

Лимбическая система головного мозга:

Область, расположенная между корой больших полушарий и продолговатым мозгом и как бы окаймляющая его, получила название лимбической системы (от латинского слова «limbus» - кромка, кайма). Лимбическая система состоит из различных анатомически и функционально связанных образований головного мозга. К ней принято относить: некоторые ядра нервных клеток, располагающихся в передней области таламуса, гипоталамус, располагающееся глубоко в боковой части среднего мозга клеточное скопление, величиной с орех, под названием миндалина (миндалевидное ядро) и гиппокамп, находящийся по соседству с миндалиной.

Сегодня пока еще нет полного описания лимбической системы, как, собственно говоря, нет пока и четкого, окончательного мнения о ее границах, но уже точно установлено, что это «не что-нибудь», а именно Система, и что входящие в нее структуры действуют дружно и сообща, т.е. возбуждение, возникающее в одной структуре, тут же охватывает другие.

Половое влечение, голод, жажда - эти наиглавнейшие побудительные причины деятельности всех живых существ связаны, прежде всего, именно с лимбической системой. Так в гипоталамусе располагаются группы клеток, реагирующих на изменения уровня питательных веществ и воды в крови. При низком содержании «еды» в крови эти клетки тут же передают «тревожные» сигналы в высшие отделы коры головного мозга. Вот так и возникают чувства голода и жажды, которые и заставляют наш организм активно заняться поиском пропитания.

Так же интересно, что при поражении лимбического отдела мозга, часто возникают двигательные и психические реакции, которые могут быть абсолютно противоположны: или беспокойство, настороженность, агрессия, стремление бежать или, наоборот: спокойствие, пассивность, умиротворенность. А ведь все дело-то в том, что лимбическая система участвовала в приспособительных реакциях, сложившихся у наших далеких предков на ранних стадиях эволюции, тогда, когда в критических и опасных ситуациях могло быть лишь два варианта спасения: активный – убегать или нападать и пассивный - замаскироваться, спрятаться, затихнуть и замереть. Именно так до сих пор поступает какая-нибудь букашка, замирая на нашей ладони. Ну, правильно, ведь умение быстро приспособиться к изменениям внешней среды, быстро и адекватно отреагировать на опасность - это вопрос жизни и смерти, никак не меньше!

Так вот, главнейшее место в этой приспособительной деятельности принадлежит эмоциям, биологический смысл которых, их биологическое предназначение как раз и заключается в быстрой оценке текущих потребностей организма и стимуляции соответствующего ответа на действие того или иного раздражителя.


Именно в лимбической системе и формируются эмоции, причем в основном в гипоталамусе. Соответственно, изменения лимбических структурах, возникающие, например, при определенных стрессовых состояниях, неврозах, иногда в результате опухоли или нарушения мозгового кровообращения или даже инфекционного заболевания, запросто могут повлечь за собой и нарушение эмоционального равновесия. Болезнь не радость, а значит, и преобладать будут в таких случаях отрицательные эмоции - страх, напряжение, тоска, беспричинная тревога.

Конечно, возможны и прямо противоположные реакции - чрезмерно повышенное настроение, двигательная активность, переоценка своих возможностей, но это уже скажется поражение миндалевидного комплекса.

Сегодня уже не вызывает сомнений, что развитие таких заболеваний, какишемическая болезнь сердца, гипертоническая и язвенная болезни, во многом связано с отрицательными эмоциями. А что это значит? А значит это то, что нормализуя эмоциональные реакции человека, можно избавить его от многих болезней. Ну не зря ж прибаутка то есть, что «все болезни от нервов, и только венерические от удовольствия» ;)

Собственно говоря, как раз на этом принципе и построен эффект психотропных средств, которые прежде всего воздействуют на лимбическую систему, а уже через нее - на функции сердца, сосудов, органов пищеварения. Так что если при жалобах на сердце врач вам назначит не сердечные, а психотропные препараты, не удивляйтесь - это и есть лечение «причины», а не «следствия».

Но и это еще не все заслуги лимбической системы. Лимбическая система, а точнее в основном гиппокамп , принимает активнейшее участие в сложнейших процессах, лежащих в основе памяти. Правда гиппокамп не является длительным хранилищем поступающей в мозг информации, так как эту роль выполняет кора больших полушарий, но зато из-за особенностей анатомического строения вся лимбическая система как будто создана для кратковременного хранения информации. Благодаря переплетению пучков аксонов (помните, отростки нервной клетки?), соединяющих различные образования лимбической системы, в ней формируется ряд больших и малых замкнутых кругов, приспособленных для повторного курсирования нервных импульсов и сохранения возбуждения в течение определенного времени.

Случаи повреждения гиппокампа или хирургического его удаления подтверждают, что эта структура является решающей для запоминания новых событий и хранения их в долговременной памяти, но не необходимой для воспроизведения старых воспоминаний. Например, после удаления гиппокампа больной без труда узнает старых друзей, помнит свое прошлое, может читать и пользоваться ранее приобретенными навыками. Но зато он врядли сможет вспомнить о том, что происходило в течение примерно года до операции. А вот события или людей, встреченных после операции, он не будет помнить вообще. Такой пациент не сможет узнать нового человека, с которым он провел много часов ранее в этот же день. Он будет неделю за неделей собирать одну и ту же головоломку и никогда не вспомнит, что уже собирал ее раньше, будет снова и снова читать ту же газету, не помня ее содержания.

Но для того, что бы это понять, необязательно даже удалять гиппокамп. При поражении гиппокампа алкоголем, у человека так же нарушается память на недавние события. Как показывают наблюдения врачей, алкоголики, находящиеся на лечении в больнице, затрудняются ответить на вопросы о том, обедали они сегодня или нет, когда принимали лекарство, работали ли в мастерской. И в то же время давние события своей жизни они помнят хорошо.

Интересно, а у вас уже возникла мысль о том, что если одно воздействие на гиппокамп «убивает» память, то другое может ее и улучшить? Т.е. нельзя ли воздействием на какой то участок гиппокампа, например, ускорять обучение и запоминание? Эх, это было бы замечательно и уверяю вас, эта мысль уже пришла в голову ученым! Ну, а пока учителям и педагогам следует учесть тот факт, что интересное изложение материала способствует лучшему - более быстрому, полному и на более длительный срок усвоению информации. И объясняется это просто, дело в том, что интересный рассказ или интересное объяснение материала вызывает эмоциональное возбуждение и как бы настраивает на более высокий уровень всю лимбическую систему, в том числе и «зав.памятью» памятью гиппокамп.

Ну, а теперь, временно упуская из виду мозолистое тело, переходим к Бооооольшому мозгу и коре его полушарий.

Итак, основу большого мозга составляют два больших полушария. На первый взгляд, их поверхность кажется беспорядочным нагромождением возвышающихся извилин и разделяющих их борозд. Но на самом-то деле у каждой извилины и борозды свое место и предназначение.

В то же время, как утверждают ученые, нет двух оди­наковых экземпляров мозга с полностью совпадающим рисунком по­верхности. Так что рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, но, в то же время, отличается некоторым семейным сходством. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие же не столь постоянны, и их приходиться еще и поискать. Кроме того, различие борозд и извилин так же проявляется в их длине, глубине, прерывистости и многих других, более индивидуальных особенностях.

Так вот, поверхность этих борозд да извилин покрыта корочкой серого вещества. Трудно поверить, но секрет превосходства человека над его «братьями меньшими» находится именно в ней. Прикиньте, её толщина не больше слоя масла на бутерброде, но за то какой эффект! Именно благодаря этой серой корочке человек и становиться ЧЕЛОВЕКОМ, творцом, мыслителем, покорителем и завоевателем всеё и всея.

Конечно же, по-научному она называется более весомо и солидно – кора больших полушарий, а по латыни это звучит как «Cerebral cortex», что, собственно, и означает «мозговая или умственная кора».

Сама по себе кора мозга имеет серый цвет, потому как состоит, в основном, из тел нервных клеток и нервных волокон серого цвета. Собственно говоря, отсюда и взялся термин «серое вещество». А вот внутренняя часть большого мозга, находящаяся под корой, состоит из аксонов этих самых нервных клеток , покрытых особым веществом миелином, придающим им белый окрас. Именно поэтому, то, что у нас спрятано под «серым веществом», еще называют «белым веществом» головного мозга.

Так вот, площадь коры большого мозга одного полушария человека составляет около 800 кв. см., толщина - 1,5-5 мм. (нифига себе слой маслица!!! :)), а количество нейронов в коре может достигать 10 млрд.

Сама же по себе кора больших полушарий имеет слоистое строение, поэтому различают древнюю, старую и новую кору (соответственно: палео-, архи- и неокортекс) Блин, такое ощущение, что кто-то проводил у нас в голове археологические раскопки. :)

Но как бы то ни было, а новая кора занимает 95,6% поверхности полушарий большого мозга, и большая ее часть имеет 6 слоев или пластинок: молекулярную, наружную зернистую, наружную пирамидную, внутреннюю зернистую, внутреннюю пирамидную, полиморфную, причем степень развития этих пластинок и их клеточный состав неодинаковы в разных частях полушария.

А вот нервные волокна коры бывают всего двух типов: радиальные - расположенные перпендикулярно ее поверхности, и тангенциальные - идущие параллельно поверхности коры. Получается, что нейронам в нашей голове важно дружить друг с другом и как можно теснее и крепче, поэтому они и связанны между собой и по горизонтали и по вертикали.

Сами по себе полушария головного мозгасоединены между собой не гвоздиками, не шурупчиками, не клеем и даже не примотаны друг к другу скотчем, а соединяются они между собой мозолистым телом - эдакимсплетением нервных волокон соединяющих правое и левое полушария. Конечно же, кроме мозолистого тела, полушария соединяют еще передняя спайка, задняя спайка и спайка свода, но мозолистое тело, состоящее из более чем двухсот миллионов нервных волокон, является самой большой и важной структурой, соединяющей оба полушария.

Так вот, мозолистое тело представляет собой широкую плоскую полосу, состоящую из аксонов. По большей части их волокна в мозолистом теле проходят поперечно, связывая симметричные места противоположных полушарий, но некоторые, особо «хитрые» аксоны умудряются связывать совсем несимметричные места противоположных полушарий, например лобные извилины с теменными или затылочными, или разные участки одного и того же полушария (так называемые ассоциативные волокна )

ЗОНЫ МОЗГА

Ну, продолжим. Борозды и извилины коры большого мозга увеличивают ее поверхность без увеличения объема полушарий, что, согласитесь, актуально в ограниченном пространстве нашего черепа. Кроме того, самые крупные борозды еще и «делят» каждое полушарие нашего мозга на четыре доли: лобную, теменную, затылочную и височную.

Но, кроме такого вот географического, а точнее топографического деления, кору головного мозга принято еще разграничивать и по функциональному признаку.

Сейчас поясню: каждая из наших сенсорных систем, например, зрительная ,слуховая , осязательная , отправляет свою информацию в определенные участки коры. Так же свой участок коры выделен для контроля движения частей тела - т.е. моторных реакций. Остальная же часть коры, не являющаяся ни сенсорной, ни моторной, выделена нам матушкой природой под ассоциативные зоны, которые отвечают за память, мышление, речь, и занимают, кстати, большую часть мозговой коры.

Вот и получается, что по своим функциям участки коры делятся на сенсорные, моторные (двигательные) и ассоциативные зоны.

Конечно же, сенсорные и моторные зоны располагаются на обоих полушариях, но есть и такие функции, которые представлены только на одной, как правило, левой стороне мозга. К ним относятся зона Брока и зона Вернике, участвующие в порождении и понимании речи, а так же угловая извилина, соотносящая зрительную и слуховую формы слова.

Еще не задались вопросом, почему я написал «как правило, на левом полушарии»? А все дело то в том, что у правшей речевые центры действительно расположены в левом полушарии, а вот у левшей - в правом.

Но, есть и другое разделение коры головного мозга - так называемая картаполей Бродмана. В 1903 годугерманский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двухцитоархитектонических полей , которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта полей Бродмана.

Но, давайте все же по порядку.

СЕНСОРНЫЕ И МОТОРНЫЕ ЗОНЫ МОЗГА

Итак, моторная зона. Моторная зона уютно расположилась как раз перед центральной бороздой (поля 4,6,8) и занимается тем, что контролирует произвольные движения тела. Причем, большие участки этой зоны регулируют сокращения мышц пальцев рук, губ и языка, осуществляющие многочисленные и очень тонкие движения (например, речь, письмо, игра на фортепиано). А вотмышцам спины , живота и нижних конечностей, участвующим в поддержании позы и осуществлении менее тонких движений, отведена лишь небольшая область двигательной зоны.

Забавно, но наше тело представлено в моторной зоне как бы в перевернутом виде, т.е., например, за движения ног отвечает верхняя часть зоны, а за движения глаз или губ - нижняя. Кроме того, движениями правой части тела управляет моторная кора левого полушария, а движениями левой части - моторная кора правого полушария.

Электрическая стимуляция определенных участков моторной коры (т.е. кто-то все же тыкал нам в мозг оголенными проводами) заставляет двигаться соответствующие части тела, соответственно, если эти же участки моторной коры повредить, то и движения нарушатся.

Сенсорные зоны.

В теменной зоне, отделенной от моторной зоны центральной бороздой, (поля 1,2,3,5,7) находится участок, отвечающий за прием сигналов от рецепторов поверхности кожи тела человека, который носит гордое имя соматосенсорной зоны. Именно здесь происходит определение места и силы раздражения на поверхности тела, здесь же происходит различение местоположения и силы двух одновременно наносимых раздражителей, (так называемая дискриминация) и именно здесь же определяется и само качество раздражителя: острота, шероховатость, температура, т.е. ощущения тепла, холода, прикосновения, боли и ощущения движений тела.

Интересно что, как и в моторной зоне, на верхние отделы соматосенсорной зоны выведены рецепторы кожи нижних конечностей, на средние - туловища, на нижние отделы - рук, головы и т.д. Причем, так же как и в моторной зоне, правая часть мозга «чувствует» левую сторону нашего тела, ну, а левая - правую. Кроме того, как и в моторной, наибольшую поверхность соматосенсорной зоны занимают рецепторы рук, голосового аппарата и лица, а меньшую часть - рецепторы туловища, бедер и голени.

Именно поэтому ученые и считают, что размер соматосенсорной или моторной зоны, связанной с определенной частью тела, напрямую зависит от ее чувствительности и от частоты ее использования, причем эта зависимость наблюдается не только у человека, но и у животных. Например, у собаки передние лапы представлены только на очень небольшом участке коры, а вот у енота, который очень активно пользуется передними лапами для изучения окружающего мира, полоскания белья, и прочих норо-уборочных мероприятий (шучу), соответствующая зона значительно больше, и в ней даже есть участки для каждого пальца лапы. Да и у крыс, получающих много информации с помощью чувствительных усиков, то же имеется свой участок коры для каждого отдельного уса.

Продолжаем.

В задней части каждой затылочной доли есть участок коры (17,18,19 поля Бродмана), называемый зрительной зоной . Как-то неожиданно, но, тем не менее то, что мы видим, глазами, т.е. спереди, «отражается» у нас на затылке, т.е. сзади. Причем, обратите внимание - каждый зрительный нерв делится в области основания мозга на две половины, одна из них идет к своей половине мозга, а другая - к противоположной (т.е. образует неполный перекрест).


1. Сетчатка глаза. 2. Зрительный нерв 3. Зрительные пути и зрительная зона.

Получается, что волокна от правых сторон обоих глаз идут в правое полушарие мозга, а волокна от левых сторон обоих глаз идут в левое полушарие. Поэтому, удаление или повреждение зрительной зоны на одной половине мозга вызывает слепоту на одной половине каждого глаза. Этим фактом умело пользуются медики, устанавливая местоположение опухоли мозга и других аномалий, в зависимости от того, какая часть глаза не видит.

Так вот, центральный зрительный путь заканчивается в поле 17, и сообщает о наличии и интенсивности зрительного сигнала. А уже в полях 18 и 19 анализируются цвет, форма, размеры и качества предметов, причем поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет – так называемая зрительная агнозия, при этом утрачивается еще и цветовая память.

Слуховая зона. Слуховая зона находится на поверхности височных долей обоих полушарий (поля 41, 42, 22) и участвует в анализе сложных и не очень сложных слуховых сигналов. Именно здесь выделяется громкость, высота, тембр звука, определяется местоположение его источника, направление движения, изменение расстояния от источника, речеподобность по звучанию и многое-многое другое.

Оба наших уха имеют свои «официальные представительства» в обоих полушариях за счет того, что слуховые нервы, так же как зрительные, частично идут к «своему» полушарию, но, все же, большая их часть, перекрещиваясь, направляется в противоположные уху участки слуховой зоны коры. Так что и тут - левое ухо, в основном, слышит правое полушарие, а правое - левое.

Ну, и, конечно же, при разрушении 22 поля - возникают слуховые галлюцинации, сопровождающиеся нарушением слуховых ориентировочных реакций, музыкальная глухота и прочие неприятности, а при разрушении 41 поля – даже корковая глухота. Вот.

Другие же сенсорные функции, такие как вкус, обоняние, чувство равновесия , в меньшей степени представлены в коре головного мозга и рассказывать то о них, в общем то и нечего, за исключением того, что обонятельная системарасполагается в 34 поле Бродмана, и ее повреждение вызывает обонятельные галлюцинации. Вкусовая зона соседствует с обонятельной и обосновалась на 43 поле, что не удивительно, так как обоняние и вкус очень тесно между собой взаимосвязаны, о чем вот тут уже говорилось.

АССОЦИАТИВНЫЕ ЗОНЫ КОРЫ ГОЛОВНОГО МОЗГА. ЦЕНТРЫ СЛУХА И РЕЧИ

Как уже говорилось, в коре нашего мозга есть много обширных и бескрайних зон, не связанных непосредственно с сенсорными или моторными процессами. Они называются ассоциативными зонами и занимают около 80% территории коры.

Так вот, каждая такая ассоциативная область коры тесно связана сразу же с несколькими проекционными (сенсорными или моторными) зонами. Поэтому и считается, что в ассоциативных областях происходит ассоциация (а попросту соединение или совмещение) разно сенсорной информации, в результате чего и формируются сложные элементы нашего сознания.

Наибольшие места скопления и обитания ассоциативных областей у человека обнаружены в лобной, затылочно-теменной и височной и областях .

Вообще, каждая проекционная область коры, будь то сенсорная или моторная, окружена ассоциативными областями, причем нейроны этих областей чаще полисенсорны, т.е. умеют реагировать на различные сигналы, поступающие от слуховой, зрительной, кожной и других систем. И вот именно эта вот полисенсорность нейронов позволяет им объединять сенсорную информацию и организовывать и координировать взаимодействие сенсорных и моторных областей коры.

Итак, лобные доли являются ответственными за осуществление высших психических функций, которые проявляются в формировании личностных качеств, разнообразных творческих процессов и влечений.

При повреждении лобных отделов коры большого мозга, резко нарушается построение целенаправленного поведения, основанного на предвидении.

Что это такое? Сейчас поясню:
Например, у обезьян, повреждение этих самых лобных долей нарушает их способность решать задачи с отсроченной ответной реакцией. Проведите такой вот эксперимент: найдите где-нибудь такую вот больную обезьянку и на ее глазах поместите еду в одну из двух чашек, а чашки накройте одинаковыми предметами. Затем между обезьяной и чашками поставьте ненадолго непрозрачный экран. Потом экран уберите, и пусть обезьянка выберет одну из этих чашек. Так вот, нормальная обезьяна запомнит нужную чашку после задержки в несколько минут, а вот наша, болезлая, с поврежденными лобными долями, увы, не сможет решить эту задачу, если задержка превысит всего то несколько секунд. Это и будет отсроченная ответная реакция, а точнее - ее отсутствие, т.е. такие обезьяны просто-напросто не запоминают то, что было совсем недавно из-за «поломки» нужных нейронов в лобных долях. Что уж говорить о людях…

Далее.В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря соединению и сопоставлению соматосенсорной (чувствительной), проприоцептивной (Проприоцепция - способность воспринимать положение и перемещение в пространстве собственного тела, ну или отдельных его частей) и зрительной информации.

При повреждении наружной поверхности затылочной доли, не проекционной, а ассоциативной зрительной зоны, зрение сохранится, но тут же наступит расстройство узнавания – так называемая зрительная агнозия. Такой человек, будучи абсолютно грамотным, не сможет прочесть написанное, и будет в состоянии признать знакомого человека только после того, как тот заговорит. Ну не узнает он его «глазами» и все тут!

Продолжаем.В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого полушария). Эта зона асимметрична - у правшей она находиться в левом, а у левшей – в правом полушарии.

Задача этого центра – распознавание и хранение устной речи, как собственной, так и чужой. При поражении слухового центра речи человек может го­ворить, излагать устно свои мысли, но не понимает чужой речи, и хотя слух и сохранен - человек не узнает слов. Такое вот состояние назы­вается сенсорной слуховой афазией. Такой человек часто много говорит (логорея), но речь его неправильная (аграмматизм), при этом наблюдается замена слогов и слов (парафазии).

Но, речевая функция связана не только с сенсорной, но и с двигательной системой. И такой вот двигательный центр речи у нас действительно имеется. Он рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще всего левого полушария (опять же правши и левши) и был описан вначале господином Даксом в 1835 году, а затем уже господином Брока в 1861 году. При поражении моторного центра речи развивается моторная афазия - в этом случае человек понимает речь, но сам, увы, говорить не может.

В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. А на границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи. Понятно, что поражения этого центра приводят к невозможности чтения и письма.

Кстати, оба этих центра так же ассиметричны и находятся в разных полушариях у левшей и правшей.

Так же в височной области расположено поле 37, отвечающее за запоминание слов. Люди с поражениями этого поля не помнят названия предметов. При этом они очень напоминают забывчивых людей, которым постоянно приходится подсказывать нужные слова. Такой человек, забыв название предмета, четко помнит его назначение и свойства, поэтому долго опи­сывает его качества, объясняет, что делают с этим предметом, но назвать его, хоть убей, не может. Ну, например, вместо слова «галстук» человек, глядя на него, говорит примерно следующее: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Так же с височной корой связывают функцию памяти и сновидений.

Лимбическая система -это функционально единый ком­плекс нервных структур, ответственных за эмоциональное пове­дение, побуждения к действию (мотивации), процессы научения и запоминания, инстинкты (пищевые, оборонительные, половые) и регуляцию цикла «сон-бодрствование». В связи с тем, что лимбическая система воспринимает большое количество информа­ции от внутренних органов, она получила второе название - «висцеральный мозг».

В состав лимбической системы входят три структурных ком­плекса: древняя кора (палеокортекс), старая кора (архикортекс), срединная кора (мезокортекс). Древняя кора (палеокортекс) включает в себя препериформную, периамигдалярную, диаго­нальную кору, обонятельные луковицы, обонятельный бугорок, прозрачную перегородку. Второй комплекс -старая кора (архи­кортекс) состоит из гиппокампа, зубчатой фасции, поясной изви­лины. Структурами третьего комплекса (мезокортекса) являются островковая кора и парагиппокампальная извилина.

Лимбическая система включает в себя такие подкорковые об­разования, как миндалины мозга, ядра перегородки, переднее таламическое ядро, мамиллярные тела, гипоталамус.

Основное отличие лимбической системы от других отделов центральной нервной системы -это наличие двусторонних реципрокных связей между ее структурами, образующими замкну­тые крути, по которым циркулируют импульсы, обеспечивающие функциональное взаимодействие между различными частями лимбической системы.

В так называемый «крут Пейпеса» входят: гиппокамп -ма­миллярные тела -передние ядра таламуса -кора поясной изви­лины -парагиппокампальная извилина -гиппокамп. Этот крут отвечает за эмоции, формирование памяти и обучения.

Другой круг: амигдала -гипоталамус -мезенцефальные структуры -амигдала регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Лимбическая система образует связи с новой корой посред­ством лобных и височных долей. Последние передают информацию от зрительной, слуховой и соматосенсорной коры к миндалине и гиппокампу. Считают, что лобные области мозга являются основным корковым регулятором деятельности лимбической системы.

Функции лимбической системы

Многочисленные связи лимбической системы с подкорковы­ми структурами мозга, корой больших полушарий и внутренними органами позволяют ей принимать участие в реализации различ­ных функций, как соматических, так и вегетативных. Она контро­лирует эмоциональное поведение и совершенствует приспособительные механизмы организма в новых условиях существоваания. При поражении лимбической системы или эксперименталь­ном воздействии на нее нарушается пищевое, половое и социаль­ное поведение.

Лимбическая система, ее древняя и старая кора отвечают за обонятельные функции, а обонятельный анализатор является са­мым древним. Он запускает все виды деятельности коры больших полушарий. В состав лимбической системы входит высший веге­тативный центр -гипоталамус, создающий вегетативное обес­печение любого поведенческого акта.

Более всего изучены такие структуры лимбической системы, как миндалина, гиппокамп и гипоталамус. Последний описан ра­нее (см. с. 72).

Миндалина (амигдала, миндалевидное тело) располагается в глубине височной доли мозга. Нейроны миндалины полисенсорны и обеспечивают ее участие в оборонительном поведении, сомати­ческих, вегетативных, гомеостатических и эмоциональных реак­циях и в мотивации условно-рефлекторного поведения. Раздраже­ние миндалины приводит к изменениям в сердечно-сосудистой системе: колебаниям частоты сердечных сокращений, появлению аритмий и экстрасистол, понижению артериального давления, а также реакциям со стороны желудочно-кишечного тракта: жева­нию, глотанию, саливации, изменениям моторики кишечника.

После двустороннего удаления миндалин у обезьян утрачива­ется способность к социальному внутригрупповому поведению, они избегают остальных членов группы, ведут себя отчужденно, кажутся встревоженными и неуверенными в себе животными. Они не отличают съедобные предметы от несъедобных (психиче­ская слепота), у них становится выраженным оральный рефлекс (берут в рот все предметы) и возникает гиперсексуальность. По­лагают, что подобные расстройства у амигдалаэктомированных животных связаны с нарушением двусторонних связей между ви­сочными долями и гипоталамусом, которые отвечают за приобре­тенное мотивационное поведение и эмоции. Эти структуры мозга сопоставляют вновь поступившую информацию с уже накопив­шимся жизненным опытом, т.е. с памятью.

В настоящее время довольно распространенным эмоциональ­ным нарушением, связанным с патологическими функциональ­ными изменениями в структурах лимбической системы, является состояние тревоги, которое проявляется в двигательных и веге­тативных нарушениях,возникновение чувства страха перед ре­альной или вымышленной опасностью.

Гиппокамп - одна из основных структур лимбической систе­мы расположен в глубине височных долей мозга. Он образует комплекс стереотипно повторяющихся взаимосвязанных микро сетей или модулей, позволяющих циркулировать информации в данной структуре при обучении, т.е. гиппокамп имеет прямое от­ношение кпамяти. Повреждение гиппокампа приводит к ретроантероградной амнезии или нарушению памяти на события, близ­кие к моменту повреждения, снижению эмоциональности, ини­циативности.

Гиппокамп участвует в ориентировочном рефлексе, реакции настороженности, повышении внимания. Он отвечает за эмоцио­нальное сопровождение страха, агрессии, голода, жажды.

В общей регуляции поведения человека и животного большое значение имеет связь между лимбической и моноаминергической системами мозга. К последним относятсядофаминергические, норадренергические исеротонинергические системы. Они начи­наются в стволе и иннервируют различные отделы мозга, в том числе и некоторые структуры лимбической системы.

Так, норадренергические нейроны посылают свои аксоны из голубого пятна, где они находятся в большом количестве, в минда­лину, гиппокамп, поясную извилину, энторинальную кору.

Дофаминергические нейроны помимо черной субстанции и базальных ядер иннервируют миндалину, перегородку и обоня­тельный бугорок, лобные доли, поясную извилину и энториналь­ную область коры.

Серотонинергические нейроны располагаются в основном в срединных и околосрединных ядрах (ядра срединного шва) про­долговатого мозга и в составе медиального пучка переднего моз­га иннервируют почти все отделы промежуточного и переднего мозга.

Опыты с самораздражением с помощью вживленных элект­родов или на человеке во время нейрохирургических операций "оказали, что стимуляция зон иннервации катехоламинергичес-кими нейронами, расположенными в области лимбической системы, приводит к возникновению приятных ощущений. Эти зоны получили название«центры удовольствия». Рядом с ними нахо­дятся скопления нейронов, раздражение которых вызывает реак­цию избегания, их назвали«центрами неудовольствия».

Многие психические расстройства связывают с моноаминергическими системами. За последние десятилетия для лечения нарушений деятельности лимбической системы разработаны пситропные препараты, влияющие на моноаминергические системы и опосредованно -на функции лимбической системы. К ним относятся транквилизаторы бензодиазепинового ряда (седуксен, элениум и др.), снимающие состою (имизин), нейролептики (аминозин, галоперидол и др.)

ЛИМБИЧЕСКАЯ СИСТЕМА (син.: висцеральный мозг, лимбическая доля, лимбический комплекс, тимэнцефалон ) - комплекс структур конечного, промежуточного и среднего отделов мозга, составляющих субстрат для проявления наиболее общих состояний организма (сна, бодрствования, эмоций, мотиваций и т. д.). Термин «лимбическая система» введен П. Мак-Лейном в 1952 г.

Нет единого мнения о точном составе структур, входящих в состав Л. с. Большинство исследователей, в частности, рассматривают гипоталамус (см.) как самостоятельное образование, выделяя его из Л. с. Однако такое выделение условно, т. к. именно на гипоталамусе происходит конвергенция влияний, исходящих от структур, участвующих в регуляции различных вегетативных функций и формировании эмоционально окрашенных поведенческих реакций. Связь функций Л. с. с деятельностью внутренних органов дала основание нек-рым авторам обозначить всю эту систему структур как «висцеральный мозг», однако этот термин лишь частично отражает функц, значение системы. Поэтому большинство исследователей применяют термин «лимбическая система», подчеркивая тем самым, что все структуры этого комплекса филогенетически, эмбриологически и морфологически связаны с большой лимбической долей Брока.

Основную часть Л. с. составляют структуры, относящиеся к древней, старой и новой коре, расположенные преимущественно на медиальной поверхности полушарий головного мозга, и многочисленные подкорковые образования, тесно с ними связанные.

На начальном этапе развития позвоночных животных структуры Л. с. обеспечивали все важнейшие реакции организма (пищевые, ориентировочные, оборонительные, половые). Эти реакции формировались на основе первого дистантного чувства - обоняния. Поэтому обоняние (см.) выступило в качестве организатора множества целостных функций организма, объединив и морфол, основу их - структуру конечного, промежуточного и среднего отделов головного мозга (см.).

Л. с.- сложное переплетение восходящих и нисходящих путей, образующих в пределах этой системы множество замкнутых концентрических кругов разного диаметра. Из них можно выделить следующие круги: амигдалоидная область - конечная полоска - гипоталамус - амигдалоидная область; гиппокамп - свод - септальная область - мамиллярные (сосцевидные, Т.) тела - сосцевидно-таламический пучок (Вик-д’Азира) - таламус - поясная извилина - поясной пучок - гиппокамп (круг Пейпса, рис. 1).

Восходящие пути Л. с. анатомически изучены недостаточно. Известно, что они наряду с классическими сенсорными путями включают также и диффузные, идущие не в составе медиальной петли. Нисходящие пути Л. с., связывающие ее с гипоталамусом, ретикулярной формацией (см.) среднего мозга и другими структурами ствола мозга, проходят в основном в составе медиального пучка переднего мозга, конечной (терминальной, т.) полоски и свода. Волокна, идущие от гиппокампа (см.), оканчиваются гл. обр. в области латеральной части гипоталамуса, в воронке, преоптической зоне и мамиллярных телах.

Морфология

В Л. с. входят обонятельные луковицы, обонятельные ножки, переходящие в соответствующие тракты, обонятельные бугорки, переднее продырявленное вещество, диагональный пучок Брока, ограничивающий сзади переднее продырявленное вещество, и две обонятельные извилины - латеральная и медиальная с соответствующими полосками. Все эти структуры объединены общим названием «обонятельная доля».

На медиальной поверхности мозга к Л. с. относятся передняя часть ствола мозга и межполушарные спайки, окруженные большой аркообразной извилиной, дорсальную половину которой занимает поясная, а вентральную - парагиппокампальная извилины. Сзади поясная и парагиппокампальная извилины образуют ретросплениальную область, или перешеек (isthmus). Впереди между передне-нижними концами этих извилин расположена кора задней орбитальной поверхности лобной доли, передней части островка и полюса височной доли. Парагиппокампальную извилину следует отличать от гиппокампальной формации, образованной телом гиппокампа, зубчатой извилиной, или зубчатой фасцией, околокаллозальным остатком старой коры и, по мнению нек-рых авторов, субикулумом и пресубикулумом (т. е. основанием и предоснованием гиппокампа).

Парагиппокампальная извилина подразделяется на следующие три части: 1. Грушевидную область (area piriformis), к-рая у макросматиков образует грушевидную долю (lobus piriformis), занимающую наибольшую часть крючка (uncus). Она подразделяется, в свою очередь, на периамигдалоидную и препириформную области: первая покрывает ядерную массу амигдалоидной области и при этом очень плохо отделена от нее, вторая сливается впереди с латеральной обонятельной извилиной. 2. Энторинальную область (area entorhinalis), занимающую среднюю часть извилины снизу и сзади от крючка. 3. Субикулярную и пресубикулярную области, расположенные между энториальной корой, гиппокампом и ретросплениальной областью и занимающие медиальную поверхность извилины.

Подмозолистую (паратерминальную, т.) извилину вместе с рудиментарным передним гиппокампом, септальными ядрами и серыми прекомиссуральными образованиями иногда называют септальной областью, а также пре- или паракомиссуральной областью.

Из образований новой коры к Л. с. нек-рые исследователи относят ее височные и лобные отделы и промежуточную (лобно-височную) зону. Эта зона лежит между препириформной и периамигдалоидной корой, с одной стороны, и орбито-фронтальной и височно-полюсной - с другой. Иногда ее называют орбито-инсуловисочной корой.

Филогенез

Все образования мозга, составляющие Л. с., относятся к наиболее филогенетически древним его областям и поэтому их можно обнаружить у всех позвоночных (рис. 2).

Эволюция лимбических структур в ряду позвоночных тесно связана с эволюцией обонятельного анализатора и тех образований мозга, к-рые получают импульсы от обонятельной луковицы. У низших позвоночных (круглоротые, рыбы, амфибии и рептилии) первыми акцепторами такой обонятельной импульсации оказываются септальная и амигдалоидная области, гипоталамус, а также старая, древняя и межуточная области коры. Уже на самых ранних стадиях эволюции эти структуры были тесно связаны с ядрами нижнего ствола мозга и выполняли наиболее важные интегративные функции, к-рые обеспечивали организму адекватное приспособление к условиям окружающей среды.

В процессе эволюции за счет чрезвычайно интенсивного роста новой коры, неостриатума и специфических ядер таламуса относительное (но не абсолютное) развитие лимбических структур несколько снизилось, однако не остановилось. Они лишь претерпели нек-рые морфол, и топографические изменения. Так, напр., у низших позвоночных архистриатум, или миндалина, занимает в области конечного мозга почти срединное положение, у сумчатых располагается на дне височного рога бокового желудочка, а у большинства млекопитающих смещается к височному концу рога бокового желудочка, приобретая форму миндального ореха, в связи с чем и получил название миндалины. У человека эта структура занимает область полюса височной доли.

Септальная область у всех животных, кроме приматов,- это обширная часть конечного мозга, составляющая медиальную поверхность полушарий. У человека вся ядерная масса септальной области смещена в вентральном направлении, и поэтому верхнемедиальную стенку бокового желудочка образуют не ганглиозные элементы мозга, а своеобразная пленка - прозрачная перегородка (septum pellucidum).

Древние корковые формации в процессе эволюции претерпели настолько серьезные изменения, что превратились из поверхностных структур типа плаща в отдельные дискретные образования самой причудливой формы. Так, старая кора приобрела форму рога и стала называться аммоновым рогом, древняя и межуточная области коры превратились в обонятельный бугорок, перешеек, кору грушевидной извилины.

В ходе эволюции лимбические структуры вступили в тесную связь с более молодыми образованиями мозга, обеспечивая высокоорганизованным животным более тонкое приспособление к усложняющимся и постоянно меняющимся условиям существования.

Цитоархитектоника коры лимбической системы

Древняя кора (палеокортекс), по мнению И. Н. Филимонова, характеризуется примитивно построенной корковой пластинкой, к-рая нечетко отделяется от подлежащих субкортикальных клеточных скоплений. В ее состав входят грушевидная область, обонятельный бугорок, диагональная область, базальная часть перегородки. Поверх молекулярного слоя древней коры располагаются афферентные волокна, в других корковых областях проходящие в белом веществе под корой. Поэтому кора и не отделена столь четко от подкорки. Под волоконным слоем расположен молекулярный, затем слой гигантских полиморфных клеток, еще глубже - слой пирамидальных клеток с кистеобразными дендритами у основания клетки (букетные клетки) и, наконец, глубокий слой полиморфных клеток.

Старая кора (архикортекс) имеет дугообразную форму. Окружая мозолистое тело и фимбрию гиппокампа, она соприкасается спереди своим задним концом с периамигдалоидной, а передним - с диагональной областями древней коры. К старой коре относят гиппокампальную формацию и субикулярную область. Старая кора отличается от древней полным отделением корковой пластинки от подлежащих образований, а от новой - более простым строением и отсутствием характерного разделения на слои.

Межуточной корой называют области коры, отделяющие новую кору от старой (периархикортикальная) и древней (перипалеокортикальная).

Корковая пластинка периархикортикальной зоны, отделяющей на всем протяжении старую кору от новой, делится на три главных слоя: наружный, средний и внутренний. К межуточной коре этого типа относятся пресубикулярная, энторинальная и перитектальная области. Последняя представляет собой часть поясной извилины и непосредственно соприкасается с надмозолистым рудиментом гиппокампа.

Перипалеокортикальная, или переходная островковая, зона окружает древнюю кору, отделяя ее от новой коры, и смыкается сзади с периархикортикальной зоной. Она состоит из ряда полей, осуществляющих последовательный, но прерывистый переход от древней коры к новой и занимающих наружнонижнюю поверхность коры островка.

В литературе часто можно встретить и другую классификацию корковых структур Л. с.- с цитоархитектонической точки зрения. Так, Фогт (С. Vogt) и О. Фогт (1919) архи- и палеокортекс вместе называют аллокортексом или гетерогене-тической корой. К. Брод май (1909), Роуз (М. Rose, 1927) и Роуз (J. Е. Rose, 1942) кору лимбической, ретросплениальной и нек-рых других областей (напр., островка), образующих промежуточную кору между неокортексом и аллокортексом, называют мезокортексом. И. Н. Филимонов (1947) промежуточную кору называет парааллокортексом (juxtallocortex). Прибрам, Кругер (К. Н. Pribram, L. Kruger, 1954), Каада (В. R. Kaada, 1951) мезокортекс рассматривают только как часть парааллокортекса.

Подкорковые структуры . К подкорковым образованиям Л. с. относятся базальные ядра, неспецифические ядра таламуса, гипоталамус, поводок и, по мнению нек-рых авторов, ретикулярная формация среднего мозга.

Нейрохимия

На основании данных, полученных в последние десятилетия с помощью гистохим, методов исследования, в основном метода флюоресцентной микроскопии, было показано, что практически все структуры Л. с. принимают терминали нейронов, секретирующих различные биогенные амины (так наз. моноаминергические нейроны). Тела этих нейронов лежат в области нижнего ствола мозга. В соответствии с секретируемым биогенным амином выделяют три типа моноаминергических нейрональных систем - дофаминергическая (рис. 4), норадренергическая (рис. 5) и серотонинергическая. В первой выделяются три пути.

1. Нигронео-стриатный начинается в черном веществе и оканчивается на клетках хвостатого ядра и скорлупы. Каждый нейрон этого пути имеет множество терминалей (до 500 000) с общей длиной отростков до 65 см, что дает возможность мгновенно воздействовать на большое число клеток неостриатума. 2. Мезолимбический начинается в вентральной области покрышки среднего мозга и оканчивается на клетках обонятельного бугорка, септальной и амигдалоидной областей. 3. Туберо-инфундибулярный берет начало от передней части аркуатного ядра гипоталамуса и оканчивается на клетках eminentia mediana. Все эти пути мононейрональные и не содержат синаптических переключений.

Восходящие проекции норадренергической системы представлены двумя путями: дорсальным и вентральным. Дорсальный начинается от синего пятна, а вентральный - от латерального ретикулярного ядра и красноядерно-спинномозгового пути. Они простираются вперед и оканчиваются на клетках гипоталамуса, преоптической области, септальной и амигдалоидной областей, обонятельного бугорка, обонятельной луковицы, гиппокампа и новой коры.

Восходящие проекции серотонинергической системы начинаются от ядер шва среднего мозга и ретикулярной формации покрышки. Они простираются вперед вместе с волокнами медиального пучка переднего мозга, отдавая много коллатералей в область покрышки на границе промежуточного и среднего отделов мозга.

Шат и Лыоис (G. С. D. Shute, P. R. Lewis, 1967) показали, что в Л. с. находится большое количество веществ, связанных с обменом ацетилхолина; ими были прослежены четкие холинергические пути от ретикулярных и покрышковых ядер ствола мозга ко многим образованиям переднего мозга, и прежде всего к лимбическим, - так наз. дорсальный и вентральный тегментальные пути, к-рые непосредственно или с одним-двумя синаптическими переключениями достигают многих таламо-гипоталамических ядер, структур полосатого тела, амигдалоидной и септальной областей, обонятельной формации, гиппокампа и новой коры.

В Л. с., особенно в обонятельных структурах, обнаружено много глутаминовой, аспарагиновой и гамма-аминомасляной к-т, что может свидетельствовать о медиаторной функции этих веществ.

Л. с. содержит значительное количество биологически активных веществ, относящихся к группе энкефалинов и эндорфинов. Больше всего их содержится в полосатом теле, миндалевидном теле, поводке, гиппокампе, гипоталамусе, таламусе, межножковом ядре и других структурах. Только в этих структурах обнаружены рецепторы, к-рые воспринимают действие веществ этой группы - так наз. опиатные рецепторы [Снайдер (S. И. Snyder), 1977].

В 1976 г. Вейндлом с соавт. (А. Weindl) было обнаружено, что, помимо гипоталамуса, септальная и амигдалоидная области, а отчасти и таламус содержат нейроны, способные секретировать нейропептиды типа вазопрессина и др.

Физиология

Объединяя образования конечного, промежуточного и среднего отделов мозга, Л. с. обеспечивает формирование наиболее общих функций организма, реализующихся через целый спектр отдельных или сопряженных частных реакций. В структурах Л. с. происходит взаимодействие экстероцептивных (слуховых, зрительных, обонятельных и др.) и интероцептивных воздействий. Даже при самом примитивном воздействии практически на все структуры Л. с. (механическом, химическом, электрическом) можно обнаружить целый ряд изолированных простых или фрагментарных ответов, различающихся по степени выраженности и латентному периоду в зависимости от того, какая структура подвергается раздражению. Часто наблюдаются такие вегетативные реакции, как саливация, пилоэрекция, дефекация и др., изменения в работе дыхательной, сердечно-сосудистой и лимф, систем, изменение зрачковой реакции, терморегуляции и т. д. Продолжительность этих реакций бывает иногда весьма значительной, что свидетельствует о включении в работу и отдельных эндокринных аппаратов. Часто такие вегетативные реакции наблюдаются вместе с координированными моторными проявлениями (напр., жевательными, глотательными и другими движениями).

Наряду с вегетативными реакциями Л. с. определяет и вестибулосоматические функции, а также такие соматические реакции, как познотонические и голосовые. По-видимому, Л. с. следует рассматривать как центр интеграции вегетативных и соматических компонентов реакций иерархически более высокого уровня - эмоциональных и мотивационных состояний, сна, ориентировочно-исследовательской активности и т. д. Эти сложные реакции проявляются у животных или человека при раздражении вполне определенных структур Л. с. Показано, что раздражение или разрушение миндалины, перегородки, лобно-височной коры, гиппокампа и других отделов лимбической системы может повести к усилению или, наоборот, ослаблению пищедобывательных, оборонительных и половых реакций. Особенно наглядно в этом отношении разрушение височной, орбитальной и инсулярной коры, миндалины и примыкающей к ним части поясной извилины, вызывающее возникновение так наз. синдрома Клювера-Бьюси, при к-ром нарушается способность животных оценивать как свое внутреннее состояние, так и полезность или вредность внешних раздражителей. Животные после такой операции становятся ручными; беспрерывно обследуя окружающие предметы, они без разбора хватают все, что попадается, лишаются страха даже перед огнем и, даже обжигаясь, продолжают его трогать (возникает так наз. зрительная агнозия). Нередко они становятся выраженью гиперсексуальными, проявляя половые реакции даже в отношении животных другого вида. Изменяется и их отношение к пище.

Богатство взаимосвязей внутри Л. с. определяет и другую сторону эмоциональной деятельности - возможность значительного усиления эмоции, длительность ее удерживания и нередко переход ее в застойное патол, состояние. Пейпс (J. W. Papez), напр., считает, что эмоциональное состояние является результатом циркуляции возбуждений по структурам Л. с. от гиппокампа через мамиллярные тела (см.) и передние ядра таламуса к поясной извилине, причем последняя, по его мнению, и является истинно рецептивной зоной переживаемой эмоции. Однако эмоциональное состояние, проявляющееся не только субъективно, но и способствующее той или иной целенаправленной деятельности, т. е. отражающее ту или иную мотивацию животного, возникает, по-видимому, лишь в том случае, когда возбуждение от лимбических структур распространяется на новую кору, и прежде всего в ее лобные отделы (рис. 6). Без участия новой коры эмоция получается неполноценной; она теряет свой биол, смысл и выступает как ложная.

Мотивационные состояния животных, возникающие в ответ на электрическое раздражение гипоталамуса и тесно связанных с ним лимбических образований, поведенчески могут проявляться во всей их естественной сложности, т. е. в виде ярости и организованных реакций нападения на другое животное или, наоборот, в виде реакций обороны и избегания неприятного раздражителя или убегания от нападающего животного. Особенно заметно участие Л. с. в организации пищедобывательного поведения. Так, двустороннее удаление миндалины приводит либо к длительному отказу животных от пищи, либо к гиперфагии. Как показали К. В. Судаков (1971), Нода (К. Noda) с сотр. (1976), Паксинос (G. Paxinos, 1978), изменения пищедобывательного поведения и реакции утоления жажды наблюдаются и в случае раздражения пли разрушения прозрачной перегородки, пириформной коры и нек-рых мезэнцефалических ядер.

Удаление миндалины и грушевидной коры приводит к постепенному развитию выраженного гиперсексуального поведения, к-рое можно ослабить или снять разрушением нижнемедиального ядра гипоталамуса или септальной области.

Воздействия на Л. с. могут приводить к мотивационным изменениям более высокого порядка, проявляющимся на уровне сообщества. Наиболее демонстративно эмоционально-мотивационные состояния животных проявляются в случае их реакций самораздражения или избегания неблагоприятного раздражителя, когда воздействию подвергаются различные образования Л. с.

Формирование поведенческого акта на основе любой мотивации (см.) начинается с ориентировочно-исследовательской реакции (см.). Последняя, как показывают экспериментальные данные, также реализуется при обязательном участии Л. с. Установлено, что действие индифферентных раздражителей, вызывающих поведенческую реакцию настораживания, сопровождается характерными электрографическими изменениями в структурах Л. с. В то время как в коре больших полушарий при этом регистрируется десинхронизация электрической активности, в нек-рых структурах Л. с., напр, в амигдалоидной области, гиппокампе и грушевидной коре, происходят иные изменения электрической активности. На фоне достаточно сниженной активности обнаруживаются пароксизмальные вспышки высокочастотных колебаний; в гиппокампе регистрируется медленный регулярный ритм с частотой 4-6 в 1 сек. Такая типичная для гиппокампа реакция возникает не только при сенсорных раздражениях, но и при прямой электрической стимуляций ретикулярной формации и любой лимбической структуры, приводящей к возникновению поведенческой реакции настораживания или беспокойства.

Многочисленные эксперименты показывают, что слабые раздражения лимбических структур при отсутствии специфической эмоциональной реакции всегда вызывают настораживание или ориентировочно-исследовательскую реакцию животного. С ориентировочноисследовательской реакцией тесно связано выявление животным в окружающей среде значимых для данной ситуации сигналов и их запоминание. В осуществлении этих механизмов ориентировки, обучения и запоминания большая роль отводится гиппокампу и амигдалоидной области. Разрушение гиппокампа резко нарушает кратковременную память (см.). Во время раздражения гиппокампа и какое-то время после него животные теряют способность отвечать на условные раздражители.

Клин, наблюдения показывают, что двустороннее удаление медиальной поверхности височных долей также вызывает тяжелые расстройства памяти. У больных наблюдается ретроградная амнезия, они полностью забывают события, предшествовавшие операции. Кроме того, ухудшается способность запоминания. Больной не может запомнить названия б-цы, в к-рой находится. Резко страдает кратковременная память: больные теряют нить разговора, оказываются не способными следить за счетом спортивных игр и т. д. У животных после подобной операции нарушаются ранее приобретенные навыки, ухудшается способность к выработке новых, особенно сложных.

По мнению О. С. Виноградовой (1975), основной функцией гиппокампа является регистрация информации, а по мнению М. Л. Пигаревой (1978),- обеспечение реакций на сигналы с малой вероятностью подкрепления в случаях, когда имеется дефицит прагматической информации, т. е. эмоциональное напряжение.

Л. с. тесно связана с механизмами сна (см.). Эрнандес-Пеон (R. Hernandez-Peon) с сотр. показал, что при инъекциях малых доз ацетилхолина или антихолинэстеразных веществ в различные отделы Л. с. у животных развивается сон. Особенно эффективны в этом отношении следующие отделы Л. с.: медиальная преоптическая область, медиальный пучок переднего мозга, межножковые ядра, ядра Бехтерева и медиальная часть покрышки моста. Эти структуры составляют так наз. гипногенный лимбико-среднемозговой круг. Возбуждение структур этого круга производит функц, блокаду восходящих активирующих влияний ретикулярной формации среднего мозга на кору больших полушарий, к-рые определяют состояние бодрствования. Вместе с тем показано, что сон может возникнуть при аппликации ацетилхолина" и антихолинэстеразных веществ и на вышележащие образования Л. с.: препириформную и периамигдалоидную области, обонятельный бугорок, полосатое тело и корковые области Л. с., расположенные на передней и медиальной поверхностях полушарий мозга. Этот же эффект может быть получен при раздражении коры больших полушарий, особенно ее передних отделов.

Характерно, что разрушение медиального пучка переднего мозга в преоптической области препятствует развитию сна, вызванного хим. раздражением вышерасположенных отделов Л. с. и коры больших полушарий.

Нек-рые авторы [Уинтер (P. Winter) с соавт., 1966; Робинсон (В. W. Robinson), 1967; Делиус (J. D. Delius), 1971] считают, что в Л. с. находятся так наз. центры коммуникаций животных (их голосовых проявлений), четко скоррелирован-ные с их поведением по отношению к своим сородичам. Эти центры образованы структурами амигдалоидной, септальной и преоптической областей, гипоталамуса, обонятельного бугорка, нек-рых ядер таламуса и покрышки. Робинсон (1976) высказал предположение, что у человека существует два центра речи. Первый, филогенетически более старый, располагается в Л. с.; он тесно связан с мотивационно-эмоциональными факторами и обеспечивает низкоинформационные сигналы. Этот центр контролируется вторым - высшим центром, расположенным в новой коре и связанным с доминирующим полушарием.

Участие Л. с. в формировании сложных интегративных функций организма подтверждается данными обследования психически больных. Так, напр., старческие психозы сопровождаются четкими дегенеративными изменениями в септальной и амигдалоидной областях, гиппокампе, своде, медиальных отделах таламуса, энторинальной, височной и лобной областях коры. Кроме того, в структурах Л. с. у больных шизофренией находят большое количество дофамина, норадреналина и серотонина, т. е. биогенных аминов, нарушение нормального метаболизма к-рых связывают с развитием целого ряда психических заболеваний, в т. ч. и шизофрении.

Особенно заметно участие Л. с. в развитии эпилепсии (см.) и различных эпилептоидных состояний. Больные, страдающие психомоторной эпилепсисй, как правило, имеют органические повреждения в областях, захватывающих лимбические структуры. Это прежде всего орбитальная часть лобной и височной коры, парагиппокампальная извилина, особенно в области крючка, гиппокамп и зубчатая извилина, а также миндалевидный ядерный комплекс.

Описанные выше клин, симптомы обычно сопровождаются четким электрографическим показателем - в соответствующих отделах мозга регистрируются электрические судорожные разряды. Наиболее отчетливо такая активность регистрируется в гиппокампе, хотя проявляется и в других структурах, напр, в миндалине и перегородке. Наличие в них диффузных сплетений нервных отростков, множественных цепей обратной связи создает условия для мультиплицирования, удержания и пролонгирования активности. Отсюда и свойственный для структур Л. с. чрезвычайно низкий порог возникновения так наз. послеразрядов, к-рые могут продолжаться после прекращения электрического или хим. раздражения в течение длительного времени.

Самый низкий порог для электрического послеразряда обнаружен в гиппокампе, миндалине и пириформной коре. Характерной особенностью этих послеразрядов является их способность распространяться из места раздражения по другим структурам Л. с.

Клин, и экспериментальные данные показывают, что в период судорожных разрядов в Л. с. нарушаются процессы памяти. У больных с височно-диэнцефальными поражениями наблюдаются полная или частичная амнезия или же, наоборот, насильственные вспышки пароксизмов ощущения уже виденного, слышанного, пережитого.

Таким образом, занимая срединное положение в пределах ц. и. с., лимбическая система способна быстро «включаться» практически во все функции организма, направленные на активное приспособление его (в соответствии с наличной мотивацией) к условиям окружающей среды. Л. с. получает афферентные посылки возбуждения от образований нижнего ствола, к-рые в каждом случае могут быть очень специфичными, от ростральных (обонятельных) структур мозга и от новой коры. Эти возбуждения по системе взаимных связей быстро достигают всех необходимых областей Л. с. и мгновенно (через волокна медиального пучка переднего мозга или прямые неостриатно-тегментальные пути) активируют (или тормозят) исполнительные (моторные и вегетативные) центры нижнего ствола и спинного мозга. Этим достигается формирование «специализированной» для данных конкретных условий функц, системы с четкой морфол, и нейрохим, архитектоникой, к-рое завершается достижением организмом необходимого полезного результата (см. Функциональные системы).

Библиогр.: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беллер H. Н. Висцеральное поле лимбической коры, Л., 1977, библиогр.; Богомолова Е.М. Обонятельные образования мозга и их биологическое значение, Усп. физиол, наук, т. 1, № 4, с. 126, 1970, библиогр.; Вальд-м а н А. В., 3 в а р т а у Э. Э. и К о з-ловская М. М. Психофармакология эмоций, Л., 1976; Виноградова О.С. Гиппокамп и память, М., 1975, библиогр.; Гельгорн Э.иЛуфборроу Дж. Эмоции и эмоциональные расстройства, пер. с англ., М., 1966, библиогр.; Пига-р e в а М. Л. Лимбические механизмы переключения (гиппокамп и миндалина), М., 1978, библиогр.; Попова Н. К., Науменко Е. В. и Колпаков В. Г. Серотонин и поведение, Новосибирск, 1978, библиогр.; Судаков К. В. Биологические мотивации, М., 1971, библиогр.; Черкес В. А. Очерки по физиологии базальных ганглиев головного мозга, Киев, 1963, библиогр.; E h 1 e A. L., M a-s o n J. W. a. Pennington L. L. Plasma growth hormone and cortisol changes following limbic stimulation in conscious monkeys, Neuroendocrinology, v. 23, p. 52, 1977; Farley I. J., Price K. S. a. Me Cullough E. Norepinephrine in chronic paranoid schizophrenia, abovenormal levels in limbic forebrain, Science, v. 200, p. 456, 1978; Flo r-H e n г у P. Lateralized temporal-limbic dysfunction and psychopathology, Ann. N. Y. Acad. Sci., v. 280, p. 777, 1976; H a m i 11 o n L. W. Basic limbic system anatomy of the rat, N. Y., 1976; Isaacson R. L. The limbic system, N. Y., 1974, bibliogr.; Limbic and autonomic nervous systems research, ed. by V. Di Cara, N. Y., 1974; Mac Lean P. D. The limbic system («visceral brain») and emotional behavior, Arch. Neurol. Psychiat. (Chic.), v. 73, p. 130, 1955; Paxinos G. Interruption of septal connections, effects on drinking, irritability and copulation, Physiol. Behav., v. 17, p. 81, 1978; Robinson B. W. Limbic influences on human speech, Ann. N. Y. Acad. Sci., v. 280, p. 761, 1976; Schei-b e 1 М. E. a. o. Progressive dendritic changes in the aging human limbic system, Exp. Neurol., v. 53, p. 420, 1976; The septal nuclei, ed. by J. F. De France, N. Y.- L., 1976; Shute C. C. D. a. L e w i s P. R. The ascending cholinergic reticular system, neoeortical, olfactory and subcor-tical projections, Brain, v. 90, p. 497, 1967; Snyder S. H. Opiate receptors and internal oniates, Sci. Amer., v. 236, № 3, p. 44, 1977; U e k i S., A r a k i Y. a. Wat ana b e S. Changes in sensitivity of mice to anticonvulsant drugs following bilateral olfactory bulb ablations, Jap. J. Pharmacol., v. 27, p. 183, 1977; W e i n d 1 A. u. S o f r o n i e w M. Y. Demonstration of extrahypothalamic peptide secreting neurons, Pharmakopsychiat. Neuro-psycopharmakol., Bd 9, S. 226, 1976, Bibliogr.

E. М. Богомолова.

Тайна Бога и наука о мозге [Нейробиология веры и религиозного опыта] Ньюберг Эндрю

Эмоциональный мозг: лимбическая система

Лимбическая система человека осуществляет связь между эмоциональными импульсами и высшими мышлением и перцепцией, что создает богатый и гибкий спектр крайне сложных эмоциональных состояний, таких как отвращение, разочарование, зависть, удивление или удовольствие. Эти эмоции, хотя и примитивные, в какой-то мере присущие и животным, дают людям более сложный и более четкий эмоциональный словарь.

Исследования показали также, что лимбическая система выполняет весьма значимую роль в возникновении религиозных и духовных переживаний. Электростимуляция лимбических структур людей порождала галлюцинации, подобные сновидениям, переживания выхода из тела, дежа вю и иллюзии – обо всех таких вещах говорят люди, рассказывая о своих духовных переживаниях. Вместе с тем, если заблокированы нервные пути, по которым в лимбическую систему поступают данные, это может привести к возникновению зрительных галлюцинаций. Поскольку лимбическая система имеет отношение к возникновению религиозных и духовных переживаний, иногда ее называют «передатчиком для связи с Богом». Что бы мы ни думали об ее участии в феномене духовности, у нее есть более важная функция, чем служить передатчиком: главная задача лимбической системы – генерировать и модулировать первичные эмоции, такие как страх, агрессия и ярость. Структуры лимбической системы, которые есть почти у всех животных, обладающих центральной нервной системой, с эволюционной точки зрения очень древние. Наша лимбическая система отличается от аналогичных структур других животных и наших древних предшественников своеобразной утонченностью. Ревность, гордость, сожаление, смущение, восторг – все эти явления порождает крайне совершенная лимбическая система, особенно когда она это делает при участии других отделов головного мозга. Поэтому если кто-то из наших древних предков мог испытывать острое разочарование из-за того, что не смог присутствовать на соревнованиях метателей камней, где участвовал его сын, мы в подобной ситуации способны пережить сложное чувство вины. Важнейшие части лимбической системы – гипоталамус, миндалевидное тело и гиппокамп. Все это примитивные нервные центры, но они оказывают огромное влияние на ум человека.

Поскольку лимбическая система имеет отношение к возникновению религиозных и духовных переживаний, иногда ее называют «передатчиком для связи с Богом»

На вопрос о том, какие преимущества для выживания давала лимбическая система, ответить нетрудно: она снабжала животных агрессивностью, необходимой для нахождения пищи, страхом, который помогал им спасаться от хищников и противостоять другим опасностям, и аффилиативную потребность – если хотите, примитивную «любовь», – которая толкала их на поиск пары и заставляла заботиться о потомстве. У людей примитивные чувства, порождаемые лимбической системой, интегрированы с высшими когнитивными функциями неокортекса, а потому их эмоциональные переживания богаче и разнообразнее.

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

ЛИМБИЧЕСКАЯ СИСТЕМА ГОЛОВНОГО МОЗГА Лимбическая система в мозге человека выполняет очень важную функцию, которая называется мотивационно-эмоциональной. Чтобы было ясно, что это за функция, вспомним: каждый организм, включая организм человека, имеет целый набор

Из книги Мозг и душа [Как нервная деятельность формирует наш внутренний мир] автора Фрит Крис

Наш скрытный мозг Может ли быть, что в опыте, демонстрирующем слепоту к изменениям, нашему мозгу все же видны изменения, происходящие на картинке, несмотря на то что сознанию они не видны? До недавнего времени на этот вопрос было очень сложно ответить.Давайте на минуту

Из книги Род человеческий автора Барнетт Энтони

Наш неадекватный мозг До открытия слепоты к изменениям любимым фокусом психологов были зрительные иллюзии (обманы зрения). Они тоже позволяют без труда демонстрировать, что мы видим не всегда то, что есть на самом деле. Большинство подобных иллюзий известны психологам

Из книги Зачем нужны мужчины автора Малахова Лилия Петровна

Наш креативный мозг Путаница чувствЯ знаю нескольких людей, которые выглядят совершенно нормальными. Но они видят мир, непохожий на тот, что вижу я. Будучи синестеткой, я живу в ином мире, нежели окружающие, – в мире, где больше цветов, форм и ощущений. В моей вселенной

Из книги Основы психофизиологии автора Александров Юрий

Наш мозг справляется и без нас В эксперименте Либета мы как будто отстаем от того, что делает наш собственный мозг. Но в итоге мы все же нагоняем его. В других экспериментах наш мозг управляет нашими действиями так, что мы об этом даже не знаем. Так происходит, например, при

Из книги Мозг, разум и поведение автора Блум Флойд Э

Эпилог: Я и мой мозг Мы встроены во внутренний мир других людей точно так же, как мы встроены в окружающий материальный мир. Все, что мы делаем и думаем в настоящий момент, во многом определяется людьми, с которыми мы взаимодействуем. Но мы воспринимаем самих себя иначе. Мы

Из книги Тайна Бога и наука о мозге [Нейробиология веры и религиозного опыта] автора Ньюберг Эндрю

5 Мозг и поведение Человек по своей природе животное общественное. Аристотель Говоря об эволюции человека, мы рассматривали его как животное, хотя и исключительное. Итак, перед нашим мысленным взором возникла прямоходящая, безволосая человекообразная обезьяна, ведущая

Из книги Почему мы любим [Природа и химия романтической любви] автора Фишер Хелен

Мозг имеет пол? С тем, что мужчины и женщины мыслят по-разному, уже давно никто не спорит. Даже шутки на эту тему утратили свою актуальность. Исследования последних десятилетий действительно показали, что мужской и женский мозг устроены различно.В целом, конечно, головной

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Глава 1 МОЗГ 1. ОБЩИЕ СВЕДЕНИЯ Традиционно со времён французского физиолога Биша (начало XIX в.) нервную систему разделяют на соматическую и вегетативную, в каждую из которых входят структуры головного и спинного мозга, называемые центральной нервной системой (ЦНС), а также

Из книги Секс и эволюция человеческой природы автора Ридли Мэтт

Что делает мозг? На минуту приостановите чтение и составьте список действий, контролируемых вашим мозгом в данный момент. Лучше запишите их на листе бумаги, так как запоминание длинного перечня - не из тех процедур, которые наш мозг выполняет с легкостью. Когда вы

Из книги автора

Что такое мозг? Итак, мозг заботится о том, чтобы мы чувствовали и двигались, осуществляет внутреннюю регуляцию, обеспечивает продолжение рода и адаптацию. Если вы когда-нибудь изучали биологию, то должны помнить, что эти свойства характерны для всех животных. Даже

Из книги автора

Мозг в действии Исследования активности мозга методами ПЭТ, ОФЭКТ и ФМРТ дают нам достаточно детальную картину специфических функций отдельных участков мозга. Мы можем узнать, какие отделы мозга связаны с теми или иными из пяти видов ощущений, какие участки

Из книги автора

Влюбленный мозг «В структуру человеческой личности вплетено очень много легковоспламеняющегося материала, и хотя эта часть может до поры до времени дремать… но если к ней поднести факел, спрятанное внутри тебя тут же вспыхнет обжигающим пламенем», - так писал Джордж

Из книги автора

9.1. Головной мозг В анатомии мозга позвоночных обычно выделяют пять отделов, а у млекопитающих – шесть.Продолговатый мозг (myelencephalon) является продолжением спинного мозга и, в общем виде, сохраняет его структуру, особенно у низших позвоночных. У высших позвоночных в

Из книги автора

9.5. Лимбическая система Лимбическая система мозга включает в себя несколько структур: гиппокамп, миндалину, поясную извилину, перегородку, некоторые ядра таламуса и гипоталамуса. Ее название было предложено в 1952 г. одним из ведущих специалистов, американским

Из книги автора

Гормоны и мозг В определенном смысле, причина межполовых различий - не в том, что у женщин и мужчин гены поведения сами по себе разные. Допустим, у плейстоценового мужчины возникает ген, улучшающий чувство направления, но при этом ухудшающий социальную интуицию. Ему он



Последние материалы раздела:

Тело поднимают вверх по наклонной плоскости
Тело поднимают вверх по наклонной плоскости

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по...

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...