Фундаментальная система решений (конкретный пример). Однородные системы линейных алгебраических уравнений

Система m линейных уравнений c n неизвестными называется системой линейных однородных уравнений, если все свободные члены равны нулю. Такая система имеет вид:

где а ij (i = 1, 2, …, m ; j = 1, 2, …, n ) - заданные числа; х i – неизвестные.

Система линейных однородных уравнений всегда совместна, так как r (А) = r (). Она всегда имеет, по крайней мере, нулевое (тривиальное ) решение (0; 0; …; 0).

Рассмотрим при каких условиях однородные системы имеют ненулевые решения.

Теорема 1. Система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг её основной матрицы r меньше числа неизвестных n , т.е. r < n .

1). Пусть система линейных однородных уравнений имеет ненулевое решение. Так как ранг не может превосходить размера матрицы, то, очевидно, r n . Пусть r = n . Тогда один из миноров размера n n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: , , . Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r < n .

2). Пусть r < n . Тогда однородная система, будучи совместной, является неопределённой. Значит, она имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Рассмотрим однородную систему n линейных уравнений c n неизвестными:

(2)

Теорема 2. Однородная система n линейных уравнений c n неизвестными (2) имеет ненулевые решения тогда и только тогда, когда её определитель равен нулю: = 0.

Если система (2) имеет ненулевое решение, то = 0. Ибо при система имеет только единственное нулевое решение. Если же = 0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r < n . И, значит, система имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Обозначим решение системы (1) х 1 = k 1 , х 2 = k 2 , …, х n = k n в виде строки .

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка - решение системы (1), то и строка - решение системы (1).

2. Если строки и - решения системы (1), то при любых значениях с 1 и с 2 их линейная комбинация - тоже решение системы (1).

Проверить справедливость указанных свойств можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы.

Система линейно независимых решений е 1 , е 2 , …, е р называется фундаментальной , если каждое решение системы (1) является линейной комбинацией этих решений е 1 , е 2 , …, е р .

Теорема 3. Если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений (1) меньше числа переменных n , то всякая фундаментальная система решений системы (1) состоит из n – r решений.

Поэтому общее решение системы линейных однородных уравнений (1) имеет вид:

где е 1 , е 2 , …, е р – любая фундаментальная система решений системы (9), с 1 , с 2 , …, с р – произвольные числа, р = n – r .

Теорема 4. Общее решение системы m линейных уравнений c n неизвестными равно сумме общего решения соответствующей ей системы линейных однородных уравнений (1) и произвольного частного решения этой системы (1).

Пример. Решите систему

Решение. Для данной системы m = n = 3. Определитель

по теореме 2 система имеет только тривиальное решение: x = y = z = 0.

Пример. 1) Найдите общее и частные решения системы

2) Найдите фундаментальную систему решений.

Решение. 1) Для данной системы m = n = 3. Определитель

по теореме 2 система имеет ненулевые решения.

Так как в системе только одно независимое уравнение

x + y – 4z = 0,

то из него выразим x =4z - y . Откуда получим бесконечное множество решений: (4z - y , y , z ) – это и есть общее решение системы.

При z = 1, y = -1, получим одно частное решение: (5, -1, 1). Положив z = 3, y = 2, получим второе частное решение: (10, 2, 3) и т.д.

2) В общем решении (4z - y , y , z ) переменные y и z являются свободными, а переменная х – зависимая от них. Для того, чтобы найти фундаментальную систему решений, придадим свободным переменным значения: сначала y = 1, z = 0, затем y = 0, z = 1. Получим частные решения (-1, 1, 0), (4, 0, 1), которые и образуют фундаментальную систему решений.

Иллюстрации :

Рис. 1 Классификация систем линейных уравнений

Рис. 2 Исследование систем линейных уравнений

Презентации:

· Решение СЛАУ_матричный метод

· Решение СЛАУ_метод Крамера

· Решение СЛАУ_метод Гаусса

· Пакеты решения математических задач Mathematica, MathCad : поиск аналитического и числового решения систем линейных уравнений

Контрольные вопросы :

1. Дайте определение линейного уравнения

2. Какой вид имеет система m линейных уравнений с n неизвестными?

3. Что называется решением систем линейных уравнений?

4. Какие системы называются равносильными?

5. Какая система называется несовместной?

6. Какая система называется совместной?

7. Какая система называется определенной?

8. Какая система называется неопределенной

9. Перечислите элементарные преобразования систем линейных уравнений

10. Перечислите элементарные преобразования матриц

11. Сформулируйте теорему о применении элементарных преобразований к системе линейных уравнений

12. Какие системы можно решать матричным методом?

13. Какие системы можно решать методом Крамера?

14. Какие системы можно решать методом Гаусса?

15. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Гаусса

16. Опишите матричный метод решения систем линейных уравнений

17. Опишите метод Крамера решения систем линейных уравнений

18. Опишите метод Гаусса решения систем линейных уравнений

19. Какие системы можно решать с применением обратной матрицы?

20. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Крамера

Литература :

1. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н.Фридман. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2005. – 471 с.

2. Общий курс высшей математики для экономистов: Учебник. / Под ред. В.И. Ермакова. –М.: ИНФРА-М, 2006. – 655 с.

3. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред.В.И. Ермакова. М.: ИНФРА-М, 2006. – 574 с.

4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и магматической статистике. - М.: Высшая школа, 2005. – 400 с.

5. Гмурман. В.Е Теория вероятностей и математическая статистика. - М.: Высшая школа, 2005.

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. – М.: Оникс 21 век: Мир и образование, 2005. – 304 с. Ч. 1; – 416 с. Ч. 2.

7. Математика в экономике: Учебник: В 2-х ч. / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандара. – М.: Финансы и статистика, 2006.

8. Шипачев В.С. Высшая математика: Учебник для студ. вузов – М.: Высшая школа, 2007. – 479 с.


Похожая информация.


Пусть М 0 – множество решений однородной системы (4) линейных уравнений.

Определение 6.12. Векторы с 1 , с 2 , …, с p , являющиеся решениями однородной системы линейных уравнений называются фундаментальным набором решений (сокращенно ФНР), если

1) векторы с 1 , с 2 , …, с p линейно независимы (т. е. ни один из них нельзя выразить через другие);

2) любое другое решение однородной системы линейных уравнений можно выразить через решения с 1 , с 2 , …, с p .

Заметим, что если с 1 , с 2 , …, с p – какой-либо ф.н.р., то выражением k 1 ×с 1 + k 2 ×с 2 + … + k p ×с p можно описать все множество М 0 решений системы (4), поэтому его называют общим видом решения системы (4).

Теорема 6.6. Любая неопределенная однородная система линейных уравнений обладает фундаментальным набором решений.

Способ нахождения фундаментального набора решений состоит в следующем:

Найти общее решение однородной системы линейных уравнений;

Построить (n r ) частных решений этой системы, при этом значения свободных неизвестных должны образовывать единичную матрицу;

Выписать общий вид решения, входящего в М 0 .

Пример 6.5. Найти фундаментальный набор решений следующей системы:

Решение . Найдем общее решение этой системы.

~ ~ ~ ~ Þ Þ Þ В этой системе пять неизвестных (n = 5), из них главных неизвестных два (r = 2), свободных неизвестных три (n r ), то есть в фундаментальном наборе решений содержится три вектора решения. Построим их. Имеем x 1 и x 3 – главные неизвестные, x 2 , x 4 , x 5 – свободные неизвестные

Значения свободных неизвестных x 2 , x 4 , x 5 образуют единичную матрицу E третьего порядка. Получили, что векторы с 1 , с 2 , с 3 образуют ф.н.р. данной системы. Тогда множество решений данной однородной системы будет М 0 = {k 1 ×с 1 + k 2 ×с 2 + k 3 ×с 3 , k 1 , k 2 , k 3 Î R}.

Выясним теперь условия существования ненулевых решений однородной системы линейных уравнений, другими словами условия существования фундаментального набора решений.

Однородная система линейных уравнений имеет ненулевые решения, то есть является неопределенной, если

1) ранг основной матрицы системы меньше числа неизвестных;

2) в однородной системе линейных уравнений число уравнений меньше числа неизвестных;

3) если в однородной системе линейных уравнений число уравнений равно числу неизвестных, и определитель основной матрицы равен нулю (т. е. |A | = 0).

Пример 6.6 . При каком значении параметра a однородная система линейных уравнений имеет ненулевые решения?

Решение . Составим основную матрицу этой системы и найдем ее определитель: = = 1×(–1) 1+1 × = –а – 4. Определитель этой матрицы равен нулю при a = –4.

Ответ : –4.

7. Арифметическое n -мерное векторное пространство

Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n -мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (a 1 , a 2 , …, a n ), где a i Î R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа a i называются его координатами .

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n -мерных векторов принято обозначать как R n .

Определение 7.2. Два вектора а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. a 1 = b 1 , a 2 = b 2 , …, a n = b n .

Определение 7.3. Суммой двух n -мерных векторов а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) называется вектор a + b = (a 1 + b 1 , a 2 + b 2 , …, a n + b n ).

Определение 7.4. Произведением действительного числа k на вектор а = (a 1 , a 2 , …, a n ) называется вектор k ×а = (k ×a 1 , k ×a 2 , …, k ×a n )

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором ).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами: " a , b , c Î R n , " k , l Î R:

1) a + b = b + a ;

2) a + (b + c ) = (a + b ) + c ;

3) a + о = a ;

4) a + (–a ) = о ;

5) 1×a = a , 1 Î R;

6) k ×(l ×a ) = l ×(k ×a ) = (l ×k a ;

7) (k + l a = k ×a + l ×a ;

8) k ×(a + b ) = k ×a + k ×b .

Определение 7.6. Множество R n с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством .

Однородная система линейных уравнений над полем

ОПРЕДЕЛЕНИЕ. Фундаментальной системой решений системы уравнений (1) называется непустая линейно независимая система ее решений, линейная оболочка которой совпадает с множеством всех решений системы (1).

Отметим, что однородная система линейных уравнений, имеющая только нулевое решение, не имеет фундаментальной системы решений.

ПРЕДЛОЖЕНИЕ 3.11. Любые две фундаментальные системы решений однородной системы линейных уравнений состоят из одинакового числа решений.

Доказательство. В самом деле, любые две фундаментальные системы решений однородной системы уравнений (1) эквивалентны и линейно независимы. Поэтому в силу предложения 1.12 их ранги равны. Следовательно, число решений, входящих в одну фундаментальную систему, равно числу решений, входящих в любую другую фундаментальную систему решений.

Если основная матрица А однородной системы уравнений (1) нулевая, то любой вектор из является решением системы (1); в этом случае любая совокупность линейно независимых векторов из является фундаментальной системой решений. Если же столбцовый ранг матрицы А равен , то система (1) имеет только одно решение - нулевое; следовательно, в этом случае система уравнений (1) не обладает фундаментальной системой решений.

ТЕОРЕМА 3.12. Если ранг основной матрицы однородной системы линейных уравнений (1) меньше числа переменных , то система (1) обладает фундаментальной системой решений, состоящей из решений.

Доказательство. Если ранг основной матрицы А однородной системы (1) равен нулю или , то выше было показано, что теорема верна. Поэтому ниже предполагается, что Полагая , будем считать, что первые столбцов матрицы А линейно независимы. В этом случае матрица А строчечно эквивалентна приведенной ступенчатой матрице, а система (1) равносильна следующей приведенной ступенчатой системе уравнений:

Легко проверить, что любой системе значений свободных переменных системы (2) соответствует одно и только одно решение системы (2) и, значит, системы (1). В частности, системе нулевых значений соответствует только нулевое решение системы (2) и системы (1).

Будем в системе (2) придавать одному из свободных переменных значение, равное 1, а остальным переменным - нулевые значения. В результате получим решений системы уравнений (2), которые запишем в виде строк следующей матрицы С:

Система строк этой матрицы линейно независима. В самом деле, для любых скаляров из равенства

следует равенство

и, значит, равенства

Докажем, что линейная оболочка системы строк матрицы С совпадает с множеством всех решений системы (1).

Произвольное решение системы (1). Тогда вектор

также является решением системы (1), причем

Мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1


Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имеет только тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Чтобы окончательно закрепить алгоритм, разберём финальное задание:

Пример 7

Решить однородную систему, ответ записать в векторной форме.

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.

(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.

(3) Последние три строки пропорциональны, две из них удалили.

В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:

– базисные переменные;
– свободные переменные.

Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

– подставим в 1-е уравнение:

Таким образом, общее решение:

Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.

Подставим тройку значений в общее решение и получим вектор , координаты которого удовлетворяют каждому уравнению однородной системы. И снова повторюсь, что крайне желательно проверять каждый полученный вектор – времени займет не так много, а от ошибок убережёт стопроцентно.

Для тройки значений находим вектор

И, наконец, для тройки получаем третий вектор:

Ответ : , где

Желающие избежать дробных значений могут рассмотреть тройки и получить ответ в эквивалентном виде:

К слову о дробях. Посмотрим на полученную в задаче матрицу и зададимся вопросом – нельзя ли упростить дальнейшее решение? Ведь здесь мы сначала выразили через дроби базисную переменную , потом через дроби базисную переменную , и, надо сказать, процесс это был не самый простой и не самый приятный.

Второй вариант решения :

Идея состоит в том, чтобы попытаться выбрать другие базисные переменные . Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование:

Метод Гаусса имеет ряд недостатков: нельзя узнать, совместна система или нет, пока не будут проведены все преобразования, необходимые в методе Гаусса; метод Гаусса не пригоден для систем с буквенными коэффициентами.

Рассмотрим другие методы решения систем линейных уравнений. Эти методы используют понятие ранга матрицы и сводят решение любой совместной системы к решению системы, к которой применимо правило Крамера.

Пример 1. Найти общее решение следующей системы линейных уравнений с помощью фундаментальной системы решений приведенной однородной системы и частного решения неоднородной системы.

1. Составляем матрицу A и расширенную матрицу системы (1)

2. Исследуем систему (1) на совместность. Для этого находим ранги матриц A и https://pandia.ru/text/78/176/images/image006_90.gif" width="17" height="26 src=">). Если окажется, что , то система (1) несовместна. Если же получим, что , то эта система совместна и мы ее будем решать. (Исследование на совместность основано на теореме Кронекера-Капелли).

a. Находим rA .

Чтобы найти rA , будем рассматривать последовательно отличные от нуля миноры первого, второго и т. д. порядков матрицы A и окаймляющие их миноры.

М1 =1≠0 (1 берем из левого верхнего угла матрицы А ).

Окаймляем М1 второй строкой и вторым столбцом этой матрицы. . Продолжаем окаймлять М1 второй строкой и третьим столбцом..gif" width="37" height="20 src=">. Теперь окаймляем отличный от нуля минор М2′ второго порядка.

Имеем: (т. к. два первых столбца одинаковые)

(т. к. вторая и третья строки пропорциональны).

Мы видим, что rA=2 , а - базисный минор матрицы A .

b. Находим .

Достаточно базисный минор М2′ матрицы A окаймить столбцом свободных членов и всеми строками (у нас только последней строкой).

. Отсюда следует, что и М3′′ остается базисным минором матрицы https://pandia.ru/text/78/176/images/image019_33.gif" width="168 height=75" height="75">(2)

Так как М2′ - базисный минор матрицы A системы (2) , то эта система эквивалентна системе (3) , состоящей из первых двух уравнений системы (2) (ибо М2′ находится в первых двух строках матрицы A).

(3)

Так как базисный минор https://pandia.ru/text/78/176/images/image021_29.gif" width="153" height="51">(4)

В этой системе два свободных неизвестных (x2 и x4 ). Поэтому ФСР системы (4) состоит из двух решений. Чтобы их найти, придадим свободным неизвестным в (4) сначала значения x2=1 , x4=0 , а затем – x2=0 , x4=1 .

При x2=1 , x4=0 получим:

.

Эта система уже имеет единственное решение (его можно найти по правилу Крамера или любым другим способом). Вычитая из второго уравнения первое, получим:

Ее решением будет x1= -1 , x3=0 . Учитывая значения x2 и x4 , которые мы придали, получаем первое фундаментальное решение системы (2) : .

Теперь полагаем в (4) x2=0 , x4=1 . Получим:

.

Решаем эту систему по теореме Крамера:

.

Получаем второе фундаментальное решение системы (2) : .

Решения β1 , β2 и составляют ФСР системы (2) . Тогда ее общим решением будет

γ= С1β1+С2β2=С1(‑1, 1, 0, 0)+С2(5, 0, 4, 1)=(‑С1+5С2, С1, 4С2, С2)

Здесь С1 , С2 – произвольные постоянные.

4. Найдем одно частное решение неоднородной системы (1) . Как и в пункте 3 , вместо системы (1) рассмотрим эквивалентную ей систему (5) , состоящую из первых двух уравнений системы (1) .

(5)

Перенесем в правые части свободные неизвестные x2 и x4 .

(6)

Придадим свободным неизвестным x2 и x4 произвольные значения, например, x2=2 , x4=1 и подставим их в (6) . Получим систему

Эта система имеет единственное решение (т. к. ее определитель М2′0 ). Решая ее (по теореме Крамера или методом Гаусса), получим x1=3 , x3=3 . Учитывая значения свободных неизвестных x2 и x4 , получим частное решение неоднородной системы (1) α1=(3,2,3,1).

5. Теперь осталось записать общее решение α неоднородной системы (1) : оно равно сумме частного решения этой системы и общего решения ее приведенной однородной системы (2) :

α=α1+γ=(3, 2, 3, 1)+(‑С1+5С2, С1, 4С2, С2).

Это значит: (7)

6. Проверка. Чтобы проверить, правильно ли вы решили систему (1) , надо общее решение (7) подставить в (1) . Если каждое уравнение обратится в тождество (С1 и С2 должны уничтожиться), то решение найдено верно.

Мы подставим (7) для примера только в последнее уравнение системы (1) (x 1 + x 2 + x 3 ‑9 x 4 =‑1) .

Получим: (3–С1+5С2)+(2+С1)+(3+4С2)–9(1+С2)=–1

(С1–С1)+(5С2+4С2–9С2)+(3+2+3–9)=–1

Откуда –1=–1. Получили тождество. Так поступаем со всеми остальными уравнениями системы (1) .

Замечание. Проверка обычно довольно громоздкая. Можно рекомендовать следующую «частичную проверку»: в общем решении системы (1) произвольным постоянным придать некоторые значения и подставить полученное частное решение только в отброшенные уравнения (т. е. в те уравнения из (1) , которые не вошли в (5) ). Если получите тождества, то, скорее всего , решение системы (1) найдено правильно (но полной гарантии правильности такая проверка не дает!). Например, если в (7) положить С2= - 1 , С1=1 , то получим: x1=-3, x2=3, x3=-1, x4=0. Подставляя в последнее уравнение системы (1), имеем: - 3+3 - 1 - 9∙0= - 1 , т. е. –1=–1. Получили тождество.

Пример 2. Найти общее решение системы линейных уравнений (1) , выразив основные неизвестные через свободные.

Решение. Как и в примере 1 , составляем матрицы A и https://pandia.ru/text/78/176/images/image010_57.gif" width="156" height="50"> этих матриц. Оставляем теперь только те уравнения системы (1) , коэффициенты из которых входят в этот базисный минор (т. е. у нас – первые два уравнения) и рассматриваем состоящую из них систему, эквивалентную системе (1).

Перенесем в правые части этих уравнений свободные неизвестные.

Систему (9) решаем методом Гаусса, считая правые части свободными членами.

https://pandia.ru/text/78/176/images/image035_21.gif" width="202 height=106" height="106">

Вариант 2.

https://pandia.ru/text/78/176/images/image039_16.gif" width="192" height="106 src=">

Вариант 4.

https://pandia.ru/text/78/176/images/image042_14.gif" width="172" height="80">

Вариант 5.

https://pandia.ru/text/78/176/images/image044_12.gif" width="179 height=106" height="106">

Вариант 6.

https://pandia.ru/text/78/176/images/image046_11.gif" width="195" height="106">



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...