Электролиз расплавов и растворов электролитов. Электролиз Электролиз раствора соляной кислоты

При рассмотрении электролиза растворов нельзя упускать из виду, что, кроме ионов электролита, во всяком водном растворе имеются ещё ионы, являющиеся ещё продуктами диссоциации воды-Н + и ОН - .В электролитическом поле ионы водорода перемещаются к катоду, а гидроксила-к аноду. Таким образом, у катода могут разряжаться как катионы электролита, так и катионы водорода. Аналогично у анода может происходить разряд как анионов электролита, так и ионов гидроксила. Кроме того, молекулы воды также могут подвергаться электрохимическому окислению или восстановлению.

Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всего будет зависеть от соотношения электродных потенциалов соответствующих электрохимических систем. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольший электродный потенциал, а на аноде будут окисляться восстановленные формы систем с наименьшим электродным потенциалом. На протекание некоторых электрохимических процессов оказывает тормозящее действие материал электрода; такие случаи оговорены ниже.

Рассматривая катодные процессы, протекающие при электролизе водных растворов, нужно учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит от концентрации ионов водорода и в случае нейтральных растворов (рН=7) имеет значение
φ=-0,059*7=-0,41 В. Отсюда ясно, что если электролит образован металлом, электродный потенциал которого значительно положительнее, чем –0,41 В, то из нейтрального раствора у катода будет выделяться металл. Такие металлы находятся в ряду напряжений вблизи водорода (начиная приблизительно от олова) и после него. Наоборот, в случае электролитов, металл которых имеет потенциал значительно более отрицательный, чем –0,41 В, металл восстанавливаться не будет, а произойдёт выделение водорода. К таким металлам относятся металлы начала ряда напряжений-приблизительно до титана. Наконец, если потенциал металла близок к величине –0,41 В (металлы средней части ряда-Zn,Cr,Fe,Ni), то в зависимости от концентрации раствора и условий электролиза возможно как восстановление металла, так и выделение водорода; нередко наблюдается совместное выделение металла и водорода.

Электрохимическое выделение водорода из кислых растворов происходит вследствии разряда ионов водорода. В случае же нейтральных или щелочных сред оно является результатом электрохимического восстановления воды:

2Н 2 О + 2е - =Н 2 + 2ОН -

Таким образом, характер катодного процесса при электролизе водных растворов определяется прежде всего положением соответствующего металла в ряду напряжений. В ряде случаев большое значение имеют рН раствора, концентрация ионов металла и другие условия электролиза.

При рассмотрении анодных процессов следует иметь в виду, что материал анода в ходе электролиза может окисляться. В связи с этим различают электролиз с инертным анодом и электролиз с активным анодом. Инертным называется анод, материал которого не претерпевает окисления в ходе электролиза. Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов для инертных анодов чаще применяют графит уголь, платину.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтористоводородной кислоты и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями. В щелочной среде уравнение имеет вид

4ОН - =О 2 + 2Н 2 О + 4е -

а в кислой или нейтральной:

2Н 2 О =О 2 + 4Н + + 4е -

В рассматриваемых случаях электрохимическое окисление воды является энергетически наиболее выгодным процессом. Кислородсодержащие анионы или не способны окисляться, или их окисление происходит при очень высоких потенциалах. Например, стандартный потенциал окисления иона SO 4 2-

2SO 4 2- =S 2 O 8 2- + 2e -

равен 2,010 В, что значительно превышает стандартный потенциал окисления воды (1,228 В). Стандартный потенциал окисления иона F - имеет ещё большее значение (2,87 В).

При электролизе водных растворов бескислородных кислот и их солей (кроме HF и фторидов) у анода разряжаются анионы. В частности, при электролизе растворов HI,HBr,HCl и их солей у анода выделяется соответствующий галоген. Отметим, что выделение хлора при электролизе HCl и её солей противоречит взаимному положению систем

2Cl - =2Cl + 2e - (φ=1,359 В)

2Н 2 О =О 2 + 4Н + + 4е - (φ =1,228 В)

в ряду стандартных электродных потенциалов. Эта аномалия связана со значительным перенапряжением второго из этих двух электродных процессов-материал анода оказывает тормозящее действие на процесс выделения кислорода.

В случае активного анода число конкурирующих окислительных процессов возрастает до трёх: электрохимическое окисление воды с выделением кислорода, разряд аниона (т.е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла). Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных потенциалов раньше обеих других электрохимических систем, то будет наблюдаться анодное растворение металла. В противном случае будет идти выделение кислорода или разряд аниона.

Рассмотрим несколько типичных случаев электролиза водных растворов.

Электролиз раствора CuCl 2 с инертным анодом. Медь в ряду напряжений расположена после водорода; поэтому у катода будет происходить разряд ионов Cu 2+ и выделение металлической меди. У анода будут разряжаться хлорид-ионы.

Схема электролиза раствора хлорида мели (II):

Катод ← Cu 2+ 2Cl - → Анод

Cu 2+ + 2e - =Cu 2Cl - =2Cl + 2e -

Электролиз раствора K 2 SO 4 с инертным анодом. Поскольку калий в ряду напряженний стоит значительно раньше водорода, то у катода будет происходить выделение водорода и накопление ОН - . У анода будет идти выделение кислорода и накопление ионов Н + . В то же время в катодное пространство будут приходить ионы К + , а в анодное-ионы SO 4 2- . Таким образом, раствор во всех его частях будет оставаться электронейтральным. Однако в катодном пространстве будет накапливаться щелочь, а в анодном-кислота.

Схема электролиза раствора сульфата калия:

Катод ← 4K + 2SO 4 2- → Анод

4Н 2 О + 4е - =4ОН - + 4Н 2Н 2 О=4Н + + 2О + 4e -

KОН 4Н=2Н 2 2О=О 2 Н 2 SO 4

Электролиз раствора NiSO 4 с никелевым анодом. Стандартный потенциал никеля (-0,250 В) несколько больше, чем –0,41 В; поэтому при электролизе нейтрального раствора NiSO 4 на катоде в основном происходит разряд ионов Ni 2+ и выделение металла. На аноде происходит противоположный процесс-окисление металла, так как потенциал никеля намного меньше потенциала окисления воды, а тем более-потенциала окисления иона SO 4 2- . Таким образом, в данном случае электролиз сводится к растворению металла анода и выделению его на катоде.

Схема электролиза раствора сульфата никеля:

Катод ← Ni 2+ SO 4 2- → Анод

Ni 2+ + 2e - =Ni Ni=Ni 2+ + 2e -

Этот процесс применяется для электрохимической очистки никеля.

Законы Фарадея

1. Закон Фарадея.

Масса вещества, выделившегося на электроде при прохождении по раствору электролита электрического тока, прямо пропорциональна количеству электричества.

Где ∆m – количество прореагировавшего вещества; Q – количество электричества; k э – коэффициент пропорциональности, показывающий, сколько вещества прореагировало при прохождении единицы количества электричества. Величина, k называется электрохимическим эквивалентом.

k=M/(N A z│e│)

где z – валентность иона; M – молярная масса вещества, выделившегося на электроде; N A -постоянная Авогадро. │e│= 1,6 10 -19 Кл.

2. Закон Фарадея.

Согласно второму закону Фарадея, при определённом количестве прошедшего электричества отношения масс прореагировавших веществ равно отношению их химических эквивалентов:

∆m 1 /A 1 =∆m 2 /A 2 =∆m 3 /A 3 =const

Химический эквивалент элемента, равен отношению части массы элемента, которая присоединяет или замещает в химических соединениях одну атомную массу водорода или половину атомной массы кислорода, к 1/12 массы атома С 12 . Понятие “ химический эквивалент” применимо и к соединениям. Так, химический эквивалент кислоты численно равен ее молярной массе, деленной на основность (число ионов водорода), химический эквивалент основания – его молярная массе, деленной на кислотность (у неорганического основания – на число гидроксильных групп), химический эквивалент соли – ее молярной массе, деленной на сумму зарядов катионов или анионов.

ЭЛЕКТРОЛИЗ

расплавов и растворов электролитов

Электролизом называется совокупность химических реакций, происходящих при прохождении постоянного электрического тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

Химическая сущность электролиза заключается в том, что это окислительно-восстановительная реакция, протекающая под действием постоянного электрического тока, причем процессы окисления и восстановления пространственно разделены.

Катод – электрод, на котором восстанавливаются катионы или вода. Он заряжен отрицательно.

Анод – электрод, на котором окисляются анионы или вода. Он заряжен положительно.

1. Электролиз расплавов солей, оснований.

При электролизе расплавов на катоде всегда восстанавливаются катионы металла.

К(-): Меn+ + nē → Me0

Анодный процесс определяется составом аниона:

а) Если анион бескислородной кислоты (Cl-, Br-, I-, S2-), то анодному окислению подвергается этот анион и образуется простое вещество:

A(+): 2Cl - - 2ē → Cl2 или A(+): S2- - 2ē → S0

б) Если анодному окислению подвергается кислородсодержащий анион (SO42-, SiO32-, HO - и др.), то при этом неметалл образует оксид (без изменения своей степени окисления) и выделяется кислород.

A(+): 2SiO32-- 4ē → 2SiO2 + О2

A(+): 2SO32-- 4ē → 2SO2 + О2

A(+): 4РO43-- 12ē → 2Р2O5 + 3О2

A(+): 4NO3-- 4ē → 2N2O5 + О2

A(+): 4HO-- 4ē → 2H2O + О2


Пример 1.1. Расплав соли ZnCl2

ZnCl2 Û Zn2+ + 2Cl-

S: ZnCl2 электролиз Zn + Cl2­

Пример 1.2. Расплав щелочи NaOH

NaOH Û Na+ + OH-

Суммарное уравнение электролиза получают сложением правых и левых частей уравнений при условии равенства электронов, принимающих участие в катодном и анодном процессах.

https://pandia.ru/text/80/299/images/image006_58.gif" width="70" height="12">4 Na+ + 4 ē + 4 OH - - 4 ē электролиз 4 Na0 + O2 + 2H2O

4 Na+ + 4 OH - электролиз 4 Na0 + O2 + 2H2O - ионное уравнение

4NaOH электролиз 4Na + 2H2O + O2 - молекулярное уравнение

Пример 1.3. Расплав соли Na2SO4

Na2SO4 Û 2Na+ + SO42-

К(-): Na+ + 1 ē Þ Nao *4

A(+): 2SO42- - 4 ē Þ O2 + 2SO3

4Na+ +2SO42- Þ 2Nao + O2 + 2SO3 – ионное уравнение электролиза

2Na2SO4 электролиз 4Nao + O2 + 2SO3 – молекулярное уравнение

К А

Пример 1.4. Расплав соли AgNO3

AgNO3 Û Ag+ + NO3-

К(-): Ag+ + 1 ē Þ Ago *4

A(+): 4NO3- - 4 ē Þ 2N2O5 + 2O2 *1

4Ag+ + 4NO3- электролиз 4Ag + 2N2O5 + 2O2

4AgNO3 электролиз 4Ag + 2N2O5 +2O2

К А

Задания для самостоятельной работы . Составить уравнения электролиза расплавов следующих солей: AlCl3, Cr2(SO4)3, Na2SiO3, K2CO3.

2. Электролиз растворов солей, гидроксидов и кислот.

Электролиз водных растворов усложняется тем, что в процессах окисления и восстановления может принимать участие вода.

Катодные процессы определяются электрохимической активностью катиона соли. Чем левее находится металл в ряду напряжения, тем труднее его катионы восстанавливаются на катоде:

Li K Ca Na Mg Al Mn Zn Cr Te Ni Sn Pb H2 Cu Hg Ag Pt Au

I группа II группа III группа

Для катионов металлов до Al включительно (I группа) катодный процесс – это восстановление водорода из воды:

(-)К: 2Н2О + 2ē → Н2 + 2НО-

Для катионов металлов после водорода (III группа) катодный процесс – это восстановление их до металла:

(-) К: Меn+ + nē → Me0

Для катионов металлов, стоящих в ряду напряжения от Mn до Н2 (II группа), идут параллельно конкурентные процессы восстановления катионов металлов и водорода из воды:

(-) К: Меn+ + nē → Me0

2Н2О + 2ē → Н2+ 2НО-

Какой из этих процессов будет превалирующим, зависит от ряда факторов: активности Ме, рН раствора, концентрации соли, приложенного напряжения и условий электролиза.

Анодные процессы определяются составом анионов солей:

а) Если анион бескислородной кислоты (Cl-, Br-, I-, S2- и др.), то окисляется он до простых веществ (за исключением F-):

A(+): S2- - 2ē → S0

б) При наличии кислородсодержащего аниона (SO42-, CO32- и т. д. или OH-) анодному окислению подвергается только вода:

A(+): 2H2O - 4ē → O2 + 4H+

Рассмотрим примеры, иллюстрирующие все возможные варианты:

Пример 2.1 . Раствор соли KCl

К(-): 2H2O + 2e - Þ H2 + 2OH-

A(+): 2Cl - - 2e - Þ Cl2­

å: 2H2O + 2Cl - электролиз H2 + 2OH - + Cl2 – ионное уравнение электролиза

2KCl + 2H2O электролиз H2 + 2KOH + Cl2 – молекулярное уравнение электролиза

К А

Пример 2.2 . Раствор соли CuCl2

CuCl2 Û Cu2+ + 2Cl-


К(-): Cu2+ + 2e - Þ Cuo

A(+): 2Cl- -2e - Þ Cl2­

å: CuCl2 электролиз Cu + Cl2­

Пример 2.3. Раствор соли FeCl2

FeCl2 Û Fe2+ + 2Cl-

Железо относится к металлам II группы, поэтому на катоде будут протекать два параллельных процесса:

1-ый процесс:

(-) К: Fе2+ + 2ē → Fe0

(+)A: 2Cl - - 2ē → Cl2

Fе2+ + 2Cl - эл-з Fe0 + Cl2 - ионное уравнение процесса

FeCl2 эл-з Fe0 + Cl2 - молекулярное уравнение процесса

2-ой процесс:

(-)К: 2Н2О + 2ē → Н2+ 2ОН-

(+)A: 2Cl - - 2ē → Cl2

2Н2О + 2Cl - → Н2+ 2ОН - + Cl2 - ионное уравнение процесса

2Н2О + FeCl2 электролиз Н2+ Fe(ОН)2 + Cl2 - молекулярное уравнение.

Таким образом, в катодном пространстве будут образовываться Fe, Н2 и Fe(ОН)2 в различных соотношениях в зависимости от условий проведения электролиза.

Пример 2.4 . Раствор соли Na2SO4.

Na2SO4 Û 2Na+ + SO42-

K(-) 2H2O + 2e - Þ H2­ + 2OH - *2

A(+) 2H2O – 4e - Þ O2 + 4H+

å: 6H2O электролиз 2H2 + 4OH - + O2 + 4H+

å: 6H2O + 2Na2SO4электролиз 2H2 + 4 NaOH + O2 + 2H2SO4

в катодном пространстве в анодном пространстве

При отключении электрического тока и перемешивании содержимого катодного и анодного пространства итоговый результат электролиза может быть представлен схемой:

2Н2О эл-з 2Н2 + О2,

так как щелочь прореагирует с кислотой с образованием 2 моль соли и 4 моль воды.

Пример 2.5 . Электролиз раствора CuSO4.

CuSO4 Û Cu2+ + SO42-

K(-): Cu2+ + 2e - Þ Cuo

A(+): 2H2O – 4e - Þ O2 + 4H+

å: 2Cu2+ + 2H2O электролиз 2Cuo + O2 + 4H+

å: CuSO4 + 2H2O электролиз 2Cuo + O2 + 2H2SO4

Пример 2.6. Электролиз раствора FeSO4

Поскольку железо относится ко II группе металлов, то на катоде будут параллельно идти два конкурентных процесса (смотри пример 2.3), а на аноде будет окисляться вода (смотри пример 2.4):

1-ый процесс:

https://pandia.ru/text/80/299/images/image043_10.gif" width="41" height="12">2Fе2+ + 2Н2О эл-з 2 Fe + O2 + 4H+ - ионное уравнение процесса

2FeSO4 + 2Н2О эл-з 2 Fe + O2 + 2Н2SO4– молекулярное уравнение

2-ой процесс:

К(+): 2Н2О + 2ē → Н2+ 2ОН - *2

А(-): 2Н2О - 4ē → О2+ 4Н+

6Н2О электролиз 2Н2+ 4ОH - + O2 + 4H+

6Н2О + 2FeSO4электролиз 2Н2+ 2Fe(OH)2 + O2 + 2Н2SO4 - молекулярное

https://pandia.ru/text/80/299/images/image051_9.gif" width="21" height="50">И только в случае, если процессы катодного восстановления катионов металла и водорода из воды идут в равных соотношениях, можно записать суммарное итоговое уравнение реакции:

(-) К: Fе2+ + 2ē → Fe0

2Н2О + 2ē → Н2+ 2НО - всего 4 электрона

(+)A: 2H2O - 4ē → O2 + 4H+

Fе2+ + 2Н2О + 2Н2О → Fe + Н2+ 2НО - + O2 + 4H+

2FeSO4 + 4Н2О эл-з Fe + Н2+ Fe(OH)2 + O2 + 2Н2SO4

катод анод

После отключения тока и перемешивания растворов итоговое уравнение будет следующим:

· Составить уравнения электролиза растворов K2CO3, ZnSO4, AgNO3, NiI2, CoCl2.

· Решить задачу. Для анализа на содержание примеси NaCl в техническом NaOH 40 г препарата растворили в воде и подвергли электролизу до полного окисления ионов хлора. При этом на аноде выделилось 601 мл Cl2 при температуре 200С и нормальном давлении. Вычислите массовую долю примеси NaCl в NaOH.

3. Электролиз c растворим ы м анодом

Выше были рассмотрены примеры электролиза водных растворов солей с инертным анодом, т. е. таким, который не принимает химического участия в анодном процессе. Такие электроды изготавливаются из неактивных благородных металлов, например, Pt, Ir или используются угольные электроды. Если же используют растворимые аноды, например, Cu-анод, Zn-анод, то анодный процесс существенно видоизменяется, т. к. сам анод окисляется. На аноде из 2-х конкурентных идет процесс с меньшим потенциалом: для окисления меди Е0 = - 0,34 В, для окисления цинка E0= - 0.76 В а для окисления Cl-аниона Е0 = + 1,36 В.

Пример 3.1. Электролиз водного раствора соли CuCl2 с растворимым анодом:

Катод (-): Cu-анод (+):

Сu2+ + 2ē → Cu0 Сu0 - 2ē → Cu2+

Таким образом, происходит как бы рафинирование медного анода: он растворяется, примеси остаются в анодном пространстве, а чистая медь осаждается на катоде. Хлор-анион при этом не окисляется, а накапливается в анодном пространстве.

Пример 3.2. Электролиз водного раствора соли KCl с Cu-анодом:

Cu-анод (+): Сu0 - 2ē → Cu2+

На катоде в первоначальный момент начинает восстанавливаться водород из воды, но появление Cu2+ в растворе делает две реакции катодного восстановления конкурентными:

К(-): 2Н2О + 2ē → Н2+ 2НО - Е0 = - 0,828 В

Сu2+ + 2ē → Cu0 Е0 = + 0,34 В

В результате преимущественно протекает та, которая характеризуется более высоким потенциалом, т. е. восстановление Сu2+ до Cu0.

Таким образом, и в этом случае будет происходить растворение Cu-анода: Сu0 - 2ē → Cu2+, а на катоде образовавшиеся катионы меди будут восстанавливаться: Сu2+ + 2ē → Cu0. Соль KCl нужна лишь для увеличения электропроводности раствора, а непосредственного участия в окислительно-восстановительных процессах она не принимает.

Задание для самостоятельной работы. Рассмотрите электролиз CuSO4 с Cu-анодом, Na2SO4 c Сu-анодом.

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

NaCl = Na + + Cl −

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:

Na + + 1e − = Na 0 ,

А на аноде:

Cl − − 1e − = Cl

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Сl∙ + ∙Cl = Cl 2

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

2Cl − − 2e − = Cl 2

То есть мы имеем:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl 2

Подведем электронный баланс:

Na + + 1e − = Na 0 |∙2

2Cl − − 2e − = Cl 2 |∙1<

Сложим левые и правые части обоих уравнений полуреакций , получим:

2Na + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl 2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2NaCl (ж.) => 2Na + Cl 2

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

При этом могут происходить процессы:

2H 2 O + 2e − = 2OH − + H 2

2H 2 O – 4e − = O 2 + 4H +

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

2H 2 O + 2e − = 2OH − + H 2

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

Me n+ + ne = Me 0

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н 2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F −), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

2Сl − − 2e = Cl 2

S 2- − 2e = S o

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

4ОН − − 4е − = 2H 2 O + O 2

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F −) на аноде идет процесс окисления молекул воды:

2H 2 O – 4e − = O 2 + 4H +

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO 2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

Решение

При расплавлении хлорида цинка происходит его диссоциация:

ZnCl 2 = Zn 2+ + 2Cl −

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl 2 |∙1

ZnCl 2 = Zn + Cl 2

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

2H 2 O + 2e − = 2OH − + H 2 ­­­

Zn 2+ + 2e − = Zn 0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

2Cl − − 2e − = Cl 2

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Cu(NO 3) 2 = Cu 2+ + 2NO 3 −

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Cu 2+ + 2e − = Cu 0

Нитрат-ион NO 3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

2H 2 O – 4e − = O 2 + 4H +

Таким образом:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H 2 O = 2Cu 0 + O 2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

2Cu(NO 3) 2 + 2H 2 O = 2Cu 0 + O 2 + 4HNO 3

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

СН 3 СООК = СН 3 СОО − + К +

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

2H 2 O + 2e − = 2OH − + H 2

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

2СН 3 СОО − − 2e − = CH 3 −CH 3 + 2CO 2

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H 2 O + 2e − = 2OH − + H 2 |∙1

Анод: 2СН 3 СОО − − 2e − = CH 3 −CH 3 + 2CO 2 |∙1

2H 2 O + 2СН 3 СОО − = 2OH − + Н 2 + CH 3 −CH 3 + 2CO 2

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

2H 2 O + 2СН 3 СООK = 2KOH + Н 2 + CH 3 −CH 3 + 2CO 2

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

H 2 SO 4 = 2H + + SO 4 2-

На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н + + 2e − = H 2 |∙2

Анод: 2H 2 O – 4e − = O 2 + 4H + |∙1

4Н + + 2H 2 O = 2H 2 + O 2 + 4H +

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

2H 2 O = 2H 2 + O 2

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

NaOH = Na + + OH −

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H 2 O + 2e − = 2OH − + H 2 |∙2

Анод: 4OH − − 4e − = O 2 + 2H 2 O |∙1

4H 2 O + 4OH − = 4OH − + 2H 2 + O 2 + 2H 2 O

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды.

При рассмотрении электролиза водных растворов необходимо иметь в виду, что, кроме ионов электролита, во всяком водном растворе имеются еще ионы, являющиеся продуктами диссоциации воды Н + и ОН – .

В электрическом поле ионы водорода перемещаются к катоду, а ионы ОН – – к аноду. Таким образом, у катода могут разряжаться как катионы электролита, так и катионы водорода. Аналогично у анода может происходить разряд как анионов электролита, так и гидроксид-ионов. Кроме того, молекулы воды также могут подвергаться электрохимическому окислению или восстановлению.

Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всего будет зависеть от относительных значений электродных потенциалов соответствующих электрохимических систем. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольший электродный потенциал, а на аноде будут окисляться восстановленные формы систем с наименьшим электродным потенциалом. В общем случае на аноде легче окисляются те атомы, молекулы и ионы, потенциалы которых в данных условиях наиболее низкие, в восстанавливаются на катоде легче те ионы, молекулы, атомы, потенциалы которых наиболее высокие. Рассмотрим катодные процессы, протекающие при электролизе водных растворов солей. Здесь необходимо учитывать величину электродного потенциала процесса восстановления ионов водорода, который зависит от концентрации ионов водорода. Нам известно общее уравнение электродного потенциала для водородного электрода (п. 2.3).

В случае нейтральных растворов (рН=7) величина электродного потенциала процесса восстановления ионов водорода имеет значение

φ = –0,059 . 7 = –0,41 В .

1) при электролизе растворов солей, содержащих катионы металла, электродный потенциал которого значительно положительнее, чем –0,41 В, из нейтрального раствора такого электролита на катоде будет восстанавливаться металл. Такие металлы находятся в ряду напряжений вблизи водорода (начиная приблизительно от олова и после него);

2) при электролизе растворов солей, содержащих катионы металла, электродный потенциал которого значительно более отрицательный, чем – 0,41 В, металл восстанавливаться на катоде не будет, а произойдет выделение водорода. К таким металлам относятся щелочные, щелочноземельные, магний, алюминий, приблизительно до титана;

3) при электролизе растворов солей, содержащих катионы металла, электродный потенциал которого близок к величине –0,41 В (металлы средней части ряда – Zn,Cr,Fe,Cd,Ni), то в зависимости от концентрации раствора соли и условий электролиза (плотность тока, температура, состав раствора), возможно как восстановление металла, так и выделение водорода; иногда наблюдается совместное выделение металла и водорода.

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода:

+ 2ē → 2Н 0

0 = Н 2 .

В случае же нейтральных или щелочных сред выделение водорода происходит в результате электрохимического восстановление воды:

НОН + ē → Н 0 + ОН

Н 0 + Н 0 = Н 2 ,

тогда 2НОН + 2ē → Н 2 + 2ОН

Таким образом, характер катодного процесса при электролизе водных растворов определяется прежде всего положением соответствующего металла в ряду стандартных электродных потенциалов металлов.

Если электролизу подвергается водный раствор, содержащий катионы различных металлов, то выделение их на катоде, как правило, будет идти в порядке понижения алгебраической величины электродного потенциала металла. Например, из смеси катионов Ag + , Cu 2+ и Zn 2+ при достаточном напряжении на клеммах электролизера сначала будут восстанавливаться катионы серебра (φ 0 = +0,8 В), затем меди (φ 0 = +0,34 В) и, наконец, цинка (φ 0 = –0,76 В).

Электрохимическое разделение металлов из смеси катионов используется в технике и в количественном анализе. В целом способность разряжаться (присоединять электроны) у ионов металлов определяется положением металлов в ряду стандартных электродных потенциалов. Чем левее стоит металл в ряду напряжений, чем больше его отрицательный потенциал или меньше положительный потенциал, тем труднее разряжаются его ионы. Так, из ионов металлов, стоящих в ряду напряжений, легче всего (при наименьших напряжениях электрического тока) разряжаются трехвалентные ионы золота, затем ионы серебра и т.д. Труднее всего (при наибольшем напряжении электрического тока) разряжаются ионы калия. Но величина потенциала металла, как известно, изменяется в зависимости от концентрации его ионов в растворе; точно так же изменяется и легкость разряда ионов каждого металла в зависимости от их концентрации: увеличение концентрации облегчает разряд ионов, уменьшение – затрудняет. Поэтому при электролизе раствора, содержащего ионы нескольких металлов, может быть, что выделение более активного металла будет происходить раньше, чем выделение менее активного (если концентрация иона первого металла значительна, а второго – очень мала).

Рассмотрим анодные процессы, протекающие при электролизе водных растворов солей. Характер реакций, протекающих на аноде, зависит как от присутствия молекул воды, так и от вещества, из которого сделан анод. Следует иметь в виду, что материал анода в ходе электролиза может окисляться. В связи с этим различают электролиз с инертным (нерастворимым) анодом и электролиз с активным (растворимым) анодом. Нерастворимые аноды изготовляются из угля, графита, платины, иридия; растворимые аноды – из меди, серебра, цинка, кадмия, никеля и других металлов. На нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды. При электролизе водных растворов бескислородных кислот HI,HBr,HCl, Н 2 Sи их солей (кромеHFи фторидов) у анода разряжаются анионы и выделяются соответствующий галоген. Отметим, что выделение хлора при электролизеHClи ее солей противоречит взаимному положению систем

2Cl – 2ē → Cl 2 0 = +1,36 В)

2 H 2 O – 4ē → O 2 + 4 H + 0 = +1,23 В)

в ряду стандартных электродных потенциалов. Эта аномалия связана со значительным перенапряжением второго из этих двух электродных процессов – материал анода оказывает тормозящее действие на процесс выделения кислорода.

При электролизе водных растворов солей, содержащих анионы SO 4 2- ,SO 3 2- ,NO 3 - ,PO 4 3- и др., а также фтороводородов и фторидов происходит электрохимическое окисление воды. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями. В щелочной среде уравнение имеет вид

4OH – 4ē → 2H 2 O + O 2 , (рН > 7)

а в кислой или нейтральной средах имеем

HOH – 2ē → O 0 + 2 H + (рН ≤ 7)

2 O 0 = O 2 ,

тогда 2 О – 4ē → 4Н + + 2О 2 .

В рассматриваемых случаях электрохимическое окисление воды является энергетически наиболее выгодным процессом. Окисление же кислородсодержащих анионов происходит при очень высоких потенциалах. Например, стандартный потенциал окисления иона SO 4 2- – 2ē →S 2 O 8 2- равен 2,01 В, что значительно превышает стандартный потенциал окисления воды 1,228 В.

2 О – 4ē → О 2 + 4Н + 0 = 1,228 В) .

Стандартный потенциал окисления иона F – имеет еще большее значение

2F – 2ē → F 2 0 = 2 ,87 В) .

В целом при электролизе водных растворов солей к катоду электролизера одновременно подходят катионы металла и водорода, при этом каждый из них «претендует» на восстановление за счет электронов, поступающих с катода. Как фактически будет протекать восстановительный процесс на катоде? Ответ можно получить исходя из ряда напряжений металлов. При этом, чем меньше алгебраическая величина стандартного электродного потенциала металла, тем более слабыми акцепторами электронов являются их катионы и тем труднее идет восстановление их на катоде. В связи с этим различают три группы катионов по их отношению к электровосстановлению.

1. Катионы, характеризующиеся высокой электроноакцепторной активностью (Cu 2+ ,Hg 2+ ,Ag+,Au 3+ ,Pt 2+ ,Pt 4+). При электролизе солей этих катионов идет практически полное восстановление катионов металла; выход по току 100% или близкая к ней величина.

2. Катионы, характеризующиеся средними величинами электроноакцепторной способности (Mn 2+ ,Zn 2+ ,Cr 3+ ,Fe 2+ ,Ni 2+ ,Sn 2+ ,Pb 2+). При электролизе на катоде одновременно восстанавливаются катионы как металла, так и молекул воды, что приводит к понижению выхода металла по току.

3. Катионы, проявляющие малую электроноакцепторную способность (K + ,Ca 2+ ,Mg 2+ ,Al 3+). В этом случае акцепторами электронов на катод являются не катионы рассматриваемой группы, а молекулы воды. При этом сами катионы остаются в водном растворе без изменения, выход по току приближается к нулю.

Отношение различных анионов к электроокислению на аноде

    Анионы бескислородных кислот и их солей (Cl ¯ ,Br ¯ ,J ¯ ,S 2- ,CN¯ и т.п.) удерживают свои электроны слабее молекулы воды. Поэтому при электролизе водных растворов соединений, содержащих указанные анионы, последние будут играть роль электронодоноров, они будут окисляться и передавать свои электроны во внешнюю цепь элекролизера.

    Анионы кислородных кислот (NO 3 ¯ ,SO 4 2- ,PO 4 3- и т.д.) в состоянии удержать свои электроны более прочно, чем молекулы воды. В этом случае на аноде окисляются вода, а сами анионы остаются без изменения.

В случае же растворимого анода число окислительных процессов возрастает до трех:

1) электрохимическое окисление воды с выделением кислорода; 2) разряд аниона (т.е. его окисление); 3) электрохимическое окисление металла анода (анодное растворение металла).

Из возможных процессов будет проходить тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных потенциалов раньше обеих других электрохимических систем, то будет наблюдаться анодное растворение металла. В противном случае будет идти выделение кислорода или разряд аниона. Для разрядки анионов не установлено тесной последовательности. По уменьшению способности отдавать электроны наиболее часто встречающиеся анионы располагаются так: S 2- ,J ¯ ,Br ¯ ,Cl ¯ ,OH¯,H 2 O,SO 4 2- ,NO 3 ¯ ,CO 3 2- ,PO 4 3- .

Рассмотрим несколько типичных случаев электролиз водных растворов.

    Электролиз раствора CuCl 2 с нерастворимым анодом

В ряду напряжений медь расположена после водорода, поэтому у катода будут разряжаться Cu 2+ и выделяться металлическая медь, а у анода будут окисляться хлорид-ионы до молекулярного хлораCl 2 .

Катод (–)

Cu 2+ + 2ē → Cu 0

2Cl – 2ē → Cl 2

Cu 2+ + 2 Cl Cu 0 + Cl 2

CuCl 2 Cu 0 + Cl 2

Выход металла по току (95-100%).

    Электролиз раствора NaNO 3

Поскольку натрий в ряду напряжений стоит значительно раньше водорода, то у катода будет разряжаться вода. У анода будет тоже разряжаться вода.

Катод (–)

2 H 2 O + 2ē → H 2 + 2 OH

2H 2 O – 4ē → 4H + + O 2 .

Таким образом, на катоде выделяется водород и создается щелочная среда, на аноде выделяется кислород и около анода создается кислая среда. Если анодное и катодное пространства не отделены между собой, то раствор во всех его частях будет оставаться электронейтральным.

Катод (–)

2 H 2 O + 2ē → H 2 + 2 OH

2H 2 O – 4ē → 4H + + O 2 .

6H 2 O → 2H 2 + 4OH + 4H + + O 2

6H 2 O → 2H 2 + O 2 + 4H 2 O

2 H 2 O → 2 H 2 + O 2

Выход металла по току равен нулю.

Следовательно, при электролизе раствора NaNO 3 будет происходить электролиз воды. Роль солиNaNO 3 сводится к увеличению электропроводности раствора.

Электролиз раствора FeSO 4

Реакции на катоде (–) (восстановление):

а) Fe 2+ + 2ē → Fe 0

одновременно идущие реакции

б) 2 H 2 O + 2ē → H 2 + 2 OH .

Реакция на аноде (+) (окисление):

2H 2 O – 4ē → 4H + + O 2 .

Выход металла по току средний.

    Электролиз раствора KJс нерастворимым анодом

Катод (–)

2 H 2 O + 2ē → H 2 + 2 OH

2J – 2ē → J 2

2 H 2 O + 2J H 2 + 2 OH + J 2 .

Итоговое уравнение реакции электролиза раствора KJ:

2KJ + 2H 2 O → H 2 + J 2 + 2KOH .

    Электролиз раствора CuSO 4 с медным (растворимым) анодом.

Стандартный потенциал меди равен +0,337 В, что значительно выше, чем -0,41 В; поэтому при электролизе раствора CuSO 4 на катоде происходит разряд ионовCu 2+ и выделение металлической меди. На аноде проиходит противоположный процесс – окисление металла, так как потенциал меди намного меньше потенциала окисления воды (+1,228 В), а тем более – потенциала окисления ионаSO 4 2- (+2,01 В). Следовательно, в этом случае электролиз сводится к растворению металла (меди) анода и выделению его на катоде.

Схема электролиза раствора сульфата меди:

Катод (–)

Cu 2+ + 2ē → Cu 0

Cu 0 – 2ē → Cu 2+ .

Этот процесс применяется для электрической очистки металлов (так называемое электролитическое рафинирование).



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...