Биологические ритмы в природе. Биологические ритмы человека

Биологические ритмы представляют собой периоди­чески повторяющиеся изменения интенсивности и харак­тера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмеча­ются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наслед­ственно закреплены и являются следствием естественно­го отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые.

Примерами биологических ритмов являются: ритмич­ность в делении клеток, синтезе ДНК и РНК, секреции гормонов, суточное движение листьев и лепестков в сторо­ну Солнца, осенние листопады, сезонное одревеснение зи­мующих побегов, сезонные миграции птиц и млекопитаю­щих и т.д.

Биологические ритмы делят на экзогенные и эндоген­ные. Экзогенные (внешние) ритмы возникают как реак­ция на периодические изменения среды (смену дня и ночи, сезонов, солнечной активности). Эндогенные (внутрен­ние) ритмы генерируются самим организмом. Ритмичность имеют процессы синтеза ДНК, РНК и белков, работа фер­ментов, деление клеток, биение сердца, дыхание и т.д. Внешние воздействия могут сдвигать фазы этих ритмов и менять их амплитуду.

Среди эндогенных различают физиологические и эколо­гические ритмы. Физиологические ритмы (биение серд­ца, дыхание, работа желез внутренней секреции и др.) поддерживают непрерывную жизнедеятельность организ­мов. Экологические ритмы (суточные, годичные, прилив­ные, лунные и др.) возникли как приспособление живых существ к периодическим изменениям среды. Физиологические ритмы существенно варьируют в зависимости от состояния организма, экологические - более стабильны и соответствуют внешним ритмам.

Экологические ритмы способны подстраиваться к измениям цикличности внешних условий, но лишь в опреденных пределах. Такая подстройка возможна благодаря тому, что в течение каждого периода имеются определенные интервалы времени (время потенциальной готовности), когда организм готов к восприятию сигнала извне, например яркого света или темноты. Если сигнал несколько запаздывает или приходит преждевременно, соответственно сдвигается фаза ритма. В экспериментальных условиях при постоянном освещении и температуре этот же механизм обеспечивает регулярный сдвиг фазы в течение каждого периода. Поэтому период ритма в этих условиях обычно не соответствует природному циклу и постепенно расходится по фазе с местным временем. Эндогенный компонент ритма дает организму возможность ориентироваться во времени и заранее готовиться к предстоящим изменениям среды. Это так называемые биологические часы организма. Многим живым организмам свойственны циркадные и цирканные ритмы. Циркадные (околосуточные) ритмы - повторяющиеся изменения интенсивности и характера биологических процессов и явлений с периодом от 20 до 28 ч. Цирканные (окологодичные) ритмы - повторяющиеся изменения интенсивности и характера биологических процессов и явлений с пе­риодом от 10 до 13 месяцев. Циркадные и цирканные рит­мы регистрируются в экспериментальных условиях при постоянной температуре, освещенности и т.д.

Ритмический характер имеют физическое и психологи­ческое состояния человека. Нарушение установившихся ритмов жизнедеятельности может снижать работоспособ­ность, оказывать неблагоприятное воздействие на здоровье человека. Изучение биоритмов имеет большое значение при организации труда и отдыха человека, особенно в экстремальных условиях (полярных условиях, в космосе, при быстром перемещении в др. часовые пояса и т. д.).

Несовпадение во времени между природными и антропогенными явлениями часто приводит к разрушению природных систем. Например, при проведении слишком частых рубок леса.

Ритмические изменения физиологических функций, присущие живым организмам. Ритмическая деятельность присуща любой сложной системе, состоящейиз многих взаимодействующих элементов. Последние также обладают ритмичностью, при этом процессы всех элементов, составляющих систему, согласованы между собой во времени - возникает определенный ритм чередования процессов и изменение (повышение или понижение) интенсивности каждого из них.

В результате создается определенная синхронизация различных процессов в системе. В свою очередь, данная система взаимодействует с системой высшего порядка, которой также присущ свой биоритм.

Различают несколько групп ритмических процессов в организме:

  • ритмы высокой частоты с периодом от долей секунд до 30 мин (электрические явления в организме, дыхание, пульс и др.);
  • ритм средней частоты с периодом от 30 минут до 6 дней (изменения обменных процессов, биологически активных веществ крови и другие процессы, связанные со сменой деятельности и покоя, сна и бодрствования);
  • низкочастотные ритмы с периодом колебания от 6 дней до 1 года (овариально-менструальный цикл, недельный, лунный, годичный ритм экскреции гормонов и др.).

В курортологии важное значение имеют сезонные или околосуточные - циркадные ритмы (от лат. cirka - около и dies - день). Их необходимо учитывать при направлении больных и отдыхающих на курорт в контрастные климатические регионы, при назначении лечебных процедур.

Для приспособления к новым условиям среды при перемещении необходимы изменение биоритмов , развитие хронофизиологической адаптации. Этими вопросами занимается биоритмология перемещения - наука, объективно изучающая и количественно оценивающая механизмы биологической временной структуры, включая ритмические проявления жизни, реакцию биоритмов на изменение географического положения организма (Матюхин В. А., 2000).

Сезонные ритмы определяются климатом данного региона. Размах годовых колебаний освещенности зависит от географической широты местности, а также от ряда других географических факторов, связанных с протеканием образующих процессов (атмосферная циркуляция и др.). Перемещаясь с севера на юг или с юга на север, человек попадает в новые условия среды, отличающиеся от прежних характером освещенности и климатопогодными особенностями. Наиболее заметно нарушение различных процессов при переходе с юга на север зимой или летом, т.е. в условия полярной ночи или полярного дня. Сроки сезонов в разных географических широтах не совпадают: когда на юге уже наступает весна, на севере еще бушуют снежные метели; когда человек попадает в другой сезон, нарушается закрепившийся в процессе развития сезонный ритм обменных процессов и физиологических функций. Например, в зимний период стимулируется симпатико-адреналовая система, повышается легочная вентиляция, основной обмен, изменяется его характер в виде усиления липидного обмена и т. д. В летнее время изменения часто носят противоположный характер (Воронин Н. М., 1986; Гаврилов Н. Н., Чкотуа М. Э., 1999).

Суточные ритмы определяются сменой дня и ночи, т. е. характером освещенности. Они изменяются при переезде с севера на юг или с юга на север (особенно зимой и летом), и с запада на восток или с востока на запад. В последнем случае быстрое перемещение (перелет) всегда вызывает более иную реакцию, чем в первом, с севера на юг.

В каждом биоритме различают: период - время, в течение которого изменяющаяся величина совершает полный цикл - число периодов в единицу времени; амплитуду - разность между наибольшим и наименьшим значениями изменяющейся величины (размах); фазу - положение определенной точки кривой по отношению к оси времени (акрофаза - время появления наибольшего значения показателя). При нарушении биоритмов все указанные показатели изменяются.

При перестройке суточной ритмики человека возможно развитие патологических состояний - десинхронозов . Они возникают вследствие значительного нарушения биоритма, вызванного рассогласованием между физиологическими ритмами организма и внешними датчиками времени.

Клинически десинхронозы проявляются утомлением, разбитостью, понижением работоспособности, нарушением сна и бодрствования, деятельности пищеварительного тракта и т. д. При значительных нарушениях суточного стереотипа может развиться неврастенический синдром.

Выраженность изменений биоритмов , скорость их приспособления к новым условиям зависят от ряда факторов. При прочих равных условиях при перелетах с запада на восток, когда биоритмы должны как бы «догонять» местное время, адаптационный период более длительный, чем при перелетах с востока на запад, когда биоритмы человека как бы «опережают события» и должны «ожидать», когда их «должны ожидать», когда их «догонит» местное время (Ка-тинас Г. С, Моисеева Н. И., 1999).

При этом важное значение имеет место постоянного жительства человека, характер установившегося биоритма. В этих случаях при возвращении в привычные условия биоритмы перестраиваются быстрее, чем при переходе в новые условия, вне зависимости от направления перемещения. Так, у жителей Сибири при перелете в Крым новый суточный стереотип устанавливается медленно, носит «рыхлый» характер, а после перелета обратно он быстро разрушается и восстанавливается прежний ритм. Немаловажную роль играют расстояние, на которое перемещается человек, скорость перемещения. По мнению ряда авторов, при пересечении 2-3 часовых поясов десинхронозы не развиваются (Евуихевич А. В., 1997), другие отмечали развитие десинхронозов при сдвиге на 2 часа (Степанова С. И., 1995). Быстрое перемещение оказывает более выраженное влияние на биоритмы, чем медленное.

Изменение биоритмов является сильной, стрессовой нагрузкой не только для больных, у которых приспособительные механизмы обычно ослаблены, но и для здоровых. В связи с этим необходимо принимать меры для ускорения хронофизиологической адаптации с учетом индивидуальных особенностей биоритмов человека.

По положению максимума активности различают ритмы с утренней («жаворонки ») и вечерней («совы ») временной организацией.

«Совы» несколько легче, чем «жаворонки», адаптируются к задержке датчика времени перелет на запад), так как в этом случае сутки удлиняются и требуется активность в период, соответствующий вечерним часам по местному времени.

«Жаворонки» несколько легче, чем «совы», адаптируются к опережению датчика времени (перелет на восток). При этом немаловажное значение имеют психофизиологические особенности человека. Лица с преобладанием тонуса парасимпатической вегетативной нервной системы, имеющие устойчивые ритмы, адаптируются хуже, чем лица с преобладанием тонуса симпатической части, пожилые люди - тяжелее, чем молодые (Матюхин В.А., 2001).

Хронофизиологическую адаптацию можно ускорить. Так, для более быстрого засыпания рекомендуются теплые ванны, успокаивающие упражнения и самовнушение, снотворные, не вызывающие последействия и не нарушающие структуру сна (эуноктин, квиадон). Для сохранения бодрости рекомендуют прогулки и физические нагрузки. Умеренные физические нагрузки способствуют нормализации и синхронизации суточных ритмов, тогда как гипокинезия приводит к их уплощению и сдвигу на более поздние часы.

Рекомендуются различные адаптогены (женьшень, элеутерококк, золотой корень и др.). Для перелета через 2-4 часовых пояса рекомендуются утренние и дневные часы, через 6-8 часовых поясов - вечернее время..

На протяжении всего периода хронофизиологической адаптации необходим строгий медицинский контроль.

Учитывать биологические ритмы необходимо и в период лечения. Хронофармакология как раздел хронопатологии и фармакологии исследует эффект влияния лекарственных веществ в зависимости от времени и применения, а также из временной (ритмической) структуры организма под влиянием соответствующих воздействий. Здесь также уместно говорить о хронотерапии , т. е. о таком применении лечебных мероприятий, которое обеспечивает наибольший лечебный эффект благодаря учету биоритмов.

Медицинская реабилитация. / Под ред. В. М. Боголюбова. Книга I.
- М.: Бином, 2010. Глава 4. Природные физические факторы, используемые для реабилитации. - 4.1. Климатические факторы . - Физиологические механизмы влияния климата на организм . - С.
58-60.

Биологические ритмы функций организма

Согласно наиболее распространенной гипотезе, живой организм является независимой колебательной системой, которая характеризуется целым набором внутренне связанных ритмов. Они позволяют организму успешно приспособиться к циклическим изменениям окружающей среды. Ученые полагают, что в многовековой борьбе за существование выживали лишь те организмы, которые могли не только уловить изменения в природных условиях, но и настроить ритмический аппарат в такт внешним колебаниям, что означало наилучшее приспособление к окружающей среде. Например, осенью многие птицы улетают на юг, а некоторые животные впадают в спячку.

Зимняя спячка помогает животным пережить неблагоприятный период. Они точно определяют время для спячки.

Ученые убедительно доказали существование внутренней, природной обусловленности основных биологических ритмов в организме человека. Так, у однояйцевых близнецов эти ритмы сходны. Известен такой случай: два брата были разлучены вскоре после рождения и воспитывались в разных семьях, не зная друг друга. Однако оба проявляли склонность к одним и тем же занятиям, обладали одинаковыми вкусами и выбрали одну и ту же специальность. Но самое поразительное заключалось в том, что братья-близнецы росли и развивались по одной генетической программе, жили по одним биологическим часам. Подобных примеров можно привести достаточно много. Однако в науке на природу биологических ритмов существует и противоположная точка зрения.

«Система, насквозь пронизанная ритмами» – так образно назвал человека один из основоположников отечественной школы исследователей биологических ритмов Б. С. Алякринский. Основной дирижер этой системы – суточный ритм . В этом ритме изменяются все функции организма: в настоящее время наука располагает достоверными сведениями о суточной периодичности более 400 функций и процессов. В сложном ансамбле суточных ритмов одним из главных факторов ученые считают ритм температуры тела: ночью ее показатели самые низкие, утром температура повышается и достигает максимума к 18 часам. Такой ритм на протяжении долгих лет эволюции позволял подстраивать активность человеческого организма к периодическим температурным колебаниям окружающей среды.

Неизвестная и не признанная ранее хронобиология, хотя и утверждавшая свое старинное происхождение от самого Гиппократа, была принята как равноправная среди других наук весной 1960 года в американском городе Колд-Спринг-Харборе на международном симпозиуме, посвященном исследованию ритмов в живых системах. В настоящее время научные общества хронобиологов существуют во всех развитых странах мира. Их деятельность координируют европейское и международное общества, причем последнее издает специальный журнал и каждые два года собирает ученых на свои съезды.

Давно уже человек не испытывает таких резких колебаний окружающей среды: одежда и жилище обеспечили ему искусственную температурную среду, но температура тела варьирует, как и много веков назад. И эти колебания имеют для организма не меньшее значение, ведь температура определяет скорость протекания биохимических реакций, которые являются материальной основой всех проявлений жизнедеятельности человека. Днем температура выше – увеличивается активность биохимических реакций и более интенсивно происходит обмен веществ в организме; следовательно, выше и уровень бодрствования. К вечеру температура тела понижается, и человеку легче заснуть.

Ритм температуры тела повторяют показатели многих систем организма: это прежде всего пульс, артериальное давление, дыхание и др.

В синхронизации ритмов природа достигла совершенства. Так, к моменту пробуждения человека в крови накапливаются биологически активные вещества, адреналин, гормоны коры надпочечников и др. Все это подготавливает человека к дневному активному бодрствованию: повышается артериальное давление, частота пульса, возрастают мышечная сила, работоспособность и выносливость.

Пример целесообразности существования суточного ритма демонстрируют почки. В основном структурном образовании почек (клубочки) происходит фильтрация крови, в результате чего образуется «первичная моча». Однако она содержит еще множество необходимых для организма веществ, поэтому в другом отделе почек (канальцах) эти вещества поступают обратно в кровь. В ближайшем к клубочкам отделе канальцев (так называемом проксимальном) всасываются белки, фосфор, аминокислоты и другие соединения. В дальнем (или дистальном) отделе канальцев всасывается вода, и тем самым уменьшается объем мочи. В результате хронобиологических исследований установлено, что проксимальный отдел канальцев почек наиболее активен в утренние и дневные часы, поэтому в это время выведение белка, фосфора и других веществ минимально. Дистальный же отдел канальцев наиболее интенсивно функционирует в ночные и ранние утренние часы: вода всасывается, и объем мочи в ночное время уменьшается. Одновременно с этим большее выведение фосфатов облегчает освобождение организма от ненужных кислот.

В реализации ритмических колебаний функций организма особая роль принадлежит эндокринной системе. Свет, падая на сетчатку глаза, через зрительные нервы передает возбуждение в один из важнейших отделов головного мозга – гипоталамус. Гипоталамус – это высший вегетативный центр, осуществляющий сложную координацию функций внутренних органов и систем в целостную деятельность организма. Он связан с гипофизом – основным регулятором работы желез внутренней секреции. Итак, гипоталамус – гипофиз – железы внутренней секреции – «рабочие» органы. В результате работы этой цепочки меняется гормональный фон, а вместе с ним и деятельность физиологических систем. Стероидные гормоны оказывают непосредственное влияние и на состояние нервных клеток, меняя уровень их возбудимости, поэтому параллельно с колебаниями гормонального уровня меняется настроение человека. Это определяет высокий уровень функций организма днем и низкий – ночью.

Во время одной из пересадок сердца, сделанной человеку, в сердце остался функционировать пейсмекер – тот участок сердечной мышцы, который задает ритм всему сердцу. Его суточный ритм несколько отличался от суточного ритма реципиента, т. е. больного, получившего новое сердце. И вот в английском журнале «Nature» Крафт, Александер, Фостер, Личмен и Линскомб описали этот удивительный случай. У пациента суточный ритм сердца, или частоты пульса, на 135 минут отличался по фазе от суточного ритма температуры. Здесь следует повторить, что наибольшая частота пульса практически совпадает с максимальной температурой тела. Не случайно, если нет термометра, врач для определения температуры подсчитывает пульс или число дыханий: при ее повышении на 1 °C происходит учащение сердечных сокращений примерно на 10–15 ударов в минуту, а частота пульса соотносится с частотой дыхания как 1: 4.

Ученые НИИ экспериментальной медицины РАМН пришли к выводу, что в организме человека пульсирует не только сердце, но и… кишечник, когда он выполняет свою эвакуационную функцию, т. е. очищается. Признаком заболевания следует считать не только редкий (1–2 раза в неделю) стул, но и нарушение суточного ритма. Обратив внимание на это отклонение от нормы, можно предупредить развитие тяжелых недугов, которые возникают вследствие запоров. Известно, что ритм обмена веществ сохраняется в так называемой тканевой культуре, т. е. при выращивании тканей «в пробирке».

Исследователи считают, что для человека преобладающее значение имеют социальные факторы: ритм сна и бодрствования, режим труда и отдыха, работа общественных учреждений, транспорта и т. п. Их условились называть «социальными датчиками времени» в отличие от «природных датчиков времени» (свет, температура окружающей среды, ионный состав воздуха, напряженность электрического и магнитного полей Земли и т. п.).

Социальная природа человека и созданная им искусственная окружающая среда способствуют тому, что в обычном состоянии он не чувствует выраженных сезонных колебаний функционального состояния. Тем не менее они существуют и отчетливо проявляются – прежде всего при заболеваниях. Учет этих колебаний при профилактике, диагностике и лечении заболеваний составляет основу практической хронобиологии.

Из книги Путь в страну здоровья автора Юрий Авксентьевич Мерзляков

БИОЛОГИЧЕСКИЕ РИТМЫ И НАША ЖИЗНЬ К. Станиславский: «Основа всей жизни человека – ритм, данный каждому его природой…» Уже несколько десятилетий изучаются биологические ритмы человеческой жизни. Выясняются удивительные вещи: все функции нашего организма проходят под

Из книги Как избавиться от бессонницы автора Людмила Васильевна Бережкова

Глава 1. Что известно о нормальном сне. сон и биологические ритмы Сон имеет прямое отношение к биологическим ритмам человека. Что же они собой представляют?Установлено, что в физическом мире, где существуют все живые организмы, и в том числе человек, происходят

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Закон свертывания и тренируемости функций человеческого организма Жизнь от зачатия до рождения После оплодотворения яйцеклетка переходит в активное состояние – в ней появляется центр формообразования и начинается деление. Зародышевая стадия продолжается от

Из книги Лишний вес. Новая диетология автора Марк Яковлевич Жолондз

Глава 17. Прогрессирующее ожирение со снижением половых функций организма Сравнительно редкий вариант ожирения, причем ожирения прогрессирующего, связан со снижением половых функций организма. Для правильного понимания этого вопроса необходимо познакомиться с

Из книги Удовольствие: Творческий подход к жизни автора Александр Лоуэн

Ритмы естественных функций Согласно филогенетике, жизнь зарождалась в море, и большинству людей возвращение к морскому побережью доставляет удовольствие и приносит много приятных моментов. Находясь в непосредственной близости к океану, мы чувствуем свободу и единение

Из книги Метеочувствительность и здоровье автора Светлана Валерьевна Дубровская

Биологические ритмы организма человека и здоровье С момента появления на свет человек функционирует в трех биологических ритмах – физическом, эмоциональном и интеллектуальном. Это обстоятельство не зависит от места его проживания, национальности, расы и других

Из книги Тайны нашего мозга автора Сандра Амодт

ГЛАВА 4. Удивительные ритмы: биологические часы и нарушение суточного ритма Помните, когда вы были совсем ребенком, дядя Ларри поспорил с вами, что вы не сможете идти и синхронно с шагами жевать жвачку? Сейчас это пари может показаться совсем смешным, но тогда, получив свою

Из книги Аэробика для лица автора Мария Борисовна Кановская

Ритмы нашего организма и уход за кожей Известный хронобиолог доктор Франц Хальберг из американского университета штата Миннесота утверждает: «У человеческого организма существует свое расписание жизни». Понятно, что эффективность ухода за кожей резко возрастет, если

автора

Глава 4 Практика восстановления функций организма

Из книги Жизнь после инсульта. Реальный опыт восстановления после «удара», доступный каждому! автора Сергей Викентьевич Кузнецов

Глава 4 Практика восстановления функций организма

Из книги Экологичное питание: натуральное, природное, живое! автора Любава Живая

Из книги Азбука экологичного питания автора Любава Живая

Суточные ритмы организма Белковые продукты лучше всего употреблять в середине дня, когда активность пищеварительных ферментов максимальная. Фрукты желательно съесть утром или в полдник, соки пить с утра.Не забывайте о суточных ритмах организма. Организм тоже должен

Из книги Лучшее для здоровья от Брэгга до Болотова. Большой справочник современного оздоровления автора Андрей Моховой

Восстановление естественных функций организма После голодания людям уже не нужно такое количество пищи, которое требовалось прежде, потому что она гораздо лучше усваивается. Меньшее количество еды снимает тяжелый груз с внутренних органов и кровеносной системы. Брэгг

Из книги Аэробика для лица: омолаживающие упражнения автора Мария Борисовна Кановская

Ритмы нашего организма и уход за кожей С 23 до 4 часов. Самое подходящее время для сна, которое вознаградит вас красотой и здоровьем. Как раз в эти часы обновляется наибольшее число клеток. Если у человека глубокий сон, то клетки способны делиться в восемь

Из книги Биоритмы, или Как стать здоровым автора Валерий Анатольевич Доскин

Космические ритмы настраивают биологические часы Американский профессор биологии Фрэнк А. Браун считает, что ритмические колебания, наблюдаемые в живых организмах, есть не что иное, как результат непрерывного воздействия космических и геофизических факторов

Из книги Мозг против старения автора Геннадий Михайлович Кибардин

Глава 1 Биологические ритмы Поиски истины стоит начать с малого. Ответ невозможно найти только на одной странице. Постарайтесь не спеша прочесть всю книгу от «корочки до корочки». Зерна истины рассыпаны повсюду. Где-то их больше, а где-то меньше. Только полностью изучив

Любое биологическое явление, любая физиологическая реакция имеют периодическую природу, так как у живых организмов, в течение многих миллионов лет живущих в условиях ритмических изменений геофизических параметров среды, выработались и способы приспособления к ним.

Ритмичность - фундаментальная характеристика функционирования живого организма - прямо связана с механизмами обратной связи, саморегуляции и адаптации, а согласование ритмических циклов достигается благодаря важной особенности колебательных процессов - стремлению к синхронизации. Основное назначение ритмичности заключается в поддержании гомеостаза организма при изменении факторов внешней среды. При этом гомеостаз понимается не как статичная устойчивость внутренней среды, а как динамический ритмический процесс - ритмостаз, или гомеокинез.

Собственные ритмы организма не автономны, а связаны с ритмическими процессами внешней среды: сменой дня и ночи, годовыми сезонами и т.д.

Внешние задаватели времени

В терминологии, характеризующей внешние факторы и порождаемые ими внутренние колебания, нет единообразия. Например, существуют названия «внешние и внутренние датчики времени», «задаватели времени», «внутренние биологические часы», «генераторы внутренних колебаний» - «внутренние осцилляторы».

Биологический ритм - периодическое повторение некоторого процесса в биологической системе через более или менее регулярные промежутки времени. Биоритм - не просто повторяющийся, а и самоподдерживающийся и самовоспроизводящийся процесс. Биологические ритмы характеризуются периодом, частотой, фазой и амплитудой колебаний.

Период - время между двумя одноимёнными точками в волнообразно изменяющемся процессе, т.е. продолжительность одного цикла до первого повтора.

Частота. Ритмы также могут быть охарактеризованы частотой - числом циклов, совершающихся в единицу времени. Частота ритмов может определяться частотой периодических процессов, протекающих во внешней среде.

Амплитуда - наибольшее отклонение исследуемого показателя в какую-либо сторону от средней. Амплитуда иногда выражается через мезор, т.е. в процентах от средней величины всех её значений, полученных при регистрации ритма. Удвоенная амплитуда равна размаху колебаний.

Фаза. Термин «фаза» относится к любой отдельно выделенной части цикла. Чаще всего этим термином пользуются, описывая связь одного ритма с другим. Например, пик активности у одних животных совпадает по фазе с тёмным периодом цикла свет-темнота, у других - со светлым периодом. Если два выделенных отрезка времени не совпадают, то вводится термин разность по фазе, выраженная в соответствующих долях периода. Опережение или отставание по фазе означает, что событие произошло раньше или позже ожидаемого срока. Фаза выражается в градусах. Например, если максимум одного ритма соответствует минимуму другого, то разность по фазе между ними составляет 180?.

Акрофаза - точка времени в периоде, когда отмечается максимальное значение исследуемого показателя. При регистрации акрофазы (батифазы) в течение нескольких циклов отмечено, что время её наступления варьирует в определённых пределах, и это время выделено как зона блуждания фазы. Величина зоны блуждания фазы, вероятно, связана с периодом (частотой) ритма. На частоту и фазу биоритмов влияют не только частота и фаза внешнего колебательного процесса, но и его уровень.

Существует циркадианное правило: для дневных организмов характерна положительная корреляция между освещённостью и частотой циркадианного ритма, а для ночных - отрицательная корреляция.

Классификации биоритмов

Классификация ритмов зависит от выбранных критериев: по их собственным характеристикам, по функциям, которые они выполня- ют, роду процесса, порождающего колебания, а также по биосистеме, в которой наблюдается цикличность.

Спектр возможных ритмов жизни охватывает широкий диапазон масштабов времени - от волновых свойств элементарных частиц

(микроритмов) до глобальных циклов биосферы (макро- и мегаритмов). Пределы их длительности - от многих лет до миллисекунд, группировка иерархическая, но границы между группами в боль- шинстве случаев условны. Верхнюю границу среднечастотных ритмов устанавливают на отметке от 28 ч до 3 с. Периоды от 28 ч до 7 суток либо относят к единой группе мезоритмов, либо часть их (до 3 суток) включают в среднечастотные, а от 4 суток - в низкочастотные.

Ритмы подразделяют по следующим критериям (Ю. Ашофф,

1984):

По собственным характеристикам (например, по периоду);

По биологической системе (например, популяция);

По роду процесса, порождающего ритм;

По функции, которую ритм выполняет.

Предложена классификация, основанная на структурно-функциональных уровнях организации жизни:

Ритмы молекулярного уровня с периодом секундно-минутного диапазона;

Клеточные - от околочасовых до окологодовых; организменные - от околосуточных до многолетних;

Популяционно-видовые - от окологодовых до ритмов длительностью десятки, сотни и тысячи лет;

Биогеоценотические - от сотен тысяч до миллионов лет;

Биосферные ритмы - с периодом сотни миллионов лет.

Наиболее популярна классификация биологических ритмов F. Halberg и A. Reinberg (1967) (рис. 4.1).

ОТДЕЛЬНЫЕ РИТМЫ

В живой природе наиболее отчётливо выражены ритмы с периодом около 24 ч - циркадианные (лат. circa - около, dies - день). Позднее префикс «circa» стали применять для остальных эндогенных ритмов,

Рис. 4-1. Классификация биоритмов (F. Halberg, A. Reinberg)

отвечающих циклам внешней среды: околоприливные, окололунные, окологодовые (circatidal, circalunar, circannual). Ритмы с периодом более коротким, чем циркадианные, определены как ультрадианные, с более длинным - инфрадианные. Среди инфрадианных ритмов выделяют циркасептидианные с периодом (7?3 суток), циркавигентидианные (21 ?3 суток), циркатригентидианные (30?5 суток) и цирканнуальные (1 год?2 мес.).

Ультрадианная ритмика

Если биологические ритмы этого диапазона расположить в порядке уменьшения их частоты, то получается ряд от многогерцовых до многочасовых колебаний. Наиболее высокой частотой (60-100 Гц) отличаются нервные импульсы, затем следуют колебания ЭЭГ с частотой от 0,5 до 70 Гц.

Декасекундные ритмы были зарегистрированы в биопотенциалах мозга. К этому диапазону относятся и колебания пульса, дыхания, перистальтики кишечника. Минутные ритмы характеризуют психолого-эмоциональное состояние человека: биоэлектрическая активность мышц, ЧСС и дыхания, амплитуда и частота движений изменяются в среднем через каждые 55 с.

Декаминутные (90 мин) ритмы были открыты в мозговых механизмах ночного сна, которые были названы медленно- и быстроволновой (или парадоксальной) фазами, при этом именно на вторую фазу приходятся сновидения, непроизвольные движения глаз. Такой же ритм в последующем был обнаружен в сверхмедленных колебаниях биопотенциалов бодрствующего мозга, связанных с временной динамикой внимания, бдительности оператора.

Околочасовые ритмы обнаружены не только на системном, но и на нижележащих иерархических уровнях. Этот ритм имеют многие происходящие на клеточном уровне явления: синтез белка, изменение клеточных размеров и массы, ферментативной активности, проницаемости клеточных мембран, секреции, электрической активности.

Циркадианные колебания

Циркадианная система - та основа, благодаря которой проявляются интегративная деятельность и регулирующая роль нейроэндокринной системы, осуществляющей точное и тонкое приспособление организма к постоянно меняющимся условиям окружающей среды.

Циркадианная периодичность обнаружена в интегральных показателях жизнедеятельности.

Работоспособность в ночное время снижается, и время выполнения задания, как при свете, так и в темноте ночью более продолжительное, чем днём в тех же условиях.

Тренировка в ранние утренние часы даёт несколько меньший эффект, чем в середине дня.

Работоспособность учащихся наиболее высока в предобеденные часы, к 14 ч отмечается значительное её снижение, второй её подъём приходится на 16-17 ч, затем наблюдается новый спад.

Суточная периодичность характерна не только для ВНД, но и для нижележащих иерархических систем организма.

Зарегистрированы 24-часовые изменения церебральной и кардиальной гемодинамики, ортостатической устойчивости.

Выявлен суточный ритм сопряжённости фаз сердечного цикла и дыхания.

В литературе имеются данные о ночном снижении лёгочной вентиляции и потребления кислорода, падении минутного объёма дыхания (МОД) у лиц молодого, зрелого и среднего возраста.

Циркадианная ритмичность присуща и функции системы пищеварения, в частности, слюноотделения, секреторной деятельности поджелудочной железы, синтетической функции печени, моторики желудка. Установлено, что наибольшая скорость секреции кислоты с желудочным соком наблюдается вечером, наименьшая - утром.

На уровне биохимической индивидуальности открыта суточная цикличность для некоторых веществ.

Концентрация макро- и микроэлементов: фосфора, цинка, марганца, натрия, калия, рубидия, цезия и хлора в крови чело- века, а также железа в сыворотке крови.

Суммарное содержание аминокислот и нейромедиаторов.

Основной обмен и связанный с ним уровень тиреотропного гормона гипофиза и гормонов щитовидной железы.

Система половых гормонов: тестостерон, андростерон, фолликулостимулирующий гормон, пролактин.

Гормоны нейроэндокринной системы регуляции стресса - АКТГ, кортизол, 17-оксикортикостероиды, что сопровожда-

ется цикличными изменениями уровня глюкозы и инсулина. Подобная ритмичность известна и для мелатонина.

Инфрадианные ритмы

Биоритмологами описаны не только суточные, но и многодневные (околонедельные, околомесячные) ритмы, охватывающие все иерар- хические уровни организма.

В литературе имеется анализ тонкого спектра колебаний (с периодом 3, 6, 9-10, 15-18, 23-24 и 28-32 дней) частоты сердечных сокращений, АД, мышечной силы.

Ритм 5-7-дневной длительности зафиксирован в динамике интенсивности энергетического обмена, массы и температуры тела человека.

Хорошо известны флюктуации результатов клинических анализов содержания в крови эритроцитов и лейкоцитов. У мужчин количество нейтрофилов в венозной крови изменяется с периодом от 14 до 23 дней.

Среди ритмов этого диапазона наиболее изучены месячные (лунные) циклы. Установлено, что в полнолуние количество случаев послеоперационных кровотечений на 82% больше, чем в другое время, в дни лунных фаз увеличивается частота возникновения инфаркта миокарда.

Цирканнуальные ритмы

В организме животных и человека обнаружены колебания различных физиологических процессов, период которых равен одному году - окологодовые (цирканнуальные), или сезонные ритмы. Цирканнуальная периодичность определена для возбудимости нервной системы, показателей гемодинамики, теплопродукции, реакции на острую холодовую нагрузку, содержание половых и других гормонов, нейромедиаторов, рост детей и др.

ХАРАКТЕРИСТИКА БИОРИТМОВ

При изучении периодических явлений в живых системах важно выяснить, отражает ли ритм, наблюдаемый в биологической системе, реакцию на внешнее по отношению к этой системе периодическое воздействие (экзогенный ритм, навязываемый задавателем ритма) или же ритм порождается внутри самой системы (эндогенный ритм), наконец, имеется ли сочетание экзогенного ритма и эндогенного генератора ритма.

Задаватели ритмов и функции

Внешние задаватели ритмов могут быть простыми и сложными.

Простые:

Подача пищи в одно и то же время, что вызывает простые реакции, ограничивающиеся, в основном, вовлечением в актив- ность пищеварительной системы;

Смена света и темноты - также относительно простой задаватель ритма, но он вовлекает в активность не только сон или бодрствование (т.е. одну систему), а весь организм.

Сложные:

Смена сезонов года, приводящая к длительным специфическим изменениям состояния организма, в частности, его реактивности, устойчивости по отношению к различным факторам: уровню обмена веществ, направленности обменных реакций, эндокринным сдвигам;

Периодические колебания солнечной активности, вызывающие зачастую замаскированные изменения в организме, в значительной мере зависящие от исходного состояния.

Связь времязадавателей с биоритмами

Современные нам представления о связи между экзогенными времязадавателями и эндогенными ритмами (представление о единых биологических часах, полиосцилляторная структура) приведены на рис. 4-2.

Гипотезы о единых биологических часах и полиосцилляторной временной структуре организма вполне совместимы.

Гипотеза централизованного управления внутренними колебательными процессами (наличие единых биологических часов) относится преимущественно к восприятию смены света и темноты и трансформации этих явлений в эндогенные биоритмы.

Рис. 4-2. Механизмы взаимодействия организма с внешними задавателями времени

Мультиосцилляторная модель биоритмов. Предполагается, что в многоклеточном организме может функционировать главный пейсмейкер, навязывающий свой ритм всем остальным системам. Не исключается существование (наряду с центральным водителем ритма) и второстепенных осцилляторов, также обладающих пейсмейкерными свойствами, но иерархически под- чинённых ведущему. По одному из вариантов этой гипотезы в организме могут функционировать разрозненные осцилляторы, которые образуют отдельные группы, работающие независимо друг от друга.

МЕХАНИЗМЫ РИТМОГЕНЕЗА

Существует несколько точек зрения на механизмы ритмогенеза. Возможно, что источником циркадианной ритмики являются циклические изменения АТФ в цитоплазме клеток или циклы метаболических реакций. Не исключено, что ритмы организма определяют биофизические эффекты, а именно влияние:

Гравитационного поля;

Космических лучей;

Электромагнитных полей (в том числе магнитного поля Земли);

Ионизации атмосферы и т.д.

Ритмы психической активности

Не только биологические и физиологические процессы, но и динамика психической деятельности, в том числе и эмоциональных состояний, подвержены закономерным колебаниям. Например, установлено, что бодрствующее сознание человека имеет волновую природу. Психологические ритмы могут быть систематизированы в тех же диапазонах, что и биологические.

Ультрадианные ритмы проявляются во флюктуациях порогов восприятия, времени двигательных и ассоциативных реакций, внимания. Соответствие био- и психоритмов в организме человека обеспечивает нормальную работу всех его органов и систем, так слух человека даёт наибольшую точность оценки интервала времени 0,5-0,7 с, что характерно для темпа движений при ходьбе.

Тактовые ритмы. В колебаниях психических процессов, кроме временных ритмов, были обнаружены так называемые тактовые ритмы, зависящие не от времени, а от номера пробы: человек не может постоянно одинаково реагировать на предъявляемые стиму-

лы, если в предыдущей пробе время реакции было коротким, то в следующий раз организм будет экономить энергию, что приведёт к снижению скорости реагирования и колебанию значения этого пока- зателя от пробы к пробе. Тактовые ритмы более выражены у детей, а у взрослых усиливаются при снижении функционального состояния нервной системы. При изучении умственного утомления выделены тактовые декасекундные, или двухминутные (0,95-2,3 мин) и десятиминутные (2,3-19 мин) ритмы.

Циркадианные ритмы вызывают значительные перестройки в деятельности организма, влияющие на психическое состояние и работоспособность человека. Так, электрическая чувствительность глаза изменяется на протяжении дня: в 9 ч утра она повышается, к 12 ч дня достигает максимума и затем снижается. Подобная суточная динамика присуща не только психическим процессам, но и психо- эмоциональным состояниям индивида. В литературе описаны суточные ритмы интеллектуальной работоспособности, субъективной готовности к работе и способности к сосредоточению, кратковременной памяти. У лиц с утренним типом работоспособности отмечается более высокий уровень тревоги, они отличаются меньшей устойчивостью к фрустрирующим факторам. Люди утреннего и вечернего типов имеют разный порог возбудимости, склонность к экстраили интроверсии.

ЭФФЕКТЫ ИЗМЕНЕНИЯ ВРЕМЯЗАДАВАТЕЛЕЙ

Биологические ритмы отличаются большой стойкостью, изменение привычных ритмов времязадавателей далеко не сразу сдвигает биоритмы и приводит к десинхронозу.

Десинхроноз - рассогласование циркадианных ритмов - нарушение исходной архитектоники циркадианной системы организма. При нарушении синхронизации ритмов организма и датчиков времени (внешний десинхроноз) организм вступает в стадию тревоги (внутренний десинхроноз). Сущность внутреннего десинхроноза заключается в рассогласовании по фазе циркадианных ритмов организма, в результате чего возникают различные нарушения его благополучия: расстройства сна, снижение аппетита, ухудшение самочувствия, настроения, падение работоспособности, невротические расстройства и даже органические заболевания (гастриты, язвенная болезнь и др.). Наиболее ярко перестройка биоритмов проявляется при быстрых перемещениях (авиаперелётах) в глобальном масш-табе.

Дальние перемещения вызывают выраженный десинхроноз, характер и глубина которого определяются: направлением, временем, длительностью перелёта; индивидуальными особенностями организма; трудовыми нагрузками; климатическим контрастом и т.д. Выделено пять типов перемещений (рис. 4-3).

Рис. 4-3. Хронофизиологическая классификация типов перемещения:

1 - трансмеридианное; 2 - трансширотное; 3 - диагональное (смешанное);

4 - трансэкваториальное; 5 - асинхронное. (В.А. Матюхин и др., 1999)

Трансмеридианное перемещение (1). Главный показатель такого перемещения - угловая скорость движения, выражаемая в градусах долготы. Её можно измерять числом часовых поясов (15?), пересечённых за сутки.

Если скорость перемещения превышает 0,5 часового пояса за сутки, возникает внешний десинхроноз - разность фаз фактического и должного максимумов суточной кривой физиологических функций.

Смена 1-2 часовых поясов не вызывает десинхронизации (имеется зона нечувствительности, в пределах которой фазовая десинхронизация не проявляется). При перелётах через 1-2 часовых пояса типичные для фазовой десинхронизации уплощения суточных колебаний физиологических функций не отмечаются, и ритм мягко «затягивается» внешними датчиками времени.

При дальнейшем перемещении на восток или запад фазовое рассогласование возрастает как функция времени. На разных географических широтах критическая угловая скорость достигается при различных линейных скоростях перемещения: в приполярных широтах даже при небольших скоростях, соответствующих скорости движения пешехода, не исключено возникновение десинхронизации. Практически скорость всех транспортных средств существенно превышает 0,5 угловых часа в сутки. Эффект десинхронизации биологических ритмов проявляется при таком типе перемещений в наиболее выраженной форме.

При скорости перемещения, превышающей три и более часовых поясов в сутки, внешние синхронизаторы уже не в состоя- нии «затягивать» циркадианные колебания физиологических функций и наступает десинхроноз.

Трансширотное перемещение (2) - вдоль меридиана, с юга на север или с севера на юг - не вызывая фазового рассогласования датчиков, даёт эффект, воспринимаемый как рассогласование фактической и ожидаемой амплитуд синхронизаторов. При этом изменяются фазы годового ритма, проявляется сезонная десинхронизация.

На первое место при таких перемещениях выступает несоответствие сезонной готовности физиологических систем тре- бованиям иного сезона в новом месте. Фазового рассогласования ритмов внешних датчиков и биоритмов организма нет, но не совпадают их суточные амплитуды.

Дальность перемещения, при которой климатические условия и структура фотопериодизма на новом месте начинают вызывать напряжение механизмов поддержания сезонного ритма физиологических функций, зависит от географической широты: оценка ширины зоны нечувствительности показывает, что она может изменяться от 1400 км у экватора до 150 км на широте 80?.

- «Окно хронофизиологической нечувствительности», его линейные и угловые размеры зависят от широты. Скорость, выраженная в числе «окон», пересекаемых за сутки, будет при равной линейной скорости возрастать по направлению от экватора к полюсу до очень больших величин. Сужение

«окна» по мере движения к северу - важное обстоятельство, свидетельствующее о повышенной хронофизиологической напряжённости при перемещениях в приполярных широтах по сравнению с низкими или средними широтами.

Перемещение по диагонали (3) подразумевает изменение долготы и широты, большой климатический контраст и значительные изменения поясного времени. Эти перемещения не являются простой суммой (суперпозицией) эффектов «горизонтального» (1) и «вертикального» (2) перемещения. Это сложный комплекс хронобиологических раздражителей, реакция на который может существенно отличаться от реакций на каждый вид десинхронизации, рассматриваемый изолированно.

Перемещение в другое полушарие (4) с пересечением экваториальной зоны. Главный воздействующий фактор такого перемещения - контрастная смена сезона, вызывающая глубокий сезонный десинхроноз, смещение и инвертирование фазы годового цикла физиологических функций.

Пятый тип перемещений - хроноэкологический режим, при котором колебательные свойства среды резко ослаблены или полностью отсутствуют. К таким перемещениям относятся:

Орбитальные полёты;

Пребывание в условиях с резко ослабленными суточными и сезонными синхронизаторами (подводных лодках, космических кораблях);

Вахтовые режимы труда со скользящим графиком смен и т.д. Среды такого типа предложено называть «асинхронными». Воздействие подобной «хронодепривации» вызывает грубые нарушения суточной и другой периодики.

СУБЪЕКТИВНОСТЬ ВОСПРИЯТИЯ ВРЕМЕНИ

Течение времени воспринимается субъективно, в зависимости от интенсивности физической или психической деятельности каждого отдельного индивидуума. Время как бы становится более ёмким при большей занятости или при необходимости принять правильное решение в экстремальной ситуации.

За считанные секунды человек успевает проделать сложнейшую работу. Например, лётчик в аварийной ситуации принимает решение изменить тактику управления самолётом. При этом он

мгновенно учитывает и сопоставляет динамику развития многочисленных факторов, влияющих на условия полёта.

В процессе изучения субъективного восприятия времени исследователи применяли тест «индивидуальная минута». Человек по сигналу отсчитывает секунды, а экспериментатор следит за стрелкой секундомера. Оказалось, что у одних «индивидуальная минута» короче истинной, у других - длинней, расхождения в ту или иную сторону могут быть весьма значительными.

БИОЛОГИЧЕСКИЕ РИТМЫ В РАЗНЫХ КЛИМАТОГЕОГРАФИЧЕСКИХ УСЛОВИЯХ

Высокогорье. В условиях высокогорья околосуточные ритмы гемодинамики, дыхания, газообмена зависят от метеофакторов и изменяются прямо пропорционально изменениям температуры воздуха и скорости ветра и обратно пропорционально изменениям атмосферного давления и относительной влажности воздуха.

Высокие широты. Специфические свойства полярного климата и особенности среды определяют особенности биоритмов у жителей:

В период полярной ночи отсутствуют достоверные циркадианные колебания потребления кислорода. Поскольку зна- чение коэффициента использования кислорода отражает интенсивность энергообмена, то снижение размаха колебаний потребления кислорода во время полярной ночи является косвенным свидетельством в пользу фазового рассогласования различных энергозависимых процессов.

У жителей Крайнего Севера и у полярников в период полярной ночи (зимой) наблюдают снижение амплитуды суточного ритма температуры тела и смещение акрофазы на вечерние часы, а весной и летом - на дневные и утренние часы.

Аридная зона. При адаптации человека к пустыне ритмические колебания условий окружающей среды приводят к синхронизации ритмики функционального состояния организма с этими колебаниями. Таким путём достигается частичная оптимизация деятельности компенсаторных механизмов в экстремальных условиях среды. Например, акрофаза ритма средневзвешенной температуры кожи приходится на 16 ч 30 мин, что практически совпадает с максимумом температуры воздуха, температура тела

достигает максимума в 21 ч, коррелируя с максимумом теплообразования.

МЕТОДЫ СТАТИСТИЧЕСКОЙ ОЦЕНКИ В ХРОНОБИОЛОГИИ

Косинусоидальная функция. Простейшим периодическим процессом является гармонический колебательный процесс, описываемый косинусоидальной функцией (рис. 4-4):

Рис. 4-4. Основные элементы гармонического (косинусоидального) колебательного процесса: М - уровень; Т - период; ρ A , ρ B , αφ A ,αφ B - амплитуды и фазы процессов А и В; 2ρ A - размах процесса А; αφ Ч - разность фаз процессов А и В

x(t) = М + рХcos2π/ТХ(t-αφ Ч),

где:

М - постоянная составляющая; ρ - амплитуда колебаний; Т - период, ч; t - текущее время, ч; аαφ Ч - фаза, ч.

При анализе биоритмов обычно ограничиваются первым членом ряда - гармоникой с периодом, равным 24 ч. Иногда учитывается также гармоника с периодом 12 ч. В результате аппроксимации временной ряд оказывается представленным небольшим числом обобщённых параметров - уровнем М, амплитудой р, фазой αφ.

Фазовые соотношения между двумя гармоническими колебательными процессами могут быть различными. Если фазы двух процессов одинаковы, они называются синфазными, если разница между фазами равна Т/2, - противофазными. О фазовом опережении или фазовом отставании одного гармонического процесса А относительно другого В, говорят тогда, когда αφ A <αφ B или αφ A >αφ B соответственно.

Описанные параметры, строго говоря, можно использовать только применительно к гармоническому колебательному процессу. Фактически суточная кривая отличается от математической модели: она может быть несимметричной относительно среднего уровня, а интервал между максимумом и минимумом, в отличие от косинусоиды, оказаться равным не 12 ч и т.д. Ввиду указанных причин использование этих параметров для описания реального колебательного периодического или близкого к периодическому процессу требует известной осторожности.

Хронограммы. Наряду с гармонической аппроксимацией временного ряда широко используется традиционный метод представления результатов биоритмологического исследования в виде суточных хронограмм, т.е. усреднённых по множеству индивидуальных замеров суточных кривых. На хронограмме одновременно со средним значением показателя на определённый час суток указывается доверительный интервал в виде среднеквадратического отклонения или ошибки среднего.

В литературе встречается несколько типов хронограмм. Если дисперсия индивидуальных уровней велика, периодическая компонента может оказаться замаскированной. В таких случаях применяют предварительное нормирование суточных кривых, так что усреднению подвергаются не абсолютные значения амплитуды р, а относительные (p/M). Для некоторых показателей хронограмма исчисляется в долях (процентах) общего суточного объё- ма потребления или выделения некоторого субстрата (например, потребления кислорода или выделения калия с мочой).

Хронограмма даёт достаточно наглядное представление о характере суточных кривых. Путём анализа хронограммы можно приблизительно определить фазу колебаний, абсолютную и относительную амплитуду, а также их доверительные интервалы.

Косинор - статистическая модель биоритмов, основанная на аппроксимации кривой колебаний физиологического показателя

гармонической функцией - косинор-анализа. Назначение косиноранализа - представление индивидуальных и массовых биоритмо- логических данных в сопоставимой унифицированной и доступной для статистических оценок форме. Суточные косинор-параметры характеризуют выраженность биоритма, переходные процессы при его перестройке, наличие статистически значимого отличия одних групп от других.

Косинор-анализ имеет очевидные преимущества по сравнению с методом хронограмм, поскольку он позволяет использовать для анализа структуры биоритмов корректные статистические методы.

Косинор-анализ выполняют в два этапа:

На первом этапе индивидуальные суточные кривые аппроксимируют гармонической (косинусоидой) функцией, в результате чего определяют основные параметры биоритма - среднесуточный уровень, амплитуду и акрофазу;

На втором этапе производят векторное усреднение индивидуальных данных, определяют математическое ожидание и доверительные интервалы амплитуды и акрофазы суточных колебаний изучаемого показателя.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите примеры временных параметров организма и его систем?

2. В чём сущность синхронизации работы различных систем организма?

3. Что такое биологический ритм? Какие он имеет характеристики?

4. Какие классификации биоритмов вы можете привести? В чём принципиальное отличие разных типов биоритмов?

5. Назовите механизмы ритмогенеза.

6. Какие ритмы психической активности вы знаете?

7. Что происходит при устранении или изменении времязадавателей?

8. Какие типы перемещений вы знаете?

9. Назовите методы статистического анализа в хронобиологии.

10. В чём принципиальное отличие косинор-анализа?

Биологические ритмы — периодически повторяющиеся измене­ния характера и интенсивности биологических процессов и явле­ний в живых организмах. Биологические ритмы физиологических функций столь точны, что их часто называют «биологическими часами».

Есть основание полагать, что механизм отсчета времени заключен в каждой моле­куле человеческого тела, в том числе в молекулах ДНК, хранящих генетическую информацию. Клеточные биологические часы назы­вают «малыми», в отличие от «больших», которые, как считают, расположены в головном мозге и синхронизируют все физиологи­ческие процессы в организме.

Классификация биоритмов.

Ритмы , задаваемые внутренними «часами» или водителями рит­ма, называются эндогенными , в отличие от экзогенных , которые регулируются внешними факторами. Большинство биологических ритмов являются смешанными, т. е. частично эндогенными и час­тично экзогенными.

Во многих случаях главным внешним фактором, регулирующим ритмическую активность, служит фотопериод, т. е. продолжитель­ность светового дня. Это единственный фактор, который может быть надежным показателем времени, и он используется для установки «часов».

Конкретная природа «часов» неизвестна, но нет сомнений, что здесь действует физиологический механизм, который может вклю­чать как нервные, так и эндокринные компоненты.

Большинство ритмов формируются в процессе индивидуально­го развития (онтогенеза). Так, суточные колебания активности различных функций у ребенка наблюдаются до его рождения, их мож­но зарегистрировать уже во второй половине беременности.

  • Биологические ритмы реализуются в тесном взаимодействии с окружающей средой и отражают особенности приспособления орга­низма к циклично изменяющимся факторам этой среды. Вращение Земли вокруг Солнца (с периодом около года), вращение Земли вок­руг своей оси (с периодом около 24 ч), вращение Луны вокруг Зем­ли (с периодом около 28 дней) приводят к колебаниям освещеннос­ти, температуры, влажности, напряженности электромагнитного поля и т. п., служат своеобразными указателями, или датчиками, времени для «биологических часов».
  • Биологические ритмы имеют большие различия по частотам или периодам. Выделяют группу так называемых высокочастотных био­логических ритмов, периоды колебаний которых находятся в пре­делах от доли секунды до получаса. Примерами могут служить колебания биоэлектрической активности головного мозга, сердца, мышц, других органов и тканей. Регистрируя их с помощью спе­циальной аппаратуры, получают ценную информацию о фи­зиологических механизмах деятельности этих органов, которая используется также для диагностики заболеваний (электроэнцефа­лография, электромиография, электрокардиография и др.). К этой же группе можно отнести ритм дыхания.
  • Биологические ритмы с периодом 20-28 ч называются циркадианными (циркадными , или околосуточными), например, перио­дические колебания на протяжении суток температуры тела, час­тоты пульса, артериального давления, работоспособности человека и др.
  • Выделяют также группу биологических ритмов низкой часто­ты; это околонедельные, околомесячные, сезонные, окологодовые, многолетние ритмы .

В основе выделения каждого из них лежат четко регистрируе­мые колебания какого-либо функционального показателя.

Напри­мер: Околонедельному биологическому ритму соответствует уро­вень выделения с мочой некоторых физиологически активных веществ, околомесячному — менструальный цикл у женщин, сезон­ным биологическим ритмам — изменения продолжительности сна, мышечной силы, заболеваемости и т. д.

Наиболее изучен циркадианный биологический ритм, один из самых важных в организме человека, выполняющий как бы роль дирижера многочисленных внутренних ритмов.

Циркадианные ритмы высокочувствительны к действию различ­ных отрицательных факторов, и нарушение слаженной работы си­стемы, порождающей эти ритмы, служит одним из первых симптомов заболевания организма. Установлены циркадианные колебания более 300 физиологических функций организма человека. Все эти процессы согласованы во времени.

Многие околосуточные процессы достигают максимальных зна­чений в дневное время каждые 16-20 ч и минимальных — ночью или в ранние утренние часы.

Например: Ночью у человека самая низкая температура тела. К утру она повышается и достигает мак­симума во второй половине дня.

Основной причиной суточных колебаний физиологических фун­кций в организме человека являются периодические изменения возбудимости нервной системы, угнетающей или стимулирующей обмен веществ. В результате изменения обмена веществ и возни­кают изменения различных физиологических функций (рис.1).

Например: Частота дыхания днем выше, чем ночью. В ночное время понижена функция пищеварительного аппарата.

Рис. 1. Суточные биологические ритмы в организме человека

Например: Установлено, что суточная динамика температуры тела имеет волнообразный характер. Примерно к 18 ч температура достигает максимума, а к полуночи снижается: минимальное ее значение меж­ду часом ночи и 5 ч утра. Изменение температуры тела в течение суток не зависит от того, спит человек или занимается интенсив­ной работой. Температура тела определяет скорость биологических реакций , днем обмен веществ идет наиболее интенсивно.

С суточным рит­мом тесно связаны сон и пробуждение. Своеобразным внутренним сигналом для отдыха ко сну служит понижение температуры тела. На протяжении суток она изменяется с амплитудой до 1,3°С.

Например: Измеряя через каждые 2-3 ч на протяжении нескольких суток температуру тела под языком (обычным медицинским термомет­ром), можно довольно точно установить наиболее подходящий момент для отхода ко сну, а по температурным пикам определить периоды максимальной работоспособности.

Днем растет частота сердечных сокращений (ЧСС), выше артериальное давление (АД), чаще дыхание. Изо дня в день к моменту пробуждения, как бы пред­восхищая возрастающую потребность организма, в крови повыша­ется содержание адреналина — вещества, которое увеличивает ЧСС, повышает АД, активизирует работу всего организма; к этому времени в крови накапливаются биологические стимуляторы. Снижение концентрации этих веществ к вечеру — непременное условие спокойного сна. Недаром нарушения сна всегда сопровож­даются волнением и тревогой: при этих состояниях в крови нарас­тает концентрация адреналина и других биологически активных веществ, организм длительное время находится в состоянии «бое­вой готовности». Подчиняясь биологическим ритмам, каждый физиологический показатель в течение суток может существенно менять свой уровень.

Распорядок жизни, акклиматизация.

Биологические ритмы являются основой рациональной регла­ментации распорядка жизни человека, так как высокая работоспо­собность и хорошее самочувствие могут быть достигнуты только в том случае, если ритм жизни соответствует свойственному орга­низму ритму физиологических функций. В связи с этим необходи­мо разумно организовать режим труда (тренировок) и отдыха, а также прием пищи. Отклонение от правильного режима питания может привести к существенному увеличению веса, который в свою очередь, нарушая жизненные ритмы организма, вызывает измене­ние обмена веществ.

Например: Если принимать пищу общей кало­рийностью 2000 ккал только по утрам, вес снижается; если ту же пищу принимать в вечерние часы, увеличивается. Для того, чтобы сохранить вес тела, достигнутый к 20-25 годам, пищу следует принимать 3-4 раза в день в точном соответствии с индивидуаль­ными суточными затратами энергии и в те часы, когда появляется заметное чувство голода.

Однако эти общие закономерности иногда скрывают многооб­разие индивидуальных особенностей биологических ритмов. Не всем людям свойственны однотипные колебания работоспособнос­ти. Одни, так называемые «жаворонки», энергично работают в пер­вой половине дня; другие, «совы», — вечером. Люди, относящиеся к «жаворонкам», вечером испытывают сонливость, рано ложатся спать, но, рано просыпаясь, чувствуют себя бодрыми и работоспо­собными (рис.2).

Легче переносит акклиматизацию человек, если он принимает (3-5 раз в сутки) горячее питание и адаптогены, витаминные комп­лексы, а физические нагрузки увеличивает постепенно, по мере адаптации к ним (рис.3).

Рис. 2. Кривые ритма трудоспособности в течение суток

Рис. 3. Суточные ритмы протекания жизненных процессов при неизменных внешних условиях жизни (по Графу)

При несоблюдении этих условий может наступить так называе­мый десинхроноз (своеобразное патологическое состояние).

Явление десинхроноза наблюдается и у спортсменов, особенно у тренирующихся в условиях жары и влажного климата или среднегорья. Поэтому спортсмен, вылетающий на международные со­ревнования, должен быть хорошо подготовлен. Сегодня существу­ет целая система мероприятий, направленных на сохранение привычных биоритмов.

Для биологических часов человека важен правильный ход не только в суточных, но и в так называемых низкочастотных ритмах, например в околонедельном.

В настоящее время установлено, что недельный ритм вырабо­тан искусственно: убедительных данных о существовании врожден­ных семидневных ритмов у человека не обнаружено. Очевидно, что это эволюционно закрепленная привычка. Семидневная неделя ста­ла основой ритма и отдыха еще в древнем Вавилоне. За тысячеле­тия сформировался недельный социальный ритм: человек продук­тивнее работает в середине недели, чем в начале или в конце ее.

Биологические часы человека отражают не только суточные природные ритмы, но и имеющие большую продолжительность, например сезонные. Они проявляются в повышении обмена веществ весной и в снижении его осенью и зимой, в увеличении процента гемоглобина в крови и в изменении возбудимости дыхательного центра в весеннее и летнее время.

Состояние организма в летнее и зимнее время в какой-то степе­ни соответствует его состоянию днем и ночью. Так, зимой по срав­нению с летом снижалось в крови содержание сахара (аналогичное явление происходит и ночью), увеличивалось количество АТФ и холестерина.

Биоритмы и работоспособность.

Ритмы работоспособности, подобно ритмам физиологических процессов, по своей природе эндогенны.

Работоспособность может зависеть от многих факторов, дей­ствующих по отдельности или совместно. К этим факторам отно­сятся: уровень мотивации, прием пищи, факторы внешней среды, физическая готовность, состояние здоровья, возраст и другие факторы. По-видимому, на динамику работоспособности влияет и утомление (у элитных спортсменов — хроническое утомление), хотя не вполне ясно, каким именно образом. Утомление, возникающее при выполнении упражнений (тренировочных нагрузок), трудно преодо­левать даже достаточно мотивированному спортсмену.

Например: Утомление снижает работоспособность, а повторная тренировка (с интерва­лом в 2-4 ч после первой) улучшает функциональное состояние спортсмена.

При трансконтинентальных перелетах циркадианные ритмы различных функций перестраиваются с разной скоростью — от 2-3 дней до 1 месяца. Для нормализации циклично­сти до перелета необходимо каждый день сдвигать на 1 ч отход ко сну. Если это делать в течение 5-7 дней до отлета и ложиться спать в темной комнате, то удастся быстрее пройти акклиматизацию.

При прибытии в новый временной пояс необходимо плавно вхо­дить в тренировочный процесс (умеренные физические нагрузки в те часы, когда будут производиться соревнования). Тренировки не должны носить «ударный характер».

Следует отметить, что естественный ритм жизнедеятельности организма обусловлен не только внутренними факторами, но и вне­шними условиями. В результате исследований был выявлен волно­вой характер изменения нагрузок на тренировке. Прежние представ­ления о неуклонном и прямолинейном наращивании тренировочных нагрузок оказались несостоятельными. Волнообразный характер изменения нагрузок в процессе тренировок связан с внутренними биологическими ритмами человека.

Например: Различают три категории «волн» тренировок: «малые», охватывающие от 3 до 7 дней (или не­сколько более), «средние» — чаще всего 4-6 недель (недельные тре­нировочные процессы) и «большие», продолжающиеся несколько месяцев.

Нормализация биологических ритмов позволяет осуществлять интенсивные физические нагрузки, а тренировки при нарушенном биологическом ритме приводят к различным функциональным рас­стройствам (например, десинхронозу), а иногда и к заболеваниям.

Источник информации: В.Смирнов, В.Дубровский (Физиология физического воспитания и спорта).



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...