Паяные пластинчатые теплообменники. Конструкция, преимущества и недостатки (5 фото). Основные преимущества пластинчатых теплообменников теплотекс апв Кожухотрубные и пластинчатые теплообменники преимущество и недостатки

Ниже приведен список основных преимуществ разборных ПТО.

1. Компактность и высокая эффективность

КПД пластинчатого теплообменника для отопления и горячего водоснабжения 80-85%. При относительно небольших размерах, суммарная площадь поверхности всех пластин может достигать нескольких квадратных километров. 99,0-99,8% от общей площади — теплопередающая поверхность. Присоединительные порты находятся на одной стороне, это упрощает монтаж и подключение. Двухступенчатый теплообменник позволяет уменьшить площадь под ИТП (индивидуальный тепловой пункт). При проведении ремонтных работ требуется меньшая площадь, чем при использовании кожухотрубного теплообменного аппарата.

2. Низкие потери давления в ПТО

Конструкция пластинчатого теплообменника позволяет плавно менять общую ширину канала. Снижение максимальной величины допустимых гидравлических потерь достигается за счет увеличения количества каналов. Уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.

3. Экономичность, низкие трудозатраты и короткие сроки ремонта

Стоимость монтажа часто не превышает 2-4 % от стоимости оборудования. Разбор и промывку пластинчатого теплообменника специалист может провести за несколько часов. При небольших загрязнениях можно использовать безразборную промывку. Срок службы уплотнений ПТО, при правильной эксплуатации, достигает десяти лет, пластин — 15-20 лет. Стоимость замены всех уплотнений не превышает 15-20% от стоимости аппарата, при этом не обязательно менять сразу весь пакет.

4. Низкая загрязняемость

В теплообменных пластинах используются профили каналов, позволяющие добиться высокой турбулентности потока и как следствие — самоочищаемости. Это позволяет увеличить интервалы между сервисным обслуживанием.

5. Гибкость

Конструкция ПТО позволяет менять поверхность теплообмена для увеличения мощности. При росте потребностей, можно добавлять пластины без замены всего аппарата.

6. Индивидуальность

Программа завода изготовителя, позволяет специалисту произвести расчет и подобрать конфигурацию оборудования в соответствии с необходимыми температурными графиками и потерями давления по обоим контурам. Расчет по времени занимает 1-2 часа. Даже теплоноситель с заниженной температурой в системах теплоснабжения позволяет нагревать воду в ПТО до нужной температуры.

7. Устойчивость к вибрациям

Пластинчатые теплообменники высокоустойчивы к наведенной двухплоскостной вибрации, вызывающей повреждения трубчатого теплообменного аппарата.

Применение разборных теплообменных аппаратов позволяет достичь снижения затрат на 20-30% и более эффективно использовать источники энергии, повышая их КПД. Окупаемость ПТО в теплоэнергетике колеблется от 2 до 5 лет, а в некоторых случаях достигается за нескольких месяцев.

Расчет пластинчатого теплообменника

Чтобы узнать цену и купить пластинчатый теплообменник , нужно заполнить Опросный лист и отправить его по электронной почте info@сайт

Пластинчатый теплообменник - один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

  • разборные;
  • паяные;
  • сварные;
  • полусварные.

Пластинчатые разборные теплообменные аппараты

Устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • Неподвижная прижимная плита - основной элемент.
  • Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • Пакет пластин - главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
  • Несущая база - направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • Подвижная прижимная плита - прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • Опорная станина - вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО - возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета - невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты - агрегаты, в которых пакет пластин сделан комбинированным способом:

  • пластины попарно свариваются между собой;
  • с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
  • далее прикрепляется следующий сваренный мини-пакет.

Места попарной сварки пластин

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты - устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

  • энергетике;
  • отоплении;
  • вентиляции и кондиционировании;
  • судоходстве;
  • пищевой промышленности;
  • машиностроении;
  • автомобилестроении;
  • металлургии.

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

Плюсы и минусы пластинчатых теплообменников

Преимущества:

  • Удобство транспортировки и монтажа , поскольку пластинчатый теплообменник имеет меньшие габариты, чем другие виды рекуперативных теплообменных аппаратов.
  • Простота обслуживания - разборные, полусварные и сварные теплообменники легко промывать, так как они либо полностью разбираются, как в случае с разборными агрегатами, либо частично, предоставляя доступ к пластинам, как полусварные и сварные аппараты.
  • Высокая производительность - КПД пластинчатых агрегатов достигает 95%.
  • Цена - стоимость пластинчатых установок ниже, чем аналогичных кожухотрубных, спиральных или блочных агрегатов.

Недостатки:

  • Часто требуется заземление . Поскольку пластины имеют малую толщину - они подвержены воздействию блуждающих токов, что приводит к появлению дырок в них.
  • Более требовательны к качеству очистки теплоносителя . Так как между пластинами расстояние небольшое, то каналы будут загрязняться быстрее, чем внутренние поверхности кожухотрубного теплообменника, что в свою очередь приводит к снижению коэффициента теплопередачи и, как следствие, КПД пластинчатого теплообменника.

Заключение

Пластинчатый теплообменник - это современный тип теплообменных аппаратов, которые активно вытесняют аналоги устаревших типов, такие как кожухотрубные агрегаты. Этому способствует их компактность, низкая цена и высокие показатели технических характеристик.

В следующей статье мы рассмотрим, как происходит сборка и разборка пластинчатого теплообменника.

Подписывайтесь на наши новости!

Всем уже давно известна двухступенчатая смешанная система горячего водоснабжения, реализованная на таком типе пластинчатых теплообменников, как моноблок. Моноблок - специальный тип пластинчатого теплообменника для двухступенчатой системы ГВС, в котором обе ступени размещены в одном корпусе, такой теплообменник имеет шесть патрубков.

  • Н1 - Вход обратного теплоносителя из системы отопления.
  • Н2 - Вход циркуляционной воды ГВС.
  • Н3 - Выход нагретой воды ГВС.
  • Н4 - Вход горячего теплоносителя из теплосети.
  • F3 - Вход холодной водопроводной воды.
  • F4 - Выход общего обратного теплоносителя в теплосеть.

Широту применения моноблока обусловили следующие факторы: большая компактность, по сравнению с двумя отдельными теплообменниками, и, соответственно, меньшая стоимость. Эти же факторы являются основными и, пожалуй, единственными плюсами моноблока. Попробуем определиться с минусами.

«Простота» монтажа

Кажется естественным то, что смонтировать маленький аппарат гораздо проще, чем два таких же. Но что мы получаем в результате монтажа моноблока? Смонтированный моноблок выглядит как человек-паук, опутанный гирляндами трубопроводов арматуры и измерительных приборов, если они присутствуют, конечно. Сразу же теряется такая важная вещь, как удобство обслуживания. Если в обычном пластинчатом теплообменнике все патрубки расположены на неподвижной плите (Н1-Н4) и для его обслуживания и ремонта требуется всего лишь отключение теплообменника и сброс давления, то для разборки моноблока потребуется отсоединение патрубков от подвижной задней плиты. Далее, если трубопроводы задней плиты перекрывают доступ к моноблочному теплообменнику, то это также усложняет доступ к нему. То есть для нормальной эксплуатации моноблока следует,во-первых, сделать грамотный проект привязки его к существующим трубопроводам теплоносителя, холодной и горячей воды с целью обеспечения нормального доступа для обслуживания и ремонта. И, во-вторых, следует предусмотреть специальный вариант крепления трубопроводов к задней плите (через какие либо съемные элементы) для того, чтобы обеспечить подвижность задней плиты без передвижения теплообменника с места. Поэтому зачастую смонтированный моноблок занимает объем не меньший, чем два отдельных теплообменника.

Вопросы надежности

Естественно, два отдельных аппарата надежнее одного, выполняющего такую же функцию. Что мы имеем при выходе из строя одного из теплообменников? В этом случае мы сможем работать с частичной нагрузкой системы ГВС, пока ремонтируется или обслуживается второй. Моноблок же при выходе из строя даже одной из ступеней должен быть выведен из работы весь, т. к. корпус один на обе ступени.

Функциональность, эффективность

В подборе моноблочного теплообменника тоже есть свои нюансы. Зачастую трудно или практически невозможно создать моноблочную компоновку двухступенчатой смешанной схемы ГВС, по эффективности равную двум отдельным теплообменникам. Это обусловлено тем, что используемый тип пластины в моноблоке для обеих ступеней один. И в пределах теплофизических свойств этого типа нам приходится решать задачу по компоновке пакетов для обеих ступеней, в то время, как первая и вторая ступени могут различаться, как минимум, по расходам, особенно по стороне теплоносителя. Например, требования для первой ступени - это способность пропустить суммарный расход теплоносителя системы отопления и теплоносителя второй ступени при обеспечении небольших гидравлических сопротивлений и среднем теплосъеме. Требования же для второй ступени - это относительно небольшие расходы по стороне теплоносителя и воды ГВС, более высокие допустимые гидравлические сопротивления и существенно больший теплосъем. То есть, если бы это были два отдельных теплообменника, то теплообменник первой ступени должен быть с большим диаметром патрубков и с «короткой» пластиной, а теплообменник второй ступени с меньшим диаметром патрубка и более «длинной» пластиной.

Рассмотрим вариант задания для подбора оборудования для двухступенчатой смешанной схемы. шсходные данные таковы: нагрузка системы ГВС 0,4 Гкал/ч, нагрев холодной воды с 5°С до 60°С, нагрузка системы топления 1,2 Гкал/ч, температурный график 150/70.

Разбивая нагрузку по ступеням, в соответствии с СП 41-101-95 для заданных условий получаем исходные данные для подбора теплообменников ступеней:

I ступень

II ступень

* NTU - число единиц переноса теплоты. Теплотехника. В. Н. Луканин, М. Г. Шатров и др., Высшая школа, Москва, 1999г.

Фактически величина NTU характеризует тот тепловой режим, на котором будет работать теплообменник. Чем больше NTU, тем больше должна быть тепловая «длина» пластины теплообменника.

В нашем случае видно, что теплообменник второй ступени должен обладать большей, почти на 50%, способностью к теплосъему (тепловой «длиной»), чем теплообменник первой ступени. Кроме того, расходы по греющей стороне обеих ступеней отличаются почти в три раза. Это означает, что если для теплообменника второй ступени достаточны патрубки Ду32, то для теплообменника первой ступени патрубки должны быть больше, не менее Ду50.

Пакет пластин

Как уже отмечалось выше, моноблок - это, по сути, два теплообменника, размещенных в одной раме. А значит, и два пакета пластин, размещенных в одной раме, разделенных разворотной пластиной, имеющей два (верхних или нижних) глухих отверстия порта. Обычно ближе к неподвижной плите находится пакет второй ступени, а за ней пакет первой ступени. Но из-заразных функций, выполняемых этими пакетами (см. выше), они имеют разную компоновку и количество пластин. ш так как все эти пакеты находятся в одном корпусе, есть вероятность того, что в процессе обслуживания произойдет ошибка при сборке всего пакета пластин моноблока. То есть, если после разборки моноблока пакеты поменять местами или неправильно их скомпоновать (например, пластины первой ступени с малой тепловой «длиной» установить для второй ступени и наоборот), то, вновь собрав аппарат, мы не получим от него тех характеристик, которые были заложены в него изначально.

С двумя отдельными аппаратами ситуация проще. В этом случае, даже неправильно собрав весь пакет, мы не получим такого фатального снижения тепловой мощности, расходов и изменения гидравлического сопротивления, как в случае с моноблоком.

Подводя итоги, сведем все плюсы и минусы пластинчатого теплообменника с моноблочной компоновкой в одну таблицу.

Плюсы и минусы

Плюсы

  • Меньшая начальная стоимость.
  • Отдельно моноблок компактнее двух теплообменников.

Минусы

  • Более сложный монтаж и неудобство в обслуживаниииз-запатрубков на прижимной плите.
  • Меньшая надежность.
  • Менее эффективная работа.
  • Требовательность при сборке пакета пластин.

Результат

Каждый для себя решает сам, что ему важнее - экономия средств или более надежная работа оборудования.

В настоящее время «Теплотекс АПВ» осуществляет сборку 12 типов разборных пластинчатых теплообменников с пластинами производства APV (Табл.1). Пластины, используемые в процессе сборки теплообменных аппаратов, имеют различный профиль рабочей поверхности и площадь от 0,018 м2 до 2,0 м2.

Пластинчатые теплообменники производства Теплотекс АПВ по лицензии компании APV/ SPX Flow Technology (Дания)

Разборные, одноходовые Материал прокладки - резина NBR
Макс. рабочая температура - 140°
Материал пластины - сталь AISI 316 Материал прокладки - резина EPDM
Макс. рабочая температура - 160°
Толщина пластины - 0,4-0,7 мм Материал прокладки - резина VITON
Макс. рабочая температура - 200°
Рабочее давление - 1-2,5 МПа

Таблица 1. Технические характеристики пластинчатых разборных теплообменников

Новое наименование Старое наименование Макс. расход воды, кг/с Диаметр соединений, мм Площадь пластины, м 2 Макс. площадь теплообменника, м 2
Теплотекс 20-А U2 1,83 20 0,018 1,13
Теплотекс 32-А TR1 5,56 32 0,061 4,21
Теплотекс 50-А SR2 11,76 50 0,172 11,87
Теплотекс 65-А H17 22,22 65 0,17 10,03
Теплотекс 80-А N35 DH 30,56 80 0,35 43,05
Теплотекс 80-B N35 MGS 30,56 80 0,35 58,80
Теплотекс 100-А O034 47,1 100 0,338 70,30
Теплотекс 100-B O050 47,1 100 0,497 125,74
Теплотекс 100-C Q030 47,1 100 0,288 86,98
Теплотекс 100-D Q055 47,1 100 0,565 163,85
Теплотекс 100-E Q080 47,1 100 0,82 233,70
Теплотекс 150-А A055 102,78 150 0,55 179,85
Теплотекс 150-B A085 102,78 150 0,852 278,60
Теплотекс 200-А J060 247 200 0,524 242,09
Теплотекс 200-C J107 247 200 0,991 457,84
Теплотекс 200-E J185 247 200 1,768 1 382,58
Теплотекс 250-C J250 390 250 0,991 457,84

Пластины APV имеют ряд достоинств по сравнению с пластинами других производителей теплообменного оборудования:

Каналы, образованные пластинами APV, имеют несколько большее

поперечное сечение, чем у разборных пластинчатых теплообменников других фирм, производящих теплообменные аппараты.

Благодаря этому они медленнее засоряются. Это позволяет существенно сократить затраты на сервисное обслуживание разборного пластинчатого теплообменного аппарата, прибегать к промывке теплообменника.

На пластинах разборного пластинчатого теплообменника, в распределительной части возле отверстий сделана специальная насечка, которая позволяет выровнять сопротивление по ширине канала и обеспечить равномерное обтекание рабочей поверхности пластины разборного пластинчатого теплообменника, исключив застойные зоны;

APV производит пластины с так называемой клемпинговой системой, которая делает конструкцию разборного теплообменного аппарата более жесткой. Специальная штамповка по углам пластин теплообменника упрощает их центровку в пакете. Это особенно актуально, если теплообменный аппарат состоит из большого количества пластин;

Усовершенствована кромка теплообменной пластины, поддерживающая резиновые уплотнения. Способ крепления уплотнений Paraclip или Easyclip без применения клея.

Клемпинговая система

Надежная фиксация прокладок

Конструкция гофры обеспечивает равномерное распределение потока

В теплообменном аппарате пластины одного типоразмера могут иметь угол наклона гофр к горизонтальной оси 30° (так называемые «жесткие» пластины) и 60° («мягкие» пластины). Для жестких пластин характерна большая тепловая производительность и большие потери напора, для мягких пластин - меньшая тепловая производительность и меньшие потери напора. В одном пластинчатом теплообменном аппарате допускается использовать и жесткие, и мягкие пластины. Это еще один способ максимально приблизиться к заданной производительности пластинчатого теплообменника и допустимым потерям напора при минимальной поверхности нагрева теплообменного аппарата.

В 2001 году для разборных пластинчатых теплообменников APV разработана принципиально новая серия пластин Q030, Q055, Q080, которая кроме модификаций с разным углом наклона гофр имеет модификации с различной глубиной гофры, что существенно расширяет возможности пластинчатых теплообменных аппаратов. Мелкая гофра (Energy Saver) позволяет иметь большую тепловую производительность теплообменника при больших потерях напора. Пластины с глубокой гофрой (Dura Flow) идеально подходят для вязких жидкостей, например для масел, или при малых допустимых потерях напора.

Еще одно удачное решение APV - это производство для пластинчатых теплообменных аппаратов ряда пластин с одинаковым профилем проточной части, одинаковыми диаметрами соединений и шириной пластины, но с разной высотой.

Например: N25, N35, N55; Q030, Q055, Q080; A055, A085, A145; J060, J092, J107, J185 и т.д.

Кроме прочих достоинств такое решение позволяет рассчитывать всегда одноходовые пластинчатые теплообменники, что очень удобно для эксплуатации. Иными словами, когда требуется теплообменный аппарат с большой приведенной длиной пластины, APV рассчитывает одноходовые пластинчатые теплообменники с более длинной пластиной, в то время как другие компании, производящие теплообменное оборудование, вынуждены выбирать многоходовые пластинчатые теплообменные аппараты.

Для особо строгих условий, в которых зачастую применяются пластинчатое теплообменное оборудование, где абсолютно недопустимо попадание одной среды в другую, APV разработаны пластины со сдвоенной стенкой (Duo Safety).

Все перечисленные особенности пластин APV позволяют производить надежные пластинчатые теплообменные аппараты с оптимально выбранной поверхностью и компоновкой.

На пластинах в распределительной части возле отверстий сделана специальная насечка, которая позволяет выровнять сопротивление по ширине канала и обеспечить равномерное обтекание рабочей поверхности пластины;

APV разработаны пластины с так называемой клемпинговой системой, которая делает аппарат более жестким;

Усовершенствована кромка пластины, поддерживающая прокладку;

Пластины одного типоразмера могут иметь угол наклона гофр к горизонтальной оси 30° (так называемые «жесткие» пластины) и 60° («мягкие» пластины). Для жестких пластин характерна большая тепловая производительность и большие потери напора, для мягких пластин - меньшая тепловая производительность и меньшие потери напора. В одном аппарате допускается использовать и жесткие, и мягкие пластины. Это еще один способ максимально приблизиться к заданной производительности и допустимым потерям напора при минимальной поверхности нагрева;

В 2000 году в APV разработана принципиально новая серия пластин (Q030, Q055, Q080), которая кроме модификаций с разным углом наклона гофр имеет модификации с различной глубиной гофры, что существенно расширяет возможности аппаратов;

Пластины наиболее используемых типов имеют несколько модификаций по высоте при одинаковых диаметрах соединений и одинаковой ширине. Это еще одно дополнительное средство для достижения оптимальной компоновки аппарата. Так например, при больших потерях напора или больших диапазонах изменения температуры теплоносителей в теплообменнике «Теплотекс АПВ» выберет пластину с большой приведенной длиной канала, в то время как другим производителям, скорее всего, придется купить теплообменник двухходовой; множество недостатков двухходовой компоновки будут перечислены ниже;

APV разработаны, а «Теплотексом АПВ» применяются пластины со сдвоенными стенками в тех случаях, когда должно быть полностью исключено попадание одной среды в другую.

Для обеспечения должного качества теплообменного оборудования на предприятии создана служба контроля качества, получены: сертификат соответствия производства Росстандарт ИСО 9001 и гигиенический сертификат на пластинчатые теплообменники.

Сертифицированная сервисная служба «Теплотекс АПВ» осуществляет весь комплекс работ по обслуживанию пластинчатых теплообменников производства «Теплотекс АПВ» в гарантийный и послегарантийный периоды:

* разборную промывку пластинчатого теплообменника;

* химическую очистку пластинчатого теплообменника;

* замену прокладок (уплотнений) в пластинчатом теплообменнике;

* периодические инспекции и тесты на протекание пластинчатого теплообменника;

* замену пластин в теплообменном аппарате.

На сегодняшний день конструкция пластинчатых теплообменников производства «Теплотекс АПВ» является самой передовой в области решения задач, поставленных для производителей теплообменных аппаратов. Предприятие «Теплотекс АПВ» искренне надеется на долгосрочное и взаимовыгодное сотрудничество с специалистами топливно-энергетического комплекса России.

Пластинчатый теплообменник типа моноблок- основа двухступенчатой смешанной системы ГВС (горячего водоснабжения)

«Моноблок» - тип пластинчатого теплообменника предназначенный для работы в двухступенчатой системы ГВС, в котором обе ступени объединены в одном теплообменнике, такой теплообменник имеет шесть патрубков. (см. рис.).

Основные и пожалуй единственные плюсы моноблока является, компактность, в сравнение с двумя теплообменниками раздельно и соответственно меньшая стоимость, тем и обуславливается широта применения теплообменников типа «Моноблок».

Теперь попробуем определить его минусы.

Рис. Моноблок для двухступенчатой системы ГВС. Расположение патрубков: Н1 - Вход обратного теплоносителя из системы отопления, Н2 - Вход циркуляционной воды ГВС, Н3 - Выход нагретой воды ГВС, Н4 - Вход горячего тепло носителя из теплосети, F3 - Вход холодной водопроводной воды, F4 - Выход общего обратного теплоносителя в теплосеть.

«Простота» монтажа.

Считается что смонтировать один аппарат проще, чем несколько таких же. Но установленный моноблок выглядит как паук, опутанный паутиной трубопроводов, различной запорной арматуры и приборов. Таким образом теряется основное преимущество- простота обслуживания и ремонта. Если в одноходовом пластинчатом теплообменнике все патрубки расположены на передней плите Н1-Н4 и для его обслуживания и ремонта необходимо всего лишь воспользоваться запорной арматурой и сбросниками, то для разборки системы моноблока неизбежен демонтаж патрубков подвижной задней плиты. Также трубопроводы задней плиты могут перекрывать доступ к моноблочному теплообменнику. Для нормальной эксплуатации моноблока для начала стоит сделать грамотный проект привязки к трубопроводам теплоносителя, холодной и горячей воды с целью обеспечения лёгкого доступа для обслуживания и ремонта. Правильно смонтированный моноблок занимает место не меньше, чем два отдельно стоящих теплообменных аппаратов.

Надежность.

Важно помнить, что два отдельных теплообменника надежнее одного, выполняющего те же функции. Что мы получаем при выходе из строя одного из теплообменников? В таком случае система сможет работать с неполной нагрузкой, пока отремонтируется или пройдёт обслуживание второй теплообменник. Моноблок при неработоспособности даже одной ступени должен быть выведен из работы весь, потому что корпус один на обе ступени.

Эффективность.

При расчете моноблочного теплообменника тоже есть свои нюансы. Достаточно часто трудно создать моноблочную систему двухступенчатой смешанной схемы ГВС, по эффективности сопоставимую с двумя отдельными пластинчатыми теплообменниками. Это обусловлено тем, что установленный вид пластины в моноблоке для двух ступеней один. И в пределах теплофизических свойств этого типа нам необходимо решать задачу по компоновке пакетов пластин для обеих из ступеней, в то время как одна от другой ступени могут различаться по расходам, особенно по стороне теплоносителя. Вот, например, требования для первой ступени способность пропустить суммарный расход теплоносителя системы отопления и теплоносителя второй ступени при обеспечении небольших гидравлических сопротивлений и среднем теплосъеме. Для второй ступени это относительно малые расходы по стороне теплоносителя и воды горячего водоснабжения, более высокие допустимые гидравлические сопротивления и существенно больший теплосъем. То есть, если бы это были два отдельных теплообменника, то теплообменник первой ступени должен быть с большим диаметром патрубков и с «короткой» пластиной, а теплообменник второй ступени с меньшим диаметром патрубка и более «длинной» пластиной.

Есть вариант задания для подбора оборудования для двухступенчатой смешанной схемы. Исходные данные таковы: нагрузка системы горячего водоснабжения 0,4 Гкал/ч, нагрев холодной воды с 5° С до 60° С, общая нагрузка системы отопления 1,2 Гкал.ч, температурный график 150-70.

Разбивая нагрузку на ступени, в соответствии с (СП 41-101-95), для заданных условий получаем исходные данные для подбора теплообменников ступеней (см. табл.).

Фактически величина NTU характеризует тот тепловой режим, на котором будет работать теплообменник. Чем больше NTU, тем больше должна быть тепловая «длина» пластины теплообменника.

В этом случаях видно, что теплообменник второй ступени должен обладать большей, почти на 50%, способностью к теплосъему (тепловой «длиной»), чем теплообменник другой ступени. Кроме того, расходы по греющей стороне обеих ступеней отличаются почти в 3 раза. Это означает, что если для теплообменника второй ступени достаточны патрубки Ду32, то для теплообменника первой ступени патрубки должны быть больше, не менее Ду50.

Пакет пластин

Вышесказано, моноблок это, по сути, два теплообменника, расположенных в одной раме. А значит, и два пакета пластин, размещенных в одной раме, поделённые разворотной пластиной, имеющей два (верхних или нижних) глухих отверстия порта. Зачастую ближе к неподвижной плите находится пакет второй ступени, а за ней пакет первой ступени. Из-за разных функций, выполняемых этими пакетами (см. выше), они имеют разную компоновку и количество пластин. И так как все эти пакеты находятся в одной раме, есть возможность того, что в процессе сервисного обслуживания произойдет ошибка при сборке всего пакета пластин моноблока. То есть, если после разборки моноблока пакеты поменять местами или неправильно их скомпоновать то, вновь собрав аппарат, мы не получим от него заложенных тех характеристик, которые заложены в него изначально.

Таблица. Данные для подбора теплообменников.

С двумя теплообменными аппаратами ситуация проще. В этом случае, даже неправильно собрав весь пакет, мы не получим такого колоссального снижения мощности, расходов и изменения гидравлического сопротивления, как с моноблоком.

В итоге

Плюсы и минусы пластинчатого теплообменника с моноблочной компоновкой:

Плюсы:

1. Небольшая стоимость.

2. Моноблок немного компактнее двух теплообменников.

Минусы:

1. Сложный монтаж и неудобства в облуживания из-за трубопровода на прижимной плите.

2. Меньшая надежность.

3. Менее продуктивная работа.

4. Требовательность к сборке пакета пластин теплообменника.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...