Линейная скорость в аорте. Объемная и линейная скорости кровотока. Объем и линейная скорость токи крови в сосудах

Объем крови , протекающей по кровеносному сосуду, определяется двумя факторами: (1) разницей давления между двумя концами кровеносного сосуда (так называемым градиентом давления), которая является движущей силой кровотока; (2) силами, препятствующими движению крови по сосуду, которые в совокупности называют сосудистым сопротивлением. На рисунке показано влияние этих факторов на кровоток в отрезке сосуда, взятого из любого участка сосудистой системы.

P1 представляет собой давление в начальной части сосуда ; давление на другом конце сосуда обозначено Р2. Сопротивление кровотоку возникает в результате трения между движущейся кровью и эндотелием стенки кровеносного сосуда на всем его протяжении. Объем протекающей крови можно рассчитать, пользуясь формулой, выражающей закон Ома: F=P/R,где F - объемный кровоток, Р - разница давлений (P1 - Р2), R - сопротивление кровотоку. Из данной формулы следует, что величина объемного кровотока прямо пропорциональна разнице давлений и обратно пропорциональна сопротивлению.

Обратите внимание, что разница давлений между двумя концами кровеносного сосуда, которая обеспечивает движение крови по сосуду, не является абсолютной величиной давления в сосуде. Например, если давление на обоих концах сосуда равно 100 мм рт. ст. и нет разницы давления между двумя концами сосуда, то движение крови по сосуду не происходит, несмотря на высокий уровень давления в нем.
Закон Ома является основным законом гемодинамики. В связи с этим мы должны ознакомиться и с другими уравнениями, вытекающими из этого закона: Р = F х R.

Объемный кровоток

Объемный кровоток - это объем крови, протекающий через данный участок сосудистой системы за данный период времени. Обычно объемный кровоток измеряется в миллилитрах за минуту или в литрах за минуту, но может быть выражен также в миллилитрах за секунду и в каких-либо других единицах.

Общий объемный кровоток в сосудистой системе взрослого человека в покое составляет около 5000 мл/мин. Это так называемый сердечный выброс, т.е. количество крови, которое сердце перекачивает в аорту за минуту.

Методы измерения объемного кровотока . Для измерения объема протекающей крови механические или механоэлектрические датчики разных типов могут быть расположены вдоль кровеносного сосуда или внутри него, или снаружи. Их называют флоуметрами.

Электромагнитный флоуметр . Наиболее важное значение имеет метод определения объемного кровотока, который не требует повреждения кровеносного сосуда. Таким методом является электромагнитная флоуметрия. На рисунке показан генератор электродвижущей силы (электрического напряжения) в металлическом проводнике, который быстро движется в магнитном поле в поперечном направлении. Это хорошо известный принцип работы электрического генератора.

На рисунке показан тот же принцип , однако генерация электродвижущей силы происходит в крови, движущейся в магнитном поле. Для этого кровеносный сосуд помещается между полюсами мощного магнита, а регистрирующие электроды находятся с двух сторон от сосуда перпендикулярно по отношению к силовым линиям магнита. Когда кровь течет по сосуду, между двумя электродами возникает электрическое напряжение, которое измеряют с помощью вольтметра или регистрируют электронным устройством.

Это напряжение пропорционально скорости кровотока . На рисунке показан датчик, который накладывают на крупный кровеносный сосуд для регистрации объемного кровотока. Такой датчик состоит из сильного магнита и пары электродов. Преимуществом электромагнитного флоуметра является то, что он может улавливать изменения кровотока на величину меньшую, чем 1/100 в секунду, а значит, регистрировать не только постоянный уровень, но и пульсовые колебания кровотока.

Изменение линейной скорости кровотока в различных сосудах

Это путь, проходимый в единицу времени частицей крови в сосуде. Линейная скорость в сосудах разного типа различна (см. рисунок справа) и зависит от объемной скорости кровотока и площади поперечного сечения сосудов.

При равенстве объемной скорости кровотока в разных отделах сосудистого русла: в аорте, суммарно - в полых венах, в капиллярах - линейная скорость кровотока наименьшая в капиллярах, где самая большая суммарная площадь поперечного сечения.

В практической медицине линейную скорость кровотока измеряют с помощью ультразвукового и индикаторного методов, чаще определяют время полного кругооборота крови, которое равно 21-23 с.

Для его определения в локтевую вену вводят индикатор (эритроциты, меченные радиоактивным изотопом, раствор метиленового синего и др.) и отмечают время его первого появления в венозной крови этого же сосуда в другой конечности. Для определения времени кровотока на участке «капилляры лёгких - капилляры уха» используют в качестве метки кислород, поступающий в лёгкие после задержки дыхания, и отмечают время его появления в капиллярах уха с помощью чувствительного оксиметра. Ультразвуковое определение скорости кровотока основано на эффекте Допплера. Ультразвук посылается через сосуд в диагональном направлении, и отражённые волны улавливаются. По разнице частот исходных и отражённых волн, которая пропорциональна скорости движения частиц крови, определяют линейную скорость кровотока.

Конец работы -

Эта тема принадлежит разделу:

Гемодинамика

Лекция гемодинамика основные закономерности o равенство объ мов кровотока o.. литература.. гемодинамика движение крови по сосудам возникающее вследствие разности гидростатического давления в различных..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Гемодинамика
· План лекции · 1 Основные закономерности o 1.1 Равенство объёмов кровотока o 1.2 Движущая сила кровотока o 1.3 Сопротивление в кровеносной системе · 2

Движущая сила кровотока
Это разность кровяного давления между проксимальным и дистальным участками сосудистого русла. Давление крови создаётся давлением сердца и зависит от упруго-эластических свойств сос

Сопротивление в кровеносной системе
Если общее сопротивление току крови в сосудистой системе большого круга принять за 100 %, то в разных её отделах сопротивление распределяется следующим образом. В аорте, крупных артериях и их ветвя

Амортизирующие сосуды
Это аорта, лёгочная артерия и их крупные ветви, то есть сосуды эластического типа. Специфическая функция этих сосудов - поддержание движущей силы кровотока в диастолу желу

Сосуды распределения
Это средние и мелкие артерии мышечного типа регионов и органов; их функция - распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое со

Сосуды сопротивления
К ним относят артерии диаметром меньше 100 мкм, артериолы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 50-60 % общего сопротивления кровотоку

Шунтирующие сосуды
К ним относят артериоловенулярные анастомозы. Их функции - шунтирование кровотока. Истинные анатомические шунты (артериоловенулярные анастомозы) есть не во всех органах. Наиболее типичны эти

Емкостные (аккумулирующие) сосуды
Это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования - синусоиды селезенки. Их общая ёмкость составляет около 50 % всего объема крови, содержащейся в

Поперечное сечение сосудов
Наименьшую площадь поперечного сечения всего кровеносного русла имеет аорта - 3-4 см² (см. табл.). Показатель Аорта Капилляры Пол

Объём крови в кровеносной системе
У взрослого человека примерно 84% всей крови содержится в большом круге кровообращения, 9% - в малом, 7% - в сердце (в конце общей паузы сердца; подробнее см. табл. ниже). О

Объёмная скорость кровотока
в сердечно-сосудистой системе составляет 4-6 л/мин, она распределяется по регионам и органам в зависимости от интенсивности их метаболизма в состоянии функционального покоя и при деятельности (при

Энергия, обеспечивающая движение крови по сосудам
создаётся сердцем. В результате постоянного циклического выброса крови в аорту создается и поддерживается высокое гидростатическое давление в сосудах большого круга кровообращения (130/70 мм рт.ст.

Характеристика артериального давления крови
Наблюдаются также пульсовые колебания давления, возникающие в начальном сегменте аорты, а затем распространяющиеся дальше. В начале систолы давление быстро повышается, а затем снижается, про

Методы измерения кровяного давления
Методы измерения кровяного давления подразделяют на прямые и косвенные. В 1733 г. Хейлс впервые измерил кровяное давление прямым способом у ряда домашних животных с помощью стеклян

Скорость распространения пульсовой волны
Определение скорости распространения пульсовой волны Повышение артер

Артериальный пульс
Доступен для пальпаторного исследования (прощупывания) в местах, где артерия располагается близко к поверхности кожи, а под ней находится костная ткань. По артериальному пульсу можно получить предв

Транскапиллярный обмен веществ
Происходит путём диффузии, облегчённой диффузии, фильтрации, осмоса и трансцитоза. Интенсивность всех этих процессов, разных по физико-химической природе, зависит от объёма кровотока в системе микр

Давление крови в венах
Значительно ниже, чем в артериях, и может быть ниже атмосферного (в венах, расположенных в грудной полости, - во время вдоха; в венах черепа - при вертикальном положении тела); венозные сосуды имею

Причины движения крови по венам
Основная движущая сила - разность давлений в начальном и конечном отделах вен, создаваемой работой сердца. Имеется ряд вспомогательных факторов, влияющих на возврат венозной крови к сердцу.

Коронарные сосуды
Коронарные артерии берут начало в устье аорты, левая кровоснабжает левый желудочек и левое предсердие, частично - межжелудочковую перегородку, правая - правое предсердие и правый желудочек, часть м

Головной мозг
Снабжается кровью из бассейна внутренних сонных и позвоночных артерий, которые образуют у основания мозга виллизиев круг. От него отходят шесть церебральных ветвей, идущих к коре, подкорке и средне

Физические основы движение крови в сосудистой системе. Пульсовая волна
Для поддержания электрического тока в замкнутой цепи требуется источник тока, который создает разность потенциалов, необходимую для преодоления сопротивления в цепи. Аналогично для поддержания движ

Работа и мощность сердца
В течение одной систолы правый желудочек выбрасывает в аорту ударный объем крови (60-70 мл). На столько же уменьшается и объем желудочка: ΔV ≈ 65х10-6 м3. Полезная

Гидродинамическая модель кровообращения
Основными элементами системы кровообращения являются: левый желудочек, из которого кровь поступает в артериальную часть кровеносной системы под постоянным давлением Рж;

Как вы уже знаете, кровообращением называется движение крови по сосудистой системе. Оно обеспечивает газообмен между организмом и внешней средой, обмен веществ между всеми органами и тканями, гуморальную регуляцию различных функций организма и перенос образующегося в организме тепла. Кровообращение является процессом, необходимым для нормальной деятельности всех систем организма, в первую очередь - центральной нервной системы. По существу, все функции крови осуществляются за счет кровообращения.

Конечной проблемой физиологии кровообращения является рассмотрение закономерностей, которые обусловливают достаточное кровоснабжение органов. Раздел физиологии, посвященный закономерностям течения крови по сосудам, называется гемодинамикой. основные законы гемодинамики основаны на законах гидродинамики, т.е. учения о движении жидкости в трубках.

Так же, как и гидродинамика, гемодинамика рассматривает соотношения между силами, движущими кровь по сосудам, скоростью движения, давлением крови в сосудах, сопротивлением в сосудистой системе, просветом отдельных сосудов и т.д.. Нужно отметить, что условия естественного кровообращения весьма сложны и зависят от большого количества переменных величин, да и сама кровь не похожа на идеальную ньютоновскую жидкость.

Поэтому законы гидродинамики приложимы к системе кровообращения только в известных пределах и только с приблизительной точностью.

Основные гемодинамические показатели .

1. Объемная скорость движения крови . В гидродинамике объемная скорость тока жидкости, т.е. количество жидкости, протекающей через сосуд в единицу времени, прямо пропорциональна разности давлений и обратно пропорциональная сопротивлению, главным образом в кранах системы. Если ввести в эту зависимость показатель вязкости, то мы получим следующее уравнение Пуазейля, где n - вязкость:

Q = (P-P 1)/R х n

Поскольку R = 8nL/пr 2 ,мы можем написать эту формулу в виде:

Q = (P-P 1)пr 2 /8nL ,

где L - длина, п = 3,14 (число пи), r - радиус сосуда.

В гемодинамике этому гидродинамическому показателю соответствует объемная скорость крови, т.е. количество крови, протекающее через кровеносную систему в единицу времени, другими словами - минутный объем кровотока. Минутный объем кровотока подчиняется формуле Пуазейля.

Поскольку кровеносная система замкнутая, то через любое поперечное сечение ее в единицу времени проходит одно и то же количество крови

Q 1 = Q 2 =. . . Q n = const .

Это уравнение называется уравнением непрерывности движения крови. Кровеносная система состоит из системы ветвящихся сосудов, поэтому суммарный просвет растет, хотя просвет каждого разветвления постепенно уменьшается. Из уравнения непрерывности следует, что, через аорту, также как через все артерии, все капилляры, все вены в минуту проходит один и тот же объем крови.

Это не значит однако, что во всех разветвлениях сосудов она одинакова. Тут она может меняться в зависимости от просвета каждого отдельного сосуда, однако сумма просветов остается неизменной. Это играет большую роль в перераспределении крови по органам. Пример - Енисей с островами и притоками и участок узкого русла- в любом месте через сечение реки проходит один объем воды. При этом

Q = S х V,

где S - площадь поперечного сечения реки, V - линейная скорость движения воды.

2. Второй гемодинамический показатель- линейная скорость движения крови .

Скорость, с которой жидкость вытекает из бака через отверстие в нем в гидродинамике определяется по формуле Торричелли:

V = v --2 gP,

где V - линейная скорость (число сантиметров, которое проходит жидкость в единицу времени), g - ускорение свободного падения.

Если учесть сопротивление току жидкости, то она примет вид:

V = v -2 g(P-Pr),

где Pr - та часть давления, которая идет на преодоление сопротивления.

Из этой формулы видно, что скорость истечения жидкости прямо пропорциональна давлению и обратно пропорциональна сопротивлению.

Зная линейную скорость, легко установить и объемную.

Q = SV; Q - Vпr 2 ; V = Q/пr 2

Из этих формул следует, что в трубках различного диаметра скорость течения крови тем больше, чем меньше сечение трубки. В кровеносной системе самым узким местом является аорта, наиболее широким капилляры (напомним, что мы имеем дело с суммарным просветом сосудов). Соответственно этому кровь в аорте движется гораздо быстрее - 500 мм/сек, чем в капиллярах - 0,5 мм/сек.

Результирующая всех линейных скоростей в различных частях сосудистой системы выражается временем кругооборота крови . Она у здорового человека в покое равна 20 секундам. Это значит, что одна и та же частица крови проходит через сердце каждую минуту 3 раза. При напряженной мышечной работе время кругооборота крови может уменьшаться до 9 секунд.

3. Сопротивление сосудистой системы - третий гемодинамический показатель. .Протекая по трубке, жидкость преодолевает сопротивление, которое возникает вследствие внутреннего трения частиц жидкости между собой и о стенку трубки. Это трение будет тем больше, чем больше вязкость жидкости, чем уже ее диаметр и чем больше скорость течения.

Кровеносные сосуды оказывают значительное сопротивление току крови, и

сердцу приходится большую часть своей работы тратить на преодоление этого

сопротивления. Основное сопротивление сосудистой системы сосредоточено в той ее части, где происходит разветвление артериальных стволов на мельчайшие сосуды. Однако максимальное сопротивление представляют самые мельчайшие артериолы. Причина заключается в том, что артериолы, имея почти такой же диаметр, как и капилляры, в общем длиннее и скорость течения крови в них выше. При этом величина внутреннего трения возрастает. Кроме того, артериолы способны к спазмированию. Общее сопротивление сосудистой системы все время увеличивается по мере удаления от основания аорты.

4. Давление крови в сосудах . Это - четвертый, и самый важный гемодинамический показатель, так как его легко измерить.

Если ввести в крупную артерию животного датчик манометра, то прибор обнаружит давление, колеблющееся в ритме сердечных сокращений около средней величины, равной примерно 100 мм рт ст. Существующее внутри сосудов давление создается работой сердца, нагнетающего кровь в артериальную систему в период систолы. Однако, и во время диастолы, когда сердце расслаблено и работы не производит, давление в артериях не падает до нуля, а лишь немного западает, сменяясь новым подъемом во время следующей систолы. Таким образом, давление обеспечивает непрерывный ток крови, несмотря на прерывистую работу сердца. Причина - в эластичности артерий. Аорта и крупные сосуды, богатые эластической тканью, обладают значительной упругостью. Конечная часть артериальных стволов, распадаясь на артериолы, представляют для крови существенное сопротивление. Соотношения между эластичностью артерий и величиной сопротивления таковы, что почти вся работа сердца затрачивается на поддержание запаса энергии в стенках артериальных сосудов, и лишь относительно малая часть работы расходуется на сообщение крови непосредственного ускорения.

Величина артериального давления определяется двумя факторами: количество крови, нагнетаемой сердцем, и сопротивлением, существующим в системе:

P = QR .

При соединении с манометром различных сосудов можно убедиться, что давление в них будет тем меньше, чем дальше отстоит исследуемый сосуд от аорты. Это соответствует гидродинамической закономерности, согласно которой при течении жидкости происходит непрерывное падение давления от начальной части трубки до ее открытого конца. Степень падения давления определяется величиной сопротивления протеканию жидкости на данном отрезке сосуда. Из сказанного ясно, что кривая распределения давления в сосудистой системе должна явиться зеркальным отражением кривой сопротивления. Так, в подключичной артерии собаки Р = 123 мм рт. ст., в плечевой - 118 мм, в капиллярах мышц 10 мм, лицевой вене 5 мм, яремной - 0,4 мм, в верхней полой вене -2,8 мм рт ст.

Среди этих данных обращает на себя внимание отрицательная величина давления в верхней полой вене. Она означает, что в непосредственно прилегающих к предсердию крупных венозных стволах давление меньше атмосферного. Создается оно присасывающим действием грудной клетки и самого сердца во время диастолы и способствует движению крови к сердцу. Методы определения кровяного давления. В остром опыте - при помощи канюли, введенной в сосуд и соединенной с манометром. У человека - непосредственно в сосуде - при зондировании.

Если соединить сосуд с регистрирующим устройством, то можно записать кривую артериального кровяного давления . Так как уровень кровяного давления в артериях никогда не остается постоянным, то на кривой можно видеть колебания и волны трех типов.

Волны первого порядка - самые частые, зависят от сокращений сердца. Во время систолы давление максимально (систолическое), во время диастолы - минимально (диастолическое). Разность между систолическим и диастолическим давлением называется пульсовым давлением. Пульсовое давление при прочих равных условиях пропорционально количеству крови, выбрасываемой сердцем при каждой систоле. По мере удаления от сердца в сосудах пульсовое давление становится меньше, а в мелких артериолах и капиллярах во время систолы и диастолы одинаково.

Волны второго порядка - совпадают с дыхательными движениями и называются дыхательными волнами. Во время вдоха кровяное давление повышается, во время выдоха понижается. Причина - рефлекс Бейнбриджа и рефлексы с рецепторов предсердий и легких. В одной волне второго порядка - до 5-6 волн первого порядка.

Волны третьего порядка - еще более медленные, включают 6-10 вол второго порядка и зависят от колебаний возбудимости сосудодвигательного центра. Усиливаются при гипоксии.

Методы регистрации АД . У человека кровяное давление измеряют бескровным способом по Короткову. Он основан на измерении давления, которому нужно подвергнуть стенку данного сосуда, чтобы прекратить ток крови в нем. Для этого используются разные типы сфигмоманометров (ртутные, пружинные и др.). Перерыв в токе крови по сосуду определяют или по исчезновению пульса ниже места пережатия (Рива-Роччи) или по появлению и исчезновению так называемых тонов Короткова.

Кровь, если артерия не сдавлена или сдавлена очень мало, течет по артерии беззвучно. Поэтому, если на руку надета не надутая манжета сфигмоманометра, то никаких звуков не слышно. Если же давление в манжете выше диастолического, то в момент систолы кровь проходит, а во время диастолы - нет, то возникает прерывистость в движении и появляются тоны Короткова, синхронные с ритмом сердца. Когда давление в манжете больше систолического - звуки вновь исчезают, так как тока крови нет. Если перед выслушиванием накачать в манжету давление заведомо больше систолического, то при выпускании воздуха тоны появляются, когда давление в манжете становится меньше систолического, но больше диастолического. В этот момент манометр показывает систолическое давление. Когда тоны исчезают вовсе - давление равно диастолическому.

Кроме этого метода у человека можно зарегистрировать АД с помощью прибора артериального осциллографа и различных датчиков, но манжета для пережатия сосуда используется во всех методах.

В плечевой артерии здоровых людей в возрасте от 10 до 15 лет АД систолическое давление равно 103-110 мм рт ст, в возрасте 16-40 лет - 113-126 мм рт ст, старше 50 лет - 135-140 мм рт ст. У новорожденных систолическое давление 40 мм рт ст, однако уже через несколько дней оно повышается до 70-80 мм. Диастолическое давление у взрослого равно в норме 60-85 мм рт ст. Пульсовое составляет в норме 35-50 мм.

Факторы, изменяющие артериальное давление . На уровень артериального кровяного давления оказывает влияние ряд факторов. После приема пищи наблюдается небольшое (на 6-8 мм) повышение систолического давления. Эмоциональное возбуждение (гнев, испуг) значительно повышают АД, преимущественно систолическое. Это повышение обусловлено усиленной деятельностью сердца, а также сужением сосудистого русла. Изменения эти наступают частью рефлекторно, частью под влиянием гуморальных сдвигов - поступления адреналина в кровь.

При физической работе давление резко возрастает, главным образом за счет усиления деятельности сердца. Систолическое давление может доходить до 180-200 мм. В большинстве случаев при этом повышается и диастолическое давление (до 100-110 мм), но в меньшей степени, чем систолическое, поэтому пульсовое давление возрастает, что служит показателем увеличения систолического объема. Практически важно то обстоятельство, что у людей с недостаточной функциональной способностью сердечно-сосудистой системы наблюдается незначительное повышение систолического и большое - диастолического, при этом пульсовое давление уменьшается. Таким людям запрещено тяжелое физическое напряжение. По окончании физической работы у здоровых людей АД быстро возвращается к норме.

При переходе из лежачего положения в стоячее у человека кровяное давление (особенно диастолическое) несколько повышается. Падение давления в этом случае, особенно сопровождающееся тахикардией, говорит о функциональной недостаточности кровообращения. Этот способ исследования состояния системы кровообращения применяется в клинике и называется ортостатической пробой.

У некоторых людей наблюдается стойкое изменение артериального давления (гипертензия - повышение, гипотензия - понижение). Различают гипертензии сердечного и сосудистого происхождения. Первые обусловлены изменением интенсивности работы сердца, вторые - изменениями периферического сопротивления сосудов, особенно артериол. Гипертензии сосудистого происхождения называются гипертониями. Принято считать. что гипертония имеется в том случае, если максимальное АД превышает среднюю величину соответствующего возраста на 15 мм, а минимальное - на 8 мм в покое. О наличии гипотонии у взрослого говорят при снижении систолического АД до 110 мм.

Пульс . Ритмические толчки, ощущаемые пальцем при прикосновении к любой доступной ощупывании артерии (на виске, у угла челюсти, на шее, на кисти рук, в паху, у щиколотки и т.д.) называется пульсом. При записи кривой пульса (сфигмограммы) видно, что пульс представляет собой сложное колебание стенки сосуда, слагающееся из нескольких подъемов и спусков разной высоты.

Непосредственный механизм пульса аорты и пульса артерии среднего калибра различен. Пульс аорты представляет собой колебания артериальной стенки, создаваемые прямым давлением на них крови, выброшенной сердцем во время систолы. Пульс артерий среднего калибра, напротив, не возникает в данном месте, и представляет собою волну эластического колебания сосудистых стенок, возникшую в аорте и распространяющуюся до периферической артерии. Скорость, с которой пульсовая волна распространяется от центра к периферии, зависит от растяжимости сосуда. В более растяжимой аорте эта скорость равна 3-5 м/сек, а в артериях конечностей - 7-15 м/сек. При склерозе артерий скорость пульсовой волны еще более увеличивается и доходит до 30-35 м/сек. Чем выше систолическое давление крови, тем быстрее будет бежать пульсовая волна. По мере удаления от сердца скорость пульсовой волны уменьшается, и, наконец, гаснет в капиллярах.

Аортальный пульс . В пульсовой кривой (сфигмограмме) аорты и крупных артерий различают две основных части - анакротическое (восходящее) и катакротическое (нисходящее) колена. Кроме того, кривая аортального пульса обладает рядом зубцов (см. рисунок).

Зубец А возникает к конце катакротического колена, он совпадает по времени с систолой предсердий, и его причиной является механический толчок предсердий снаружи в стенку аорты.

Зубец В возникает перед самым началом анакроты и совпадает во времени с фазой напряжения желудочков. Обусловлен продавливанием еще закрытых полулунных клапанов в сторону аорты в тот период, когда давление в желудочке уже приближается к аортальному.

Зубец С занимает большую часть анакроты, является выражением того мощного растяжения, которому подвергаются стенки аорты под влиянием крови, выброшенной из сердца в момент раскрытия полулунных клапанов (фаза быстрого изгнания крови). Так как кровь не успевает оттекать в артерии по мере ее дальнейшего выбрасывания сердцем, кривая аортального пульса еще некоторое время продолжает повышаться, но теперь растяжение аорты идет уже медленнее (фаза медленного изгнания).

Зубец D . По окончании систолы желудочков, когда полулунные клапаны закрываются, кровь под давлением эластических стенок аорты устремляется не только в артерии, но и обратно к сердцу вслед за клапанами. Это выражается на кривой в виде глубокой выемки- направленного вниз зубца D.

Зубец Е. Однако движение крови обратно к сердцу почти тотчас же встречает препятствие - полулунные клапаны, закрывшись, оказывают эластическое сопротивление крови. Волна крови отражается от них назад в аорту, снова растягивая аортальные стенки - возникает т.н. вторичный, дикротический подъем, зубец Е.

Артериальный пульс . Кривая пульса в сосудах, более отдаленных от сердца, например, в лучевой артерии, разумеется, не имеет зубцов А,В,С,D,Е, непосредственно отражающих события в сердце. На ней сохранен только основной анакротический подъем (аналог зубца С), катакротический спуск и на этом спуске добавочный, дикротический подъем, который тем меньше, чем дальше от сердца отстоит артерия. На пульсовой кривой периферических артерий может появиться дополнительный, т.н. трикротический подъем на катакроте. Он зависит от того, что пульсовая волна, добежав до капилляров, до разветвления мелких артерий, отражается от них и бежит обратно по стенке артерии.

Скорость распространения пульсовой волны является одним из важных клинических и физиологических показателей гемодинамики, отражает состояние стенок сосудов и силу сокращения сердца и часто определяется в клинике. С этим методом вы познакомитесь на занятиях. В норме на участке сердце - бедренная артерия она равна 10-15 м/сек.

Свойства пульса . По пульсу судят о сердечной деятельности и ее нарушениях, определяя каждый раз ряд свойств пульса. В традиционной китайской медицине их насчитывают более 200. Европейская медицина выделяет 5 основных свойств:

1. Частота пульса -число толчков пульса в минуту. Указывает на частоту сердечных сокращений. Бывает пульс частый (тахикардия) и редкий (брадикардия).

2. Ритм пульса . О ритме судят по длительности (равномерности) промежутков между пульсовыми ударами. Бывает пульс ритмичный и аритмичный.

3. Быстрота пульса . По скорости подъема и скорости падения пульсовой волны составляют представление о быстроте пульса. пульс бывает быстрый и медленный. Быстрый подъем и быстрое падение пульсовой волны отмечается, например, при недостаточности клапанов аорты. Быстрота пульса зависит также от эластичности стенок сосудов - она ускоряется при падении эластичности.

4. Наполнение . По высоте подъема артериальной стенки (т.е. по амплитуде пульсовой волны) судят о величине, или наполнении пульса. Это свойство зависит от систолического обьема крови.

5. Напряжение пульса . О нем судят по силе, с которой следует сдавить артерию, чтобы пульс исчез. Напряжение пульса зависит от величины кровяного давления. Различают пульс твердый и мягкий. Твердый, или напряженный пульс бывает, например, при гипертонии, мягкий - при кровотечении, снижении объема циркулирующей крови.

Движение крови по венам . Движение крови по венам является весьма важным фактором кровообращения в целом, т.к. этим фактором определяется наполнение сердца во время диастолы. Движение крови по венам имеет ряд особенностей. Вены представляют собой трубки, стенки которых гораздо растяжимее стенки артерий ввиду малой толщины мышечного слоя. Поэтому даже при небольшом давлении внутри вен стенки их значительно растягиваются. В отличие от артерий, которые носят название резистивных сосудов, вены относятся к т.н. емкостным сосудам. Общий итог кровообращения в значительной степени определяется взаимодействием этих двух групп сосудов.

Давление внутри вен можно измерить как у животных, так и у человека, вводя в поверхностную вену полую иглу и соединяя ее с водяным манометром. В венах, лежащих вне грудной полости, давление не превышает 130-150 мм Н2О (8-10 мм Hg).

Скорость движения крови в венах меньше, чем в артериях, так как венозное русло в

2-3 раза шире артериального.

Роль гидростатического давления (веса крови) в кровообращении . Сосудистую систему следует представлять себе в виде V - образной трубки, одним концом которой являются артерии, другим - вены, середину - капилляры. Гидростатическое давление, оказываемое столбами крови в силу ее тяжести в артериях и венах точно уравновешены по закону сообщающихся сосудов. Поэтому на передвижение крови вверх по вене не затрачивается никакой добавочной работы на преодоление тяжести крови, точно так же, как при продвижении крови вниз по артерии не происходит ускорения, производимого силой тяжести. По закону сообщающихся сосудов гидростатическое давление ни в какой мере не является препятствием для оттока крови по вена к сердцу.

Но это положение в полной мере относилось бы к кровеносным сосудам в том случае, если бы они были стеклянными, и не способными к растяжению. Фактически же гидростатический фактор играет определенную роль в кровообращении, т.к. сердце выбрасывает кровь в сосуды с растяжимыми стенками. Вспомните, как набухают сосуды руки, несколько минут висевшей без движения кистью вниз. Если бы организм не располагал специальными регуляторными механизмами, предназначенными для борьбы с гидростатическим фактором, кровообращение было бы возможно только при горизонтальном положении тела. К числу таких факторов в первую очередь относится работа мышц, окружающих вены, присасывающее действие грудной клетки и сердца, остаточная сила сокращения сердца и клапаны в венах, позволяющие крови двигаться только в сторону сердца.

В случае выключения механизмов, препятствующих проявлению гидростатических сил, кровь застаивается в нижних частях тела и может наступить т.н. ортостатический коллапс (обморок у часовых, при вставании после тяжелой болезни и т.д.).

Поскольку те же самые факторы, которые препятствуют силе тяжести крови, способствуют вообще движению крови к сердцу, поговорим о них немного подробнее.

Причиной движения крови по венам большого круга является не только сила сокращения левого желудочка. В силу наличия в венах клапанов, обеспечивающих односторонний ток крови к сердцу, движению крови в венах может способствовать любая сила, которая выдавит кровь из данного участка вены - обратно кровь уже не возвратится благодаря наличию клапанов. Все эти факторы выше уже названы.

Особо следует указать на роль периферической мускулатуры. Аринчин даже называл ее периферическим сердцем - сокращение мышц конечностей способно обеспечить продвижение крови в полые вены даже при выключении сердца в эксперименте. Любая ритмическая работа сильно ускоряет венозное кровообращение. Наоборот, статическая работа, т.е. длительное сокращение мышц, при которой вены сдавливаются на продолжительное время, препятствует венозному оттоку. Это является одной из причин, почему статическая работа так утомительна.

Венозный пульс . В капиллярах пульсовая волна обыкновенно затухает. Она

отсутствует в мелких и средних венах. Но в крупных венах вблизи сердца и крупных артерий снова отмечается пульс, однако причины венного пульса совершенно иные, чем артериального. На кривой венного пульса различают три зубца - A,C,V.

Зубец А совпадает с началом систолы предсердий и вызывается тем, что в момент систолы предсердий место впадения вен зажимается кольцевой мускулатурой, вследствие чего приток крови из вен в предсердия приостанавливается. Поэтому стенки крупных вен растягиваются притекающей кровью при каждой систоле предсердий и вновь расслабляются во время его диастолы. В это время кривая венного пульса круто падает.

Зубец C обусловлен тем, что при захлопывании створчатых клапанов удар со стороны желудочков при начинающейся систоле передается через предсердия на вены.

Зубец V обусловлен тем, что во время систолы желудочков створчатые клапаны закрыты и кровь наполняет предсердия, что вызывает задержку тока крови в венах и некоторое повышение давления в них. При диастоле желудочков створчатые клапаны открываются и кровь из предсердий и вен быстро поступает в желудочки, что обусловливает новое падение кривой венного пульса.

В том, что зубцы венного пульса совпадают с определенными фазами сердечной деятельности, и заключается интерес его исследования. По записи венного пульса можно судить о длительности сердечных фаз. Так, время А-С соответствует систоле предсердий, С-V - систоле желудочков, V-А - общей паузе. Методы регистрации - на занятиях.

Кровообращение в капиллярах (микроциркуляция) и транскапиллярный обмен . Капилляры имеют важнейшее значение в жизненных процессах, т.к. через их стенки происходит обмен веществ между кровью и тканями. Стенки капилляров состоят только из одного слоя клеток эндотелия, через который происходит диффузия растворенных кровью газов и веществ. Считается, что всех капилляров в большом кругу более 160 миллиардов, поэтому в области капилляров кровяное русло весьма расширено. По данным Крога, 1 мл крови в капиллярах распластывается на поверхности 0,5-0,7 кв.м.

Длина каждого отдельного капилляра составляет 0,3-0,7 мм. Форма и величина капилляров в различных тканях и органах неодинаковы, как неодинаково и общее их количество. В тканях с высокой интенсивностью обменных процессов число капилляров на единицу площади больше.

Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венами (магистральные капилляры), другие представляют боковые ответвления и образуют капиллярные сети.

Давление крови в капиллярах разных сосудистых областей различно. Так, у человека в мышцах оно равно на артериальном конце 35 мм Hg, на венозном - 15 мм Hg. На вершине капилляра ногтевого ложа давление 24 мм Hg. В капиллярах почечных клубочков - 65-70 мм Hg, а в капиллярах почечных канальцев - 14-18 мм Hg. В легких - всего 6 мм Hg.

В каждом органе кровь в покое течет не во всех капиллярах. Часть их (дежурные капилляры) пропускают кровь или плазму (плазматические капилляры), часть же полностью закрыта и выключена из кровообращения (резервные капилляры). Во время интенсивной работы резервные капилляры открываются.

Транскапиллярный обмен совершается через стенку капилляра несколькими способами. В разных капиллярах строение стенки тоже разное - есть капилляры с "дырками", т.н. фенестрами в стенке, и через них обмен происходит в основном за счет фильтрации. Там же, где таких дыр нет, используются механизмы диффузии по градиенту концентрации, осмотические механизмы переноса и особенно механизмы активного транспорта. Но при всех этих способах важнейшее значение имеет градиент давления между капилляром и межтканевой жидкостью - т.н. фильтрационное давление, которое равно разнице между гидростатическим давлением в капиллярах и суммой онкотического давления крови и тканевого давления: ФД = АД - (ОД+ТД)

Если принять ОД = 15 мм, ТД = 10 мм, то можно вычислить величину и направление градиента давления на артериальном и венозном концах капилляра.

Артериальный конец: ФД = 35 мм - 25 мм = +10 мм Hg Венозный конец: ФД = 15 мм - 25 мм - -10 мм Hg

Эти расчеты показывают, что градиент давления, обеспечивает на артериальном конце обеспечивает движение жидкости в ткани, а на венозном, наоборот, из тканей в кровь.

В настоящее время установлено, что регулирование капиллярного кровообращения осуществляется нервной и гуморальной системами посредством приводящих артерий и артериол, играющих роль кранов для капилляров. Их сужение и расширение может приводить к изменениям распределения крови в ветвящейся капиллярной сети, к изменениям в крови, протекающей по капиллярам, соотношение эритроцитов и плазмы и т.п. При резком расширении артериол, например, в очаге воспаления, капилляры также резко расширяются, и линейная скорость тока крови в них уменьшается. При этом появляются агрегаты эритроцитов внутри капилляров, что повышает местное сопротивление кровотоку вплоть до стаза.

Артериовенозные анастомозы . В некоторых участках тела, например, в коже, легких, почках, имеются непосредственные соединения артериол и вен. Эти соединения - артериовенозные анастомозы - представляют собой наиболее короткий путь между артериями и венами. В обычных условиях они закрыты, и кровь течет через капиллярную сеть. Если же анастомозы открываются, то часть крови может поступать в вены, минуя капилляры. Анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером такой роли служит изменение капиллярного кровообращения в коже при повышении или понижении температуры окружающей среды выше 35 о С или ниже 15 о С. В этих условиях анастомозы открываются и предохраняют кожу от перегревания или переохлаждения.

Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?

Отличительной особенностью характеристики сердечно-сосудистой системы на современном этапе является требование выражать все составляющие ее параметры количественно. Геометрические (табл. 9.1) и гидродинамические (табл. 9.2) характеристики системы кровообращения свидетельствуют о том, что аорта представляет собой трубку диаметром 1,6-3,2 см с площадью поперечного сечения 2,0-3,5 см2, постепенно разветвляющуюся на 109 капилляров, площадь поперечного сечения каждого из которых равна 5 10~7 см2.

Радиус усредненного капилляра может составлять 3 мкм, длина - около 750 мкм (хотя диапазон реальных значений довольно велик). Площадь поверхности стенки каждого усредненного капилляра равна 15 000 мкм2, а площадь поперечного сечения - 30 мкм2. Поскольку доказано, что обмен происходит и в посткапиллярных венулах, можно допускать, что общая обменная поверхность мельчайшего сосуда большого круга составляет 25 000 мкм2. Общее число функционирующих капилляров у человека массой 70 кг должно быть порядка 40 000 млн., тогда общая обменная площадь поверхности капилляров должна составлять около 1000 м2.

Таблица 9.1. Геометрические характеристики сосудистого русла большого круга крово обращения

В сосудах различают скорость кровотока объемную и линейную .

Объемная скорость кровотока - количество крови, протекающее через поперечное сечение сосуда в единицу времени. Объемная скорость кровотока через сосуд прямо пропорциональна давлению крови в нем и обратно пропорциональна сопротивлению току крови в этом сосуде.

Линейная скорость кровотока отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на площадь сечения кровеносного сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда линейная скорость максимальна, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Таблица 9.2. Гидродинамические характеристики сосудистого русла большого круга кровообращения

Под сердечным выбросом понимают количество крови, выбрасываемой сердцем в сосуды в единицу времени.

Исходя из величины сердечного выброса в покое и средней скорости кровотока в капилляре (см. табл. 9.2) подсчитано, что площадь поперечного сечения капиллярного ложа должна в 700 раз превышать площадь поперечного сечения аорты. В покое функционирует только 25-35 % капилляров и общая площадь их обменной поверхности составляет 250-350 м2.

Линейная скорость кровотока – это расстояние, которое проходит частица крови за единицу времени, то есть это скорость перемещения частиц вдоль сосуда при ламинарном потоке.

Кровоток в сосудистой системе в основном носит ламинарный (слоистый) характер. При этом кровь движется отдельными слоями, параллельно оси сосуда.

Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре она максимальная, а около стенки – минимальная. Это связано с тем, что на периферии особенно велико трение частиц крови о стенку сосуда.

При переходе от одного калибра сосуда к другому диаметр сосуда меняется, что приводит к изменению скорости течения крови и возникновению турбулентных (вихревых) движений.

Переход от ламинарного типа движения к турбулентному ведёт к значительному росту сопротивления.

Линейная скорость также различна для отдельных участков сосудистой системы и зависит от суммарного поперечного сечения сосудов данного калибра.

Она прямо пропорциональна объёмной скорости кровотока и обратно пропорциональна площади сечения кровеносных сосудов:

Поэтому линейная скорость меняется по ходу сосудистой системы.

Так, в аорте она равна 50-40 см/c; в артериях – 40-20; артериолах – 10-0,1; капиллярах – 0,05; венулах – 0,3; венах – 0,3-5,0; в полых венах – 10-20 см/с.

В венах линейная скорость кровотока возрастает, так как при слиянии вен друг с другом суммарный просвет кровеносного русла суживается.

Время кругооборота крови

Время полного кругооборота крови - это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.



Для измерения времени полного кругооборота крови применяют ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны.

В последние годы скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактив­ного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену ра­диоактивного изотопа натрия определяют время появления радио­активного излучения в области сердца и исследуемых сосудов.

Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70-80 в минуту кругооборот крови происходит приблизительно за 20-23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 - по большому.

Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего (в результате сокращения желудочков) тока крови в постоянный. Это сглаживает резкие колебания давления, что способствует бесперебойному снабжению органов и тканей.

Сопротивление сосудов. Факторы, влияющие на его величину. Общее периферическое сопротивление.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.

Любой из таких сосудов можно сравнить с трубкой, сопротивление которой определяется по формуле: R = 8lν / πr 4 , то есть сопротивление сосуда прямо пропорционально его длине и вязкости, протекающей в нём жидкости (крови) и обратно пропорционально радиусу трубки (π - отношение длины окружности к её диаметру).

Отсюда следует, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого самый маленький.

Однако огромное количество капилляров включено в ток крови параллельно, поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Пульсирующий ток крови, создаваемый работой сердца, выравнивается в кровеносных сосудах, благодаря их эластичности.

Поэтому ток крови носит непрерывный характер.

Для выравнивания пульсирующего тока крови большое значение имеют упругие свойства аорты и крупных артерий.

Во время систолы часть кинетической энергии, сообщённой сердцем крови, переходит в кинетическую энергию движущейся крови.

Другая её часть переходит в потенциальную энергию растянутой стенки аорты.

Потенциальная энергия, накопленная стенкой сосуда во время систолы, переходит при его спадении в кинетическую энергию движущейся крови во время диастолы, создавая непрерывный кровоток.

Давление крови в разных отделах сосудистого русла.

Кровяное давление – это давление крови на стенки сосудов.

Венозное давление – это давление крови в венах.

На величину кровяного давления влияют:

1) количество крови, поступающей в единицу времени в сосудистую систему;

2) интенсивность оттока крови на периферию;

3) ёмкость артериального отрезка сосудистого русла;

4) упругое сопротивление стенок сосудистого русла;

5) скорость поступления крови в период систолы;

6) вязкость крови;

7) соотношение времени систолы и диастолы;

8) частота сердечных сокращений.

Таким образом, величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте, куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.).

По мере удаления от сердца давление падает, так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление, тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда.

Так, в крупных и средних артериях давление падает всего на 10 %, достигая 90 мм рт. ст.; в артериолах оно составляет 55 мм рт. ст., а в капиллярах – падает уже на 85 %, достигая 25 мм рт. ст.

В венозном отделе сосудистой системы давление самое низкое.

В венулах оно равно 12 мм рт. ст., в венах – 5 мм рт. ст. и в полой вене – 3 мм рт. ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше, чем в большом круге. Поэтому давление в лёгочном стволе в 5-6 раз ниже, чем в аорте и составляет 20-30 мм рт. ст. Однако и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

Артериальное давление. Факторы, влияющие на его величину. Основные показатели артериального давления: систолическое, диастолическое, пульсовое и среднее гемодинамическое давление. Методы регистрации артериального давления.

Артериальное давление – это давление крови в артериях.

Давление в артериях не является постоянным – оно непрерывно колеблется относительно некоторого среднего уровня.

Период этих колебаний различный и зависит от нескольких факторов.

1. Сокращения сердца, которые определяют самые частые волны, или волны первого порядка. Во время систолы желудочков приток крови в аорту и лёгочную артерию больше оттока, и давление в них повышается.

В аорте оно составляет 110-125 мм рт. ст., а в крупных артериях конечностей 105-120 мм рт. ст.

Подъём давления в артериях в результате систолы характеризует систолическое или максимальное давлениеи отражает сердечный компонент артериального давления.

Во время диастолы поступление крови из желудочков в артерии прекращается и происходит только отток крови на периферию, растяжение стенок уменьшается и давление снижается до 60-80 мм рт. ст.

Спад давления во время диастолы характеризует диастолическое или минимальное давлениеи отражает сосудистый компонент артериального давления.

Для комплексной оценки, как сердечного, так и сосудистого компонентов артериального давления используют показатель пульсового давления.

Пульсовое давление – это разность между систолическим и диастолическим давлением, которое в среднем составляет 35-50 мм рт. ст.

Более постоянную величину в одной и той же артерии представляет среднее давление, которое выражает энергию непрерывного движения крови.

Так как продолжительность диастолического понижения давления больше, чем его систолического повышения, то среднее давление ближе к величине диастолического давления и вычисляется по формуле:

СГД = ДД + ПД/3.

У здоровых людей оно составляет 80-95 мм рт. ст. и его изменение является одним из ранних признаков нарушения кровообращения.

2. Фазы дыхательного цикла, которые определяют волны второго порядка. Эти колебания менее частые, они охватывают несколько сердечных циклов и совпадают с дыхательными движениями (дыхательные волны): вдох сопровождается понижением кровяного давления, выдох – повышением.

3. Тонус сосудодвигательных центров, определяющий волны третьего порядка.

Это ещё более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн.

Колебания вызываются периодическим изменением тонуса сосудодвигательных центров, что чаще наблюдается при недостаточном снабжении мозга кислородом (при пониженном атмосферном давлении, после кровопотери, при отравлениях некоторыми ядами).

Инвазивный (прямой) метод измерения АД применяется только в стационарных условиях при хирургических вмешательствах, когда введение в артерию пациента зонда с датчиком давления необходимо для непрерывного контроля уровня давления.

Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют наблюдения из-за опасности развития тяжёлого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекций.

Большее распространение в клинической практике получили неинвазивные (непрямые)методы определения АД. В зависимости от принципа, положенного в основу их работы, различают:

1) пальпаторный метод;

2) аускультативный метод;

3) осциллометрический метод.

Пальпаторный метод предполагает постепенную компрессию или декомпрессию конечности в области артерии и пальпацию её ниже места сдавливания. Систолическое АД определяется, при давлении в манжете, при котором появляется пульс, диастолическое – по моментам, когда наполнение пульса заметно снижается, либо возникает кажущееся ускорение пульса (pulsus celer).

Аускультативный метод измерения АД был предложен в 1905 г. Н.С. Коротковым. Систолическое АД определяют при декомпрессии манжеты в момент появления первой фазы тонов Короткова, а диастолическое АД – по моменту их исчезновения.

Осциллометрический метод. Снижение давления в окклюзионной манжете осуществляется ступенчато, и на каждой ступени анализируется амплитуда микропульсаций давления в манжете, возникающая при передаче на неё пульсации артерий. Наиболее резкое увеличение амплитуды пульсации соответствует систолическому АД, максимальные пульсации – среднему давлению, а резкое ослабление пульсаций – диастолическому.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...