Принцип работы он обменные смолы. Что такое ионообменная смола? Как это работает? По типу матрицы

Ионообменные смолы - это нерастворимые на высокомолекулярном уровне соединения, которые могут показать реакцию при взаимодействии с ионами раствора. Они имеют трехмерную гелевую или макропористую структуры. Их еще называют ионитами.

Разновидности

Эти смолы бывают катионообменными (делятся на сильнокислотные и слабокислотные), анионообменными (сильноосновные, слабоосновные, с промежуточной и смешанной основою) и биполярными. Сильнокислотные соединения - это катиониты, которые могут обмениваться катионами вне зависимости от А вот слабокислотные могут функционировать при значении не ниже семи. Сильноосновные аниониты имеют свойство обмениваться анионами в растворах при любой при любых показателях рН. Этого, в свою очередь, лишены слабоосновные аниониты. В этой ситуации рН должен быть 1-6. Другими словами, смолы могут обменять ионы в воде, впитать одни, а взамен отдать те, которые ранее были запасены. А так как именно H 2 O - многокомпонентная структура, то нужно верно ее подготовить, выбрать химическую реакцию.

Свойства

Ионообменные смолы - полиэлектролиты. Они не растворяются. Многозарядный ион неподвижен, потому что имеет большую молекулярную массу. Он образует основу ионита, связан с небольшими подвижными элементами, которые имеют противоположный знак, и, в свою очередь, может обменивать их в растворе.

Производство

Если полимер, который не имеет свойства ионита, обработать химически, то произойдут изменения - регенерация ионообменной смолы. Это достаточно важный процесс. С помощью полимераналогичных превращений, а еще поликонденсации и полимеризации, получают иониты. Существует солевая и смешанно-солевая формы. Первая подразумевает натриевый и хлористый, а вторая - натрий-водородный, гидроксильно-хлоридный виды. В таких условиях выпускаются иониты. Мало того, в процессе они переводятся в рабочую форму, а именно водородную, гидроксильную и т. д. Такие материалы используют в разных сферах деятельности, например, в медицине и фармацевтике, в пищевой промышленности, на атомных электростанциях для очистки конденсата. Также может применяться ионообменная смола для фильтра смешанного действия.

Применение

Используется ионообменная смола для Кроме того, соединение может и обессолить жидкость. В связи с этим ионообменные смолы часто используют в теплоэнергетике. В гидрометаллургии ими пользуются для цветных и редких металлов, в химической промышленности ими очищают и разделяют разные элементы. Иониты также могут очистить сточные водоемы, а для органического синтеза они - целый катализатор. Таким образом, ионообменные смолы могут быть использованы в разных отраслях.

Промышленная очистка

На теплопередающих поверхностях может появляться накипь, а если она достигнет всего 1 мм, то расход топлива увеличится на 10%. Это все-таки большие потери. Мало того, оборудование быстрее изнашивается. Чтобы это предотвратить, нужно правильно организовывать водоподготовку. Для этого используется фильтр с ионообменной смолой. Именно очистив жидкость, можно избавиться от накипи. Способы бывают разные, но с повышением температуры их вариантов становится меньше.

Обработка H 2 O

Существует несколько способов для того, чтобы очистить воду. Можно воспользоваться магнитной и а можно отретушировать ее комплексонами, комплексонатами, ИОМС-1. Но более популярным вариантом считается фильтрация с помощью обмена ионов. Это заставит изменить состав элементов воды. Когда используют такой метод, H 2 O почти полностью обессоливается, загрязнения пропадают. Следует отметить, что такой очистки достаточно сложно добиться иными способами. Обработка воды с помощью ионообменных смол очень популярна не только в России, а и в других странах. Такая очистка имеет много достоинств и намного эффективнее прочих методов. Те элементы, которые удаляются, никогда не останутся осадком на дне, а дозировать реагенты не нужно постоянно. Сделать эту процедуру очень легко - конструкция фильтров однотипная. При желании можно воспользоваться автоматизацией. После очистки свойства будут сохраняться при любых колебаниях температуры.

Ионообменная смола Purolite A520E. Описание

Чтобы поглощать нитрат-ионы в воде, была создана макропористая смола. Она используется, чтобы очистить H 2 O в разных средах. Специально для этого появилась ионообменная смола Purolite A520E. Она способствует избавлению от нитратов даже при большом количестве сульфатов. Это значит, что, по сравнению с другими ионитами, эта смола наиболее эффективна и имеет лучшие характеристики.

Рабочая емкость

Purolite A520E имеет высокую селективность. Это помогает, вне зависимости от количества сульфатов, удалить нитраты качественно. Такими функциями не могут похвастаться остальные ионообменные смолы. Это обусловлено тем, что при содержании сульфатов в H 2 O снижается обмен элементами. Но благодаря селективности для Purolite A520E такое понижение не имеет особого значения. Хотя соединение имеет низкий, если сравнивать с другими, полный обмен, жидкость в больших количествах очищается достаточно качественно. При этом, если сульфатов будет мало, то справиться с обработкой воды и устранением нитратов смогут различные аниониты - как гелевые, так и макропористые.

Подготовительные операции

Чтобы смола Purolite A520E работала на 100%, она должна быть правильно подготовлена для выполнения функции очищения и подготовки H 2 O для пищевой индустрии. Следует отметить, что перед началом работы используемое соединение обрабатывают 6%-м раствором NaCl. При этом используют в два раза больший объем по сравнению с количеством самой смолы. После этого соединение обмывают пищевой водой (количество H 2 O должно быть в 4 раза больше). Только проведя такую обработку, можно приниматься за очистку.

Заключение

Благодаря свойствам, которыми обладают ионообменные смолы, ими можно пользоваться в пищевой индустрии не только для очистки воды, но и для обработки продуктов, различных напитков и прочего. На вид аниониты - это маленькие шарики. Именно к ним прилипают ионы кальция и магния, а они, в свою очередь, отдают ионы натрия в воду. В процессе промывки гранулы отпускают эти прилипшие элементы. Следует помнить о том, что в ионообменной смоле может упасть давление. Это скажется на ее полезных свойствах. На те или иные изменения влияют внешние факторы: температура, высота столбца и размер частиц, их скорость. Поэтому при обработке следует поддерживать оптимальное состояние среды. Часто пользуются анионитами в очистке воды для аквариума - они способствуют формированию хороших условий для жизни рыб и растений. Итак, ионообменные смолы нужны в разных индустриях, даже в домашних условиях, так как могут качественно очистить воду для дальнейшего ее использования.

Canature Na FG

Purex C150 Lewatit C 249 NS


Смола для умягчения воды. Общие понятия

Одной из главных задач водоподготовки является умягчение воды в коттедже и в промышленности. Умягчать воду можно различными методами, но наиболее широко в промышленной водоподготовке и водоподготовке для коттеджей используется метод, основанный на применении синтетических ионообменных смол для умягчения воды на производстве и в коттеджах. Снижение жесткости методом ионного обмена может быть 3х видов:

  • Na - катионирование,
  • H-Na - катионирование,
  • H - катионирование.

Методы H-Na - катионирования и H - катионирования применяются тогда, когда помимо жесткости требуется снизить или удалить щелочность воды и уменьшить общее солесодержание. Сложность процесса заключается в использовании кислот для регенерации и использовании установок для отдувки образующегося углекислого газа. Практическое применение в промышленности нашло сочетание H-Na - катионирования. В этом случае можно регулировать требуемую щелочность и кислотность воды, что требуется в ряде производственных циклов. В случае если требуется только снизить жесткость, применяется метод Na - катионирования на синтетических ионообменных смолах. Ионообменное свойство синтезированных ионитов объясняется наличием активных групп, прикрепленных к каркасу молекулярных соединений. В каркасе так же находятся подвижные противоположно заряженные ионы, которые и участвуют в обмене, в данном случае Na. По силе ионизации активные группы делятся на сильно кислотные, среднекислотные и слабокислотные. Синтетические ионообменные смолы для умягчения воды являются сильнокислотными катионитами. Резюмируя вышесказанное, катионообменную смолу для умягчения можно охарактеризовать следующим образом: это полимер, содержащий карбоксильные, фосфиновые и сульфоксильные ионные группы, постоянно закрепленные в каркас, и одинаковое количество противоположно заряженных ионов.

Существует 2 метода производства ионообменных смол для умягчения питьевой воды и для других задач водоочистки, например, очистка воды из скважины от железа. Первый метод заключается в том, что активные вводят в структуру каркаса в момент процесса его создания (процесс полимеризации или конденсации). Второй метод: сначала синтезируют полимер, после чего в него вводят активные группы. Первый метод имеет ряд преимуществ: ионообменные получаются высокопрочные и монодисперсные. Само создание высокомолекулярных полимеров происходит по известным химическим процессам полимеризации и конденсации. Реакция конденсации - это реакция, в которой при синтезе полимера образуется вода, например, взаимодействие формальдегида и фенола. При химических реакциях полимеризации побочные продукты не образуются, например, стирол полимеризуется в полистирол. Нерастворимый сополимер синтезируется при связывании молекул полистирола с помощью дивинилбензола.

Отправить заявку на поставку смолы для умягчения воды:

» закончено. Однако, оказалось, что это совершенно не так. Мы упустили очень важный момент — рассчёт умягчения на ионообменной колонне ! В одной из предыдущих статей «Способы умягчения воды. Ионный обмен » мы говорили о наиболее распространённом способе борьбы с жёсткой водой — удалении солей жёсткости с помощью обмена на специальной смоле. Но не говорили о том, как расчитать этот процесс.

Расчёт умягчения на ионообменной колонне состоит из трёх этапов:

  1. Учёт потока воды для подбора собственно корпуса и управляющего клапана.
  2. Учёт характеристик ионообменной смолы для уточнения характеристик корпуса и режимов промывки.
  3. Сопоставление возможностей и количества смолы с реальной жёсткостью воды, которую нужно получить для уточнения всей системы вообще и частоты регенераций в частности.

На самом деле первые два пункта лучше доверить специалистам — это их работа и не стоит отбирать у них хлеб 🙂 Но третий пункт является ключевым и менее требовательным к техническим знаниям (особенно если учесть, что в конце статьи вы сможете скачать и пользоваться калькулятором для расчёта умягчения), и третий пункт можно провести самостоятельно, проверяя правильность подбора умягчителя разнообразными копаниями. Поэтому в статье остановимся на третьем этапе. Заодно третий этап позволяет определить, сколько денег вы будете тратить на умягчение воды с помощью ионного обмена.

Для того, чтобы понимать, что к чему и про какой обмен идёт речь, рекомендуем воспользоваться статьёй Способы умягчения воды. Ионный обмен . Ну а пока что продолжаем тему.

Расчёт умячения на ионообменной колонне с точки зрения возможностей смолы и реальной жёсткости воды состоит в следующем. Каждая ионообменная смола имеет паспортные данные. Одна из ключевых характеристик — общая ионообменная ёмкость смолы , которая выражается в грамм-эквивалентах на литр смолы.

Общая ионообменная ёмкость — грубо говоря, это единица, которая показывает, сколько солей жёсткости может удалить данная смола до того, как полностью потеряет способность обмениваться. То есть, когда пишется, что общая ионообменная ёмкость равняется 2 г-экв, то это означает, что один литр смолы может извлечь из воды соли жёсткости в количестве 2 г-экв, после чего потеряет способность что-либо извлекать, и для восстановления этой способности будет необходимо произвести процедуру регенерации смолы концентратом поваренной соли, или же, по научному, натрия хлоридом в таблетированной форме.

Вернёмся немного назад и поговорим про грамм- (милиграмм-) эквиваленты. Это страшное слово, но нам оно не страшно, поскольку жёсткость воды выражается в милиграмм-эквивалентах на литр (или, что равнозначно, в молях на литр), и ничего никуда пересчитывать не надо.

Нужно помнить, что 2 г-экв — это общая ионообменная ёмкость только одного литра смолы. Соответственно, если в вашем умягчителе у вас 100 литров смолы, то ваша общая ионообменная ёмкость составит 200 г-экв.

Теперь о том, как это всё применяется на практике. Мы имеем значение общей ионообменной ёмкости — 2 г-экв. И мы имеем значение жёсткости воды, например, 10 мг-экв/л. Что получается? Получается, что один литр данной ионообменной смолы может удалить соли жёсткости из 200 литров воды. Как мы это узнали?

Мы разделили значение общей ионообменной ёмкости (2000 мг-экв) на значение общей жёсткости воды (10 мг-экв/л). В результате получили 200 литров жёсткой воды.

Вы можете спросить: «И что же, теперь нужно проводить регенерацию солью через каждые 200 литров очищенной воды?» Это так лишь в том случае, если вы используете 1 литр ионообменной смолы. Потому что 2 г-экв — это значение для одного литра смолы.

Соответственно, если вам предложили ионообменный умягчитель, в котором 100 литров ионообменной смолы, то получается, что КАЖДЫЙ литр этой смолы может умягчить 200 литров воды с жёсткостью 10 мг-экв/л. Сколько это получится воды? Это очень просто посчитать: воспользуемся значением общей ионообменной ёмкости для всего умягчителя (200 г-экв) и разделим её на жёсткость воды (0,01 г-экв/л) и получим 20 000 литров.

То есть, если вы умягчаете воду жёсткостью 10 мг-экв/л на ионообменном умягчителе с обЪёмом смолы 100 литров и ионообменной ёмкостью одного литра смолы 2 г-экв, то смола перестанет работать после 20 м 3 очищенной воды.

Можно предположить, что регенерацию нужно проводить каждые 20 м 3 очищенной воды, но на практике регенерация происходит чаще (обычно вдвое), чем это выходит по расчёту. Всё потому, что жёсткость воды является значением непостоянным, и ресурс ионообменной смолы может закончится быстрее. Естественно, делать запас в 50 % — это уже слишком. Но 10-20 % — это самое оно. Поэтому при описанных условиях регенерация должна происходить каждые 16-18 м 3 очищенной от солей жёсткости воды.

Таким образом, если вам предложили умягчитель, в котором 100 литров ионообменной смолы с общей ёмкостью одного литра 2 г-экв, а регенерацию установили каждые 5 м 3 очищенной воды, то на вас тупо зарабатывают, ведь вам приходится почти в 4 раза чаще покупать таблетированную соль для возобновления работы умягчителя. Возможен другой вариант — при описанных условиях регенерация происходит каждые 30 м 3 воды. Это экономит деньги но делает бессмысленным умягчитель как таковой — поскольку 10 м 3 воды вы получили с исходной жёсткостью.

И наконец — обещанный калькулятор расчёта умягчения на ионообменной колонне.

Его вы можете скачать по ссылке «Калькулятор для рассчёта обЪёма воды между регенерациями «. Пользоваться им очень просто — нужно ввести цифры в зелёные квадратики и посмотреть результат в квадратике жёлтом. Ну а потом сравнить его с тем, что вам насчитали специалисты 🙂

Методики расчёта могут быть разными, и мы НЕ предлагаем обвинять поставщиков в недобросовестности на основании одного лишь рассчёта вручную или с помощью нашего калькулятора. Но несоответствие значений — это сигнал, что нужно к процессу покупки умягчителя в данной компании присмотреться подробнее. Возможно, там есть и другие несоответствия.

Ах, да, чуть не забыли — рассчитав частоту регенераций и зная своё обычное потребление воды, вы можете заранее, перед покупкой умягчителя, узнать, сколько денег вы будете тратить на соль для регенерации. Так, в предложении должна стоять цифра — на одну регенерацию уходит, например, 25 кг соли. Соответственно, если на умягчителе на 100 литров ионообменной смолы вы очищаете 18 м 3 воды с жёсткостью 10 мг-экв/л от регенерации до регенерации, а 18 м 3 воды вы тратите за месяц, то каждый месяц вам будет необходимо высыпать в солевой бак 1 мешок (25 кг) соли. Ну а теперь остаётся узнать цену соли в вашем регионе, и всё — экономический расчёт готов! И вы можете определить, потянете ли вы такие затраты 🙂

Итак, расчёт умягчения на ионообменной колонне — это быстро, просто и полезно!

Фильтры для воды стали обязательным очищающим элементом в квартирах и загородных домах, а также на предприятиях.

Они, как и любая другая техника, нуждаются в обслуживании, в частности, особенного внимания заслуживает процедура регенерации картриджей с ионообменной смолой.

И если в одноступенчатых устройствах, а также фильтрах-насадках и кувшинах использованный картридж просто меняют на новый, с трехступенчатыми все сложнее.

Они состоят из картриджа механической очистки, доочистки угля и картриджа с ионообменной смолой. В связи с большим ресурсом работы устройства их нужно обслуживать или менять единожды в год.

Фильтр будет функционировать нормально, при одном условии — если будет проводиться регулярная регенерация, то есть восстановление свойств ионообменной смолы.

Технология регенерации смолы — как восстанавливается ионообменная смола в фильтре

Ионообменная смола представляет собой мелкие шарики янтаря, которые преобразовывают ионы магния и кальция в ионы натрия. Таким образом, вода становится менее жесткой, на бытовой технике не образуется накипь.

Зная показатели жесткости воды, можно прогнозировать примерный ресурс картриджа со смолой. Для этого показатель емкости делят на показатели жесткости воды, выраженные в мг-экв/литр.

Поглощение ионов магния и кальция – это обратимый процесс. При избыточном содержании ионов натрия будет обратная ситуация, то есть пойдет отдача ионов магния и кальция и поглощение ионов натрия.

Чтобы этого избежать, прибегают к так называемой регенерации, то есть восстановлению функций ионообменной смолы, чтобы она могла послужить вашему фильтру еще некоторое время.


Запустить процесс регенерации поможет обычная поваренная соль, так как эффективность регенерации фильтров солью давно доказана на практике.

Процесс регенерации может проводиться многократно, но смола все же постепенно начинает терять свои свойства за счет обогащения воды примесями, и рано или поздно ионообменную смолу придется менять.

В целом порядок проведения регенерации выглядит следующим образом:

  • перекрыть поступление воды,
  • включить кран, чтобы стравить давление,
  • вынуть картридж механической очистки, вымыть его, а также колбу, поставить на место,

Для регенерации системы без картриджа:

  • вынуть ионообменный картридж и пересыпать содержимое в кастрюлю или другую емкость,
  • залить смолу солевым раствором и оставить на 6-8 часов, периодически перемешивая,
  • промыть смолу несколько раз чистой водой,

Для регенерации системы с картриджем раствор заливают внутрь и выдерживают 8 часов, затем его сливают и повторяют процедуру;

  • после чего смолу нужно промыть кипяченой водой,
  • установить картридж на место,
  • вынуть картридж с углем, выполнить промывку, поставить на место,
  • включить воду и пропустить несколько минут, пока из воды не пропадет солевой привкус.

Вместо соли также могут использоваться питьевая сода и даже лимонная кислота.

Компания «Гейзер» — один из лидеров на отечественном рынке фильтров. Рассмотрим, как выполнить регенерацию в трехступенчатый моделях этого производителя.

  1. Перекрыть поступающую в устройство воду.
  2. Спустить давление, открыв кран.
  3. Выполнить механическую очистку фильтра.
  4. Подготовить 10% раствор поваренной соли. Емкость лучше взять больше, так как начнется процесс вспенивания.
  5. Держать устройство над раковиной и заливать 2 литрами солевого раствора так, чтобы смола не пролилась наружу.
  6. Установить картридж обратно в корпус и залить 0,5 л раствора до верха, оставить на 8-10 часов.
  7. Вынуть устройство и дать стечь раствору, затем еще раз залить 2 литра солевого раствора.
  8. После того, как раствор стечет, установить картридж обратно в корпус.
  9. Собрать фильтр.
  10. Включить воду на несколько минут, чтобы из воды пропал привкус соли.

Регенерация позволяет восстанавливать свойства картриджей B510-04 и KH.

Сменный модуль KH для систем Кристалл

1. Перекрыть воду, выпустить давление.
2. Вынуть KH, нажимая кнопку на крышке устройства.
3. Собрать идущий в комплекте переходник для регенерации или приобрести отдельно.
4. Отрезать дно бутылки из пластика и закрепить на переходнике.
5. Сделать раствор 2-2,5 литра поваренной соли.
6. Устройство с бутылкой и переходником поместить в кастрюлю, трубку переходника вывести в раковину.
7. Пропустить через смолу солевой раствор, а затем 2 литра чистой воды.
8. Установить устройство на место.

Модуль B510-04 для систем Трио

1. Отключить подачу воду и стравить давление.
2. Вынуть картридж.
3. Высыпать содержимое в емкость из пластика или металла.
4. Приготовить литровый раствор соли и залить содержимое картриджа, оставить на 6 часов, иногда помешивая.
5. Слить раствор и выполнить промывку кипяченой водой. Повторить процедуру дважды.
6. Поместить содержимое обратно в картридж и поставить его на место.
7. Не забыть о промывке механического картриджа.
8. Включить фильтр на 10 минут, после чего им можно вновь пользоваться.

Инструкция по регенерации картриджа фильтра Арагон

  1. Перекрыть воду, спустить давление.
  2. Приготовить раствор из 40 г лимонной кислоты и двух столовых ложек соды на один литр воды. Так как происходит вспенивание, посуда для раствора должна быть емкостью 1,5-2 литра. Воду нужно наливать постепенно.
  3. Картридж Арагон поставить в корпус, залить его раствором в количестве 0,6 л. Оставить на 12 часов, затем достать картридж и слить раствор.
  4. Далее потребуется дополнительная обработка оставшимся раствором. Делать это лучше над раковиной. Жидкость льют через горловину и оставляют до полного стекания.
  5. Затем нужно промыть устройство. Для этого используют сначала 3 литра чистой воды, которую заливают через горловину. Затем пленкой фиксируют ее и удаляют донную заглушку. Удерживая картридж вертикально, вливают еще 3 литра воды, после чего пленку удаляют, заглушку ставят на место. Останется поставить картридж на свое место в фильтре и включить устройство на несколько минут для промывки.

ВИДЕО ИНСТРУКЦИЯ

Таким образом, используя эту технологию, можно в домашних условиях без приобретения дорогостоящих средств, а лишь с использованием обычной соли можно неоднократно восстанавливать свойства ионообменных картриджей для вашего фильтра.

Рис.Сравнение полной динамической ПДОЕ и динамической обменной емкости ДОЕ. Заштрихованная площадь А соответствует ДОЕ, а вся площадь над кривой с учетом проскока солей - ПДОЕ

Селективность

Под селективностью понимают способность избирательно сорбировать ионы из растворов сложного состава. Селективность определяется типом ионогенных групп, числом поперечных связей матрицы ионита, размером пор и составом раствора. Для большинства ионитов селективность невелика, однако разработаны специальные образцы, имеющие высокую способность к извлечению определенных ионов.

Механическая прочность

Показывает способность ионита противостоять механическим воздействиям. Иониты проверяются на истираемость в специальных мельницах или по весу груза, разрушающего определенное число частиц. Все полимеризационные иониты имеют высокую прочность. У поликонденсационных она существенно ниже. Увеличение степени сшивки полимера повышает его прочность, но ухудшает скорость ионного обмена.

Осмотическая стабильность.

Наибольшее разрушение частиц ионитов происходит при изменении характеристик среды, в которой они находятся. Поскольку все иониты представляют собой структурированные гели, их объем зависит от солесодержания, рН среды и ионной формы ионита. При изменении этих характеристик объем зерна изменяется. Вследствие осмотического эффекта объем зерна в концентрированных растворах меньше, чем в разбавленных. Однако это изменение происходит не одновременно, а по мере выравнивания концентраций «нового» раствора по объему зерна. Поэтому внешний слой сжимается или расширяется быстрее, чем ядро частицы; возникают большие внутренние напряжения и происходит откалывание верхнего слоя или раскалывание всего зерна. Это явление называется «осмотический шок». Каждый ионит способен выдерживать определенное число циклов таких изменений характеристик среды. Это называется его осмотической прочностью или стабильностью.

Наибольшее изменение объема происходит у слабокислотных катионитов. Наличие в структуре зерен ионита макропор увеличивает его рабочую поверхность, ускоряет перенабухание и дает возможность «дышать» отдельным слоям. Поэтому наиболее осмотически стабильны сильнокислотные катиониты макропористой структуры, а наименее - слабокислотные катиониты.

Осмотическая стабильность определяется как количество целых зерен, отнесенное к общему первоначальному их числу, после многократной (150 раз) обработки навески ионита попеременно в растворе кислоты и щелочи с промежуточной отмывкой обессоленной водой.

Химическая стабильность

Все иониты обладают определенной стойкостью к растворам кислот, щелочей и окислителей. Все полимеризационные иониты имеют большую химическую стойкость, чем поликонденсационные. Катиониты более стойки, чем аниониты. Среди анионитов слабоосновные устойчивее к действию кислот, щелочей и окислителей, чем сильноосновные.

Температурная устойчивость

Температурная устойчивость катионитов выше, чем анионитов. Слабокислотные катиониты работоспособны при температуре до 130 ° С, сильнокислотные типа КУ-2-8 - до 100-120 ° С, а большинство анионитов - не выше 60, максимум 80 ° С. При этом, как правило, Н- или ОН-формы ионитов менее стойки, чем солевые.



Последние материалы раздела:

Тело поднимают вверх по наклонной плоскости
Тело поднимают вверх по наклонной плоскости

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по...

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...