Определение точки росы в стене. Точка росы в стене – что это на практике Как найти точку росы

Построил стены, завел дом под крышу и поставил окна – готова коробка. Именно на этом этапе заканчивается «конструктивный» период стройки и начинается установка оборудования, утепление стен дома и дальнейшая его подготовка под чистовую отделку.

И именно на этом этапе важно правильно смонтировать утеплитель, да и весь пирог утепления на стенах дома, чтобы в дальнейшем не получить себе такую головную боль, как точка росы в стене со стороны жилого помещения.

Что за зверь такой – точка росы и почему плоха именно точка росы в стене, как это выглядит на практике?

Для начала немного теории, а затем практически примеры из собственного опыта, который я получил, приобретая коробку дома с уже установленным слоем утеплителя.

Температура точки росы

Точка росы имеет обыкновение двигаться. Зависит этот момент от двух показателей – температуры и влажности.

Каждый из них также делится пополам – на температуру в помещении и на улице, на влажность в помещении и на улице.

При всех расчетах и формулах, которые используются для того, чтобы рассчитать точку росы, предполагается, что влага будет конденсироваться из пара при движении изнутри наружу. Именно такая ситуация наблюдается зимой, когда температура и влажность в помещении выше, чем температура и влажность на улице. Температура точки росы будет расчетной при расчетных показателях для наружных и внутренних условий.

Летом, когда влажность и температура на улице обыкновенно выше, чем влажность и температура в помещении, точка росы не имеет такого значения. Почему? Потому что разница температур невысока и оба показателя температуры, уличный и домовой, находятся в положительных значениях.

А еще потому, что даже если точка росы в стене могла бы образоваться при плюсовых значениях обеих температур, сильного влияния на комфорт проживания в доме это бы не оказало.

Другое дело зимой. Влага, конденсируемая из пара, при низких температурах попадает в утеплитель и стену, и там замерзает. Для утеплителя намокание чревато либо полной потерей теплоизоляционных свойств (базальтовая вата), либо разрушением при замерзании воды (пенопласт). Для стены все то же самое, особенно для газобетонных и газосиликатных блоков.

Сам лично наблюдал печальную картину разрушения стены блочного дома в зимний период из-за неправильно сделанного утепления. К весне в стене из газосиликата толщиной 400 миллиметров были почти сквозные дыры.

Как рассчитать точку росы

Для расчета точки росы используется таблица значений конденсации водяного пара в зависимости от показателей влажности и температуры. Берется значение наружной и внутренней температуры и значение наружной и внутренней влажности. Получается температура точки росы, при которой будет происходить выпадение воды из водяного пара (образование росы).

Что нам дает эта температура? Очень многое. Мы в состоянии рассчитать, где будет конденсироваться пар в пироге утепления, то есть где будет точка росы в стене – в утеплителе, в несущей стене или на внутренней поверхности несущей стены – прямо в комнате.

Естественно, что самый правильный вариант – это точка росы в утеплителе. В этом случае не будет никаких негативных моментов для внутренних помещений. Чтобы не было также негативных моментов для утеплителя, стоит на этапе планирования правильно подбирать тип утеплителя для стен.

Менее приемлемый вариант – это точка росы в стене дома, которая является несущей. Здесь негативные моменты для внутренних помещений будут зависеть от материала стены. Получается такая ситуация тогда, когда утеплитель смонтирован неправильно или неправильно выбрана толщина утеплителя.

Самый неприемлемый вариант – это точка росы внутри помещения, на внутренней поверхности несущей стены. Обычно это случается тогда, когда дом совсем не утеплен или утеплен неправильно – изнутри.

Точка росы в доме – что делать?

Итак, обещанный пример из собственного опыта. Я приобрел коробку кирпичного дома, которая была утеплена изнутри пенопластом. О чем думали те люди, которые строили эту коробку, остается только гадать. Благодаря такому утеплению получилась точка росы в доме, на внутренней поверхности несущих стен, между кирпичом и утеплителем.

В чем выразилась точка росы в доме, в каких негативных моментах?

Их было два. Во-первых, кирпичная стена изнутри была всегда сырая в небольшие плюсовые и минусовые температуры. В комнатах стоял затхлый запах, при вскрытии под всем пенопластом были большие очаги плесени.

Во-вторых, в минусовые температуры было невозможно нормально обогреть этот дом, кирпичная кладка была исключена из теплового контура дома, благодаря тому, что была отсечена от теплого воздуха помещений пенопластом.

Что я сделал, чтобы победить точку росы в доме?

Во-первых, был демонтирован весь пенопласт с внутренних поверхностей несущих стен.

Во-вторых, утеплитель был смонтирован снаружи и был оштукатурен по методике мокрого фасада.

И, в-третьих, вместо прежнего внутреннего утепления в 50 миллиметров, было установлено наружное утепление в 150 миллиметров.

При правильном утеплении — точка росы снаружи, в доме — тепло и сухо.

Что стало? Стало тепло, сухо и комфортно.

ФИНАЛЬНАЯ ЗАМЕТКА. Не делайте воздушную прослойку между несущей стеной и воздухом комнаты. Часто обшивают стены изнутри ГКЛ – это дешевле и быстрее, чем штукатурить. Однако в воздушном зазоре между ГКЛ и кирпичом образуются микросквозняки, которые препятствуют теплопередаче и прогреву внутренней части кирпичной кладки.

Я свои кирпичные стены изнутри заштукатурил самой обычной штукатурной смесью. Сверху теперь можно красить или клеить обои. Толщина обоев такова, что ими, как теплоизолятором, можно пренебречь.

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С , а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг .

Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.

В сухой стене — пароизоляция и вентилируемый зазор

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды. Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

— это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя . Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм. , то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель - тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации - толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители . Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции выполняют из материалов с высоким сопротивлением паропроницанию - на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.Опубликовано

Точку росы можно считать своего рода индикатором повышенной концентрации в воздухе водяных паров. Если уровень влажности повышается, то вместе с ним повышается и точка росы (если будут определенные условия – такие, например, как температура или давление).

Выражается эта точка в градусах и обозначает температуру, при которых концентрация водяных паров достигает максимального показателя, если те постоянно были в воздухе при устойчивых температурных условиях.

Точка росы не может быть выше температуры воздуха. Если разогретый воздух соприкасается с холодными поверхностями, но наблюдается выпадение влажности – этот процесс называется конденсацией. В результате образуются капельки воды, которые способны превратиться в осадки, туман, иней и проч. Самым распространенным примером можно считать кипящий чайник, изнутри крышки в котором можно наблюдать водяные капельки. При этом температура этой поверхности и считается нашей точкой росы.

Итак, сегодня мы поговорим про расчет точки росы в стене, но вначале разберемся с некоторыми теоретическими аспектами.

Еще несколько примеров

Другим примером, который каждый из нас может увидеть зимой, можно назвать ситуацию, в которой с холода в помещение заносится какая-то вещь. Над этой вещью теплый воздух охлаждается, образуются пары воды и, как следствие, оседает конденсат. Когда температура этой вещи достигает аналогичного показателя воздуха в здании, влага испаряется.

Обратите внимание! Именно по этой причине не рекомендуют подключать к сети бытовую технику, которую только что занесли с мороза!

Наконец, третий пример – запотевшие стекла в доме. Очень часто окна в зимнее время «плачут» (то есть на них оседает конденсат). Стоит знать, что при правильном утеплении и качественных стеклопакетах конденсата быть не должно, а если он есть – значит, проблемы с влажностью (скорее всего, проблема в вытяжке, вентиляционной системе и т. д.).

Роль в строительном процессе

Если точка росы окажется завышенной, то такие стройматериалы, как цемент, древесина, металл и прочие не произведут нужного эффекта в здании и, того хуже, прослужат недолго. А если конденсат образуется на поверхности полимерных материалов при настилании, это может стать причиной следующих дефектов:

  1. вздутие поверхности;
  2. отслоение;
  3. шагрень.

Произвести визуальный расчет точки росы в стене вряд ли удастся, т. к. для этого потребуется таблица соответствующих показателей и бесконтактный термометр (об этой процедуре расскажем в разделе «Определяем точку росы и производим расчеты»).

Что может оказать влияние на данное значение?

Вещей, способных повлиять на это, есть несколько:

  1. толщина стен, а также стройматериалы, использованные для утепления;
  2. влажность (когда присутствует высокая концентрация влаги, точка росы повышается);
  3. температура – она сильно варьируется и зависит от конкретной местности.

Для более детального ознакомления с процессом рассмотрим несколько распространенных ситуаций.

  1. Если стена не утеплена, то точка росы начнет колебаться под воздействием климатических условий. Если погода стабильная, то точка сместится поближе к наружной стене. Сам дом в таком случае не пострадает. А если резко похолодало, то эта точка сместится к внутренней стене. Помещение насытится конденсатом, а стены будут медленно намокать.
  2. Если стена утеплена изнутри, то точка росы будет располагаться где-то в центре между ней и утеплителем. При повышенной влажности едва ли лучший вариант, поскольку после внезапного похолодания точка сместится ближе к стыку с утеплителем, что может оказать разрушительное действие для сооружения. Отметим, что при влажном климате проводить утепление изнутри можно лишь при эффективной отопительной системе, способной обеспечивать одинаковые температурные условия во всех комнатах.
  3. В случае наружного утепления стен точка росы сдвинется внутрь утепляющего слоя. При покупке материала для термоизоляции нужно учитывать этот момент и грамотно определить требуемую толщину.

Обратите внимание! Если при проведении ремонтных работ не учитывались климатические условия, то при возникновении неприятностей устранить их будет очень трудно, почти невозможно. Останется лишь устранить все сделанное и начать заново (читай: дополнительные затраты).

Определяем точку росы и производим расчеты

Все мы желаем жить комфортно, но вряд ли это удастся в условиях высокой влажности. Конденсирование вредно не только для дома (в частности, для стен), но и для человеческого здоровья (увеличивается риск заболевания астмой). Более того, если влажность высокая, то стены с потолком могут покрыться плесенью, которая столь вредна для организма и столь трудно выводится. Нередко даже приходится менять все отделочные покрытия, чтобы избавиться от вредных микроорганизмов.

И с целью избегания всех этих неприятностей рекомендуем произвести расчет точки росы в стене и тем самым выяснить, целесообразно ли в вашем случае начинать ремонтные работы, проводить утепление или вообще затевать строительство нового дома. Стоит помнить, что такое понятие как точка росы индивидуально для каждого конкретного здания, следовательно, рассчитывать ее приходится каждый раз по-другому.
Но до того как приступить непосредственно к расчетам, необходимо принять во внимание следующие факторы:

  1. климатические особенности вашего региона;
  2. наличие и частота мощного ветра;
  3. толщина стен;
  4. стройматериал, использованный при возведении.

Влажность, хотя и в допустимых пределах, содержится практически в каждом материале. Вы же обязаны следить за тем, чтобы она не повышалась, и не появлялся конденсат. И если вы даже вызовите специалиста в случае повышенного уровня влажности, то он, вероятнее всего, скажет, что у вас неправильная термоизоляция, толщина стройматериалов не соответствует или при установке была допущена ошибка. Это отчасти правда, ведь именно грамотно проведенный ремонт во многом влияет на местонахождение точки росы и образование конденсата на поверхности стен.

Таблица для расчета точки росы

Обратите внимание! Для промежуточных чисел, которые в таблице не указываются, необходимо определять среднюю величину.

Расчет точки росы в стене при помощи таблицы – подробная инструкция

Вначале позаботьтесь о необходимом оборудовании. Вам потребуется:

  1. термометр;
  2. бесконтактный термометр, который, к слову, можно заменить обычным;
  3. гигрометр.

Ниже приведен алгоритм действий.

Шаг 1. В той комнате, где необходимо определить точку росы, отмерьте от пола приблизительно 60 сантиметров, не больше. После этого определите на данной высоте температуру воздуха (для этого можете положить термометр, скажем, на стол).

Шаг 3. В таблице, которую мы привели выше, отыщите свое значение и узнайте после этого заветную точку росы.

Шаг 4. Затем вам следует определить, возможно ли проведение в здании с подобной влажностью ремонтных работ – например, заливки полимерного пола либо укладки термоизоляции. С этой целью возьмите бесконтактный градусник и измерьте в той же точке в 60-ти сантиметрах температуру любой поверхности. В отсутствие данного устройства можете взять простой градусник, завернуть его в тряпку и примерно минут через пятнадцать снять показания.

Шаг 5. В конце сравните обе цифры. Если поверхность теплее воздуха больше чем на 4?С, значит, влажность высокая и есть вероятность того, что точка росы имеет место быть. Если так, то работы по термоизоляции должны контролироваться опытным специалистом, который примет во внимание толщину стройматериала, что будет для этого использоваться.

Видео – Определение точки росы

Как использовать результаты?

Теперь выясним, как можно использовать результаты, которые нам дал расчет точки росы в стене. Если вы будете знать, где расположена эта точка, то сможете правильно определить толщину утеплителя, предотвращая тем самым появление конденсата в ненужном месте.

Но, возможно, вас интересует другой, не менее важный вопрос: когда утепление следует проводить изнутри, а когда – снаружи? Чтобы правильно на него ответить, следует принять во внимание те факторы, которые способны тем или иным образом воздействовать на точку росы. Вот они:

  1. климатические условия;
  2. наличие утепления;
  3. постоянное/временное проживание;
  4. уровень внутренней/наружной влажности;
  5. то, с чем соседствует конкретная стена (с другой комнатой или с улицей);
  6. внутренняя/наружная температура;
  7. эффективность работы системы вентиляции;
  8. материал, из которого построены стены, и его толщина;
  9. эффективность работы системы отопления.

Безусловно, есть ряд случаев, в которых произвести утепление стен невозможно. Вот эти случаи:

  1. если в доме живут постоянно;
  2. если толщина стены достаточная (в условиях конкретного региона), то есть слой термоизоляции так или иначе должен быть не толще 5-ти сантиметров;
  3. если вентиляционная система работает в соответствии со всеми нормами;
  4. если отопительная система тоже хорошо работает.

Проще говоря, все, сказанное выше, можно сформулировать следующим образом: чем выше температура в регионе, чем лучше вентиляционная и отопительная системы, тем большая вероятность того, что будет использовано внутреннее утепление. Хотя опыт многих строителей гласит, что зачастую лучше утеплять здание именно снаружи – так шансы на то, что точка росы будет в требуемом месте, значительно возрастут.

Что будет, если неверно выбрать точку?

Воздух, выходя из обогретого помещения в зимнее время, переохладится и выпадет в конденсат, причем на всех поверхностях с низшей температурой. Именно поэтому стены все время будут влажными, в результате чего появляются вредные микроорганизмы и плесень. А это, следовательно, может стать причиной возникновения астмы.

Да и само здание долго не прослужит – его разрушение существенно ускорится. Здания с грибком и плесенью долго не могут служить. В связи с этим точку росы следует правильно определить еще на этапе проектирования. Вы обязаны подобрать:

  1. материал для строительства;
  2. материал для термоизоляции;
  3. тип отопительной и вентиляционной систем;
  4. технологию утепления.

Точку росы можно рассчитать своими силами, главное, чтобы были учтены климатические условия местности. Если в себе вы не уверены, обратитесь в специализированную компанию – за определенную плату они произведут замеры вместо вас!

Видео – Точка росы в стене

Точкой росы называется температура, до которой должен охладиться воздух, чтобы содержащийся в нём водяной пар достиг состояния насыщения и начал конденсироваться в росу. Проще говоря, это температура, при которой выпадает конденсат.

Температура точки росы определяется только двумя параметрами: температурой и относительной влажностью воздуха. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры.

Таблица с точкой росы

Таблицу с температурой точки росы для различных значений температур (от -5°С до 35°С) и относительной влажности (от 40% до 95%) воздуха в помещении можно найти в справочном Приложении Р к СП 23-101-2004 «Проектирование тепловой защиты зданий». К сожалению, в эту таблицу закралось несколько опечаток. Я подготовил для вас , там опечатки исправлены.

Формула расчета точки росы

Вы можете воспользоваться формулой для приблизительного расчёта точки росы Тр (°С) в зависимости от температуры воздуха Т (°С) и его относительной влажности Rh (%):

Формула обладает погрешностью ±0.4 °С в диапазоне температуры воздуха Т от 0°С до 60°С, температуры точки росы Тр от 0°С до 50°С, относительной влажности Rh от 1% до 100%.

Приборы с определением точки росы

Психрометр (гигрометр психрометрический) - прибор для измерения влажности воздуха и его температуры. Психрометр состоит из двух спиртовых термометров, один из них - обычный сухой термометр, а второй имеет устройство увлажнения. Вследствие испарения влаги, увлажнённый термометр охлаждается. Чем ниже влажность, тем меньше его температура. При 100% влажности показания термометров одинаковы. Для определения относительной влажности используют психрометрическую таблицу. Такие приборы в настоящее время используются только в лабораторных условиях.

Наиболее удобны в практике обследования зданий портативные электронные термогигрометры с индикацией температуры и относительной влажности воздуха на цифровом дисплее. Отдельные модели термогигрометров имеют также индикацию точки росы.

Расчет точки росы в тепловизоре

Некоторые модели тепловизоров имеют встроенную функцию расчета точки росы в реальном времени и отображения на термограмме изотермы, наглядно показывающей поверхности, где температура ниже точки росы во время тепловизионной съемки. Такая функция есть, к примеру, линейке тепловизров строительного назначения (серия «B» от «Building») FLIR Systems.

Изотерму по точке росы можно добавить на термограмму позже в программе обработки на компьютере. Для расчета понадобится задать температуру и влажность воздуха. Изотерма закрасит на термограмме все поверхности, температура которых ниже точки росы. Не забывайте, что эта функция показывает опасные для конденсации участки только при услових тепловизионного обследования. Если наружная температура повысится, а внутри влажность упадет, опасные зоны исчезнут с термограммы (конструкции будут теплее, а точка росы ниже). Ниже приведены скриншоты программ FLIR и TESTO.

Точка росы в строительстве

О значении конденсации и точки росы при эксплуатации строительных конструкций, положении точки росы или плоскости возможной конденсации в стенах, оценке дефектности конструкций по критерию точки росы с использованием тепловизионной съемки я напишу в одной из следующих публикаций.

Господа.
Вот задумался я.
На всем нам известном сайте многие не правильно забивают параметры и получают неверные результаты.
А тем временем задаю значения.
Температура снаружи = -25 гр.
Температура внутри + 24 гр.
Влажность снаружи 80%
Влажность внутри 40 % (40-60% минимально необходимая для комфортного самочувствия)

Теперь смотрим что получается:

1. Любимый конструктив частных застройщиков. Газобетон 375 мм со штукатуркой. Можно без штукатурки.

Конденсат = 20.17 гр/м2/час
Точка росы в газобетоне начинает образовываться начиная с 15% влажности внутри дома.
Точка росы находится преимущественно в зоне отрицательных температур.

2. Газобетон утепленный 100 мм пенопласта

Конденсат = 17.69 гр/м2/час
Точка росы находится также в зоне отрицательных температур

3. Газобетон утепленный 100 мм минеральной ватой

Конденсата и точки росы внутри стены нет. Неплохой конструктив.

4. Стена в 2,5 полнотелых кирпича толщиной 64 см. (Привет 90-е)

Конденсат = 17 гр/м2/час
Точка росы находится в зоне отрицательных температур.

5. Кирпичная стена в 1,5 пустотелых кирпича, утепленная минеральной ватой 100 мм.

Конденсата и точки росы внутри стены нет. Мой любимый конструктив. Конечно далее идет вент. зазор 3-4 см и декоративная отделка.

6. Кирпичная стена в 1,5 пустотелых кирпича, утепленная пенопластом 100 мм.

Конденсат = 0.56 гр/м2/час
Точка росы находится в пенопласте. Наверное это не очень хорошо. Ухудшится показатель теплопроводности и теоретически срок службы.

Выводы:
Любая однородная стена из строительных материалов таких как газо-пено блоки, керамзитобетонные блоки, теплая керамика, кирпич и пр. имеет точку росы зимой в своей толще. Это уменьшает срок службы стены, увеличивает вероятность появления высолов на облицовке, ухудшает теплопроводность. Из-за многократных циклов замораживания/оттаивания может материал стены со временем теряет прочность.
Таким образом, любая однородная стена требует утепления.
Утеплитель должен обладать хорошей паропроницаемостью, чтобы не задерживать пар в толще конструкции.
Самая плохая паропроницаемость у экструдированного пенополистирола. Он подходит для утепления бетонных фундаментов и стен, а также плоских кровель по бетонному перекрытию.
Более паропроницаем обычный пенопласт. Он при некоторых условиях подходит для утепления кирпичных стен.
Самый паропроницаемый утеплитель - это минеральная плита. Он подходит для утепления стен из любых материалов.
Естественно между утеплителем (пенопластом или минеральной плитой) и облицовкой должен быть предусмотрен вент. зазор для удаления пара с поверхности утеплителя. Организация вент. зазора в каждом конкретном случае делается по разному.

    Smart2305 сказал(а):

    Чтобы вывести точку росы из толщи стены.

    А зачем? Пусть она живет своей жизнью - "точка росы", вообще вещь сама в себе - не надо из неё делать фобию.
    http://www.aeroc.ru/material/mifi/

    Миф двенадцатый - "без наружного утепления точка росы оказывается в стене"

    «Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.
    Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.
    Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т. д.
    Проиллюстрируем наши рассуждения примерами:
    Исходные условия: температура внутреннего воздуха: +20°С, влажность 40%; температура наружного воздуха: -15°С, влажность 90%

    На первом изображении: Плотности реального и насыщенного водяного пара в толще стены
    На втором изображении: Изменение температуры по толщине стены
    --- плотность насыщенного водяного пара
    --- плотность реального водяного пара

    Следующие иллюстрации достаточно наглядно демонстрируют: конденсация становится возможной при уменьшении паропроницамости отделочных слоев или утеплителя по сравнению с предыдущими слоями.

    Однослойная стена с паропроницаемой отделкой лишь в редкие особо морозные зимы может увлажняться конденсируемой влагой. В условиях климата Украины конденсацией паров в толще однослойных стен можно пренебречь.

    Наружное утепление минеральной ватой : При «мокрой» отделке утеплителя конденсация возможна на границе [штукатурка/утеплитель], с поледующим намоканием утеплителя

    Наружное утепление пенополистиролом: Конденсация возможна на границе [несущая стена/утеплитель]

    Traks , 30.01.14

    nadegniy сказал(а):

    Немного поправлю, пар не движется сквозь стену, нет такого...

    Э-э-э... даже комментировать не вижу смысла.
    Ну как можно так вот нести совершенно безграмотную околесицу?

    В зимнее время температура воздуха с внутренней стороны ограждения бывает значительно выше температуры наружного воздуха. Если при этом предположить, что относительные влажности внутреннего и наружного воздуха будут одинаковыми, то упругость водяного пара с внутренней стороны ограждения окажется значительно более высокой, чем с наружной его стороны. Таким образом, в зимнее время наружное ограждение отапливаемых зданий разделяет две воздушные среды с одинаковым барометрическим давлением, но с разными значениями упругости (парциальными давлениями) водяного пара. Разность величин упругости водяного пара в обычных условиях может достигать 1300 Па, а в зданиях с повышенной температурой и высокой относительной влажностью воздуха может быть и значительно выше.
    Разность величин упругости водяного пара с одной и с другой стороны ограждения вызывает поток водяного пара через ограждение от внутренней его стороны к наружной стороне. Это явление носит название диффузии водяного пара через ограждение.

    К. Ф. Фокин
    Строительная теплотехника ограждающих частей зданий #87 , 02.02.14

    Относительная влажность знаете, что такое?
    Это максимум влаги в газообразном состоянии (пар), который может содержаться в воздухе при определенной температуре.
    Если давление пара достигает максимального (100%-ная относительная влажность) для данной температуры значения, то излишки пара превращаются в воду. Но давление выше максимального не растет. И не может давление "накапливаться". #135 , 02.02.14

    Serjei сказал(а):

    Ну вообще то для меня важнее тема точки россы в стене, а не то что вы нашли такой "большой" недостаток ошибки в калькуляторе. Вы принципиально не отвечаете на вопросы про -40 и конструкцию стены. Или вам интереснее писать не о чем подмигивая и улыбаясь?

    Это не ошибка в калькуляторе. Это ошибка в выборе данных.
    Теперь про -40 градусов и т. п.
    Живу я недалеко от Рязанской области (чутка севернее), в Рязани пожил не мало, часто там гощу. -40 на моей памяти было только в год перед московской олимпиадой.
    Ну да ладно. - 40, так -40. При -40 вода безусловно замерзает. Но дело в том что пористость ПБ плотностью 300 кг на куб больше 80%. Т. е. воздуха в этом пенобетоне больше 80%. Т. е. те несколько граммов, что при такой температуре выпадет в зоне конденсации, замерзнув, будут видны разве что через микроскоп. Опасности не представляют от слова вообще.
    Конструкция Ваша мне до фонаря. Я ее не комментировал. Я комментировал лишь расчет.
    Ирония моя связана с тем, что в калькуляторе написано, что (при нормативных расчетных параметрах - они есть там, где выбирали город) в конструкции нет условий для образования конденсата. Она совершенно безопасна. Но Вам почему-то неймется и Вы рассуждаете о неком замерзании конденсата в - 40.
    Ничего что я еще раз подмигну улыбаясь?
    Удачи #326 , 23.03.16

    Иванов Костя сказал(а):

    Весь вопрос сводится к скорости разрушения.

    Неа. Весь вопрос сводится к пористости. Если б Вы внимательно читали других, то узнали бы что пористость ячеистых бетонов (ЯБ - пено и газобетоны) крутится в районе 80%. Т. е. "в среднем по больнице" для того чтобы при переходе из жидкого состояния в твердое (лед) вода не разрушала стенки пор в кубе ЯБ есть аж 800 литров воздушного пространства. Это значит, что если Вы не будете принудительно замачивать ЯБ в емкости с водой, а потом засовывать его в холодильную камеру, то неоткуда взять такого количества влаги, чтобы она при замерзании начала что-то разрушать.
    Даже у кирпича минимум 20% пористости. У самого плотного. 200 литров в кубе - воздух.
    Не кошмарьте. #333 , 24.03.16

    Serjei сказал(а):

    Я вам уже говорил, что про естественную влагу находящуюся в материалах наверно даже ребенку понятно. Мне же интересно, что означает зона конденсации в калькуляторе в моем случае? Ведь каждый материал имеет ограниченное количество циклов заморозки, разморозки, свою морозостойкость. Имея такую зону конденсации будет пенобетон в данном случии терять с годами морозостойкость? Вот что меня интересует, прямые ответы с объяснением, на прямые вопросы.

    Зона конденсации означает, что вероятность выпадения конденсата при указанных параметрах климата внутри и снаружи помещений существует.
    Расчет в калькуляторе показывает, что количество влаги, которое может скопиться в зоне конденсации:
    - будет таковым, что полностью испарится в летний период.
    - не превысит то количество, которое может снижать характеристики (в т. ч. и физико-механические) материала.
    Прямой ответ: морозостойкость терять не будет.
    Объяснение: испытание, определяющее циклы заморозки-разморозки проводится с содержанием влаги в материале, на порядки превышающее то, которое сможет выпасть в исследуемой Вами зоные конденсации. Процедуру проведения испытаний и параметры увлажнения пенобетона (количество влаги) можете поискать в нормативной документации. #376 , 25.03.16

    ArtKs сказал(а):

    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.



    Нормируется морозостойкость наружных 12 см однослойной кладки.
    Цитирую СП 15.13330 "Каменные и армокаменные конструкции":

    5.2 Проектные марки по морозостойкости каменных материалов для наружной части стен (на толщину 12 см) и для фундаментов (на всю толщину), возводимых во всех строительно-климатических зонах, в зависимости от предполагаемого срока службы конструкций, но не менее 100, 50 и 25 лет, приведены в 5.3 и таблице 1.

    Полнотелый кирпич начинает разрушаться снаружи. Если сбить отслаивающиеся наружные слои, внутри однослойных стен мы обнаружим еще вполне бодренький материал. Это свидетельствует о том, что в однослойных стенах помещений с нормальным режимом эксплуатации влиянием конденсации в толще стен можно пренебречь. Нормативные требования это пренебрежение подтверждают.
    В современных стенах из ГБ, ККК без наружной штукатурки тоже можно пренебрегать конденсацией, а при наличии штукатурки - тщательно проверять расчетную влажность слоя кладки толщиной 20 мм непосредственно под штукатуркой. Если проблемы и возникают при кривом выборе отделки, то именно там. #809 , 14.08.16

    ArtKs сказал(а):

    Кремлевская стена плохой пример, за ней следят.
    Пренебречь точно можно, если стена за утеплителем, она просто не замерзает.
    Но вопрос то был не совсем о том.
    Замерзание "абсолютно сухого"(условность) кирпича, как я понимаю ему не вредит.
    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.
    Влага приходящая из дома, влага абсорбируемая из воздуха, намокание из-за дождя?
    Какую долю составляет каждый из источников? Что главная причина, а чем можно пренебречь?
    Какой вообще механизм разрушения кирпича?
    Может это где-то в литературе описано?

    В общем случае долговечность материалов определяется их физическими свойствами (пористость, "гидрофобность", теплопроводность, радиационная стойкость); физико-механическими (прочность каркаса (структуры) материала) и химическими свойствами (стойкость к разрушающим химическим реакциям).

    1. Пористость влияет на многие свойства материала. Для большинства материалов напрямую влияет на влагопроницаемость (паропроницаемость) и максимальное влагонакопление. Более легкий (менее плотный) кирпич как правило более влагопроницаем и имеет меньшую морозостойкость. Пористость зависит от состава глин и способа изготовления (формовки, сушки и обжига). Силикатный или прессованный кирпич отличается по процессу изготовления, их пористость так же зависит исходных материалов и технологии изготовления.

    Для керамического кирпича важнейшим этапом является термообработка. Из одного и того же состава можно получить существенно отличающийся по прочности и морозостойкости кирпич.

    2. "Гидрофобность" не рассматривается как отдельное свойство в долговечности, обычно исследуют сорбционную и эксплуатационную влажности, скорость влагонакопления и сушки материала, максимальное водопоглощение. Так или иначе эти свойства связаны с пористостью и строением "порового материала".

    Если грубо, то чем меньше и медленнее воды набирает материал, и чем быстрее он ее отдает, тем выше будет его долговечность. Например, сорбционная влажность качественного керамического кирпича при относительной влажности 97% не превышает 2%. Высоленный, пористый кирпич может насосать из атмосферы до 15%! Естественно, что разрушение такого материала произойдет гораздо быстрее.

    Для защиты старых кладок используют специальные краски, гидрофобные покрытия (если нужно сохранить естественный вид) или если эстетика потеряна, закрывают их штукатуркой или плиткой. Если погулять по центру Москвы, можно увидеть все три варианта защиты. Но некоторые довольно старые кирпичные стены, по моему, стоят "как есть".

    3. Низкая теплопроводность в определенных конструктивных решениях является источником дополнительных механических нагрузок, связанных с тепловым расширением материала. Это наведенное свойство, т. е. не свойство, присущее самому материалу, но мир несовершенен. Если взять, например, стену кирпич-утеплитель-кирпич, то фактически в такой стене будет разрушаться только утеплитель. К сожалению, не только долговечность полимерного утеплителя несопоставима с долговечностью кирпича. Минеральная вата, теплоизоляционный газобетон - все придет в негодность гораздо раньше несущей стены из кирпича и клинкерной облицовки. Любой материал, кроме быть может пеностекла, в такой конструкции уступит кирпичу. Если взять однородную стену из кирпича или газобетона, то она разрушится гораздо быстрее, по сравнению со стеной с меньшим перепадом температур. Тонкая однородная кирпичная стена наружного ограждения проживет меньше, чем толстая.

    4. Радиационная стойкость - как правило подразумевается защита от солнечного излучения. Разрушению от солнца подвержены в первую очередь органические материалы. Также следует помнить, что южные стороны домов в большей степени подвержены разрушению. Большее количество переходов через 0, нагрев до более высоких температур летом. Если кирпич имеет имеет высокую сорбционную влажность, это будет иметь значение.

    5. Механическая прочность является одним из ключевых факторов долговечности наряду с морозостойкостью. Способность материала противостоять как краткосрочным так и долгосрочным нагрузкам существенно увеличивает долговечность материала. Кирпич более высокой марки, полученный по близкому техпроцессу и из близких материалов, более долговечен.

    6. Химическая стойкость подразумевает возможность сопротивлению процессам окисления, выщелачивания, карбонизации и т. п. Качественный кирпич практически инертен к атмосферным химическим воздействиям и поэтому обладает очень большой долговечностью (сотни лет). Однако нужно не забывать, что кирпич кладется на раствор. При кладке здания с проектной долговечностью
    более 100 лет, кладочный раствор должен также отвечать определенным требованиям по прочности, пористости и химической стойкости.

    Я специально не пишу о конструктивных особенностях наружных ограждений из кирпича, которые снижают срок их службы. Пока вроде бы речь идет только об особенностях самого материла "керамический кирпич".

    Извините за длинный пост, но по сравнению с книжками по направлению, это просто коротенькая записочка. #810 , 14.08.16

    Константин Я. сказал(а):

    9.3 Не требуется проверять на выполнение данных норм по паропроницанию следующие ограждающие конструкции:

    Б) двухслойные наружные стены помещений с сухим и нормальным режимами, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг."

    Правильно ли я понимаю, что если стена из ГБ имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг, то практически невозможно сделать "кривой выбор" наружной отделки?

    Нет, Константин, ситуация иная. Газобетон со штукатуркой уже не однослойная конструкция.
    Тезис про 1,6 м2·ч·Па/мг был условно верен при материалах плотностью от 1000 кг/куб.м. Сейчас надо все таки проверять влагонакопление за слоем отделки.
    Здесь какая ситуация: в среднем по толще стены недопустимого влагонакопления не произойдет, но слой за отделкой легко может переувлажниться и намерзающим льдом разрушиться.
    Оговорюсь, не встречал таких проблем на стенах, которые отделывались после начального подсыхания хотя бы в полгода.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...