Цитоплазматические микротрубочки строение локализация функции. Микротрубочки, их строение и функции. хим состав микротрубочек

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки . В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, фибробластов и других изменяющих свою форму клеток. Они могут быть выделены сами или можно выделить образующие их белки: это те же тубулины со всеми их свойствами.

Главное функциональное значение таких микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного каркаса (цитоскелета), необходимого для поддержания формы клетки.

К органеллам немембранного строения относят микротрубочки - трубчатой формы образования различной длины с внешним диаметром 24 нм, толщиной стенки около 5 нм и шириной «просвета» 15 нм. Они встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков (сперматозоиды), ресничек (мерцательный эпителий трахеи), митотического веретена и центриолей (делящиеся клетки).

Микротрубочки строятся путем сборки (полимеризации) белка тубулина. Микротрубочки полярны: в них выделяют концы (+) и (-). Их рост происходит от специальной структуры неделящихся клеток - центра организации микротрубочек , с которым органелла связана концом (-) и который представлен двумя элементами, идентичными по строению центриолям клеточного центра. Удлинение микротрубочек происходит путем присоединения новых субъединиц на конце (+). В начальной фазе направление роста не определено, но из образующихся микротрубочек сохраняются те, которые вступают в контакт своим (+) концом с подходящей мишенью. В растительных клетках, в которых микротрубочки имеются, структур типа центриолей не найдено.

Микротрубочки принимают участие:

  • в поддержании формы клеток,
  • в организации их двигательной активности (жгутики, реснички) и внутриклеточных транспортов (хромосомы в анафазе митоза).

Функции внутриклеточных молекулярных двигателей выполняют белки кинезин и динеин, имеющие активность фермента АТФ-азы. При жгутиковом или реснитчатом движении молекулы динеина, прикрепляясь к микротрубочкам и используя энергию АТФ, перемещаются по их поверхности по направлению к базальному тельцу, то есть к концу (-). Смещение микротрубочек друг относительно друга вызывает волнообразные движения жгутика или ресничек, побуждающие клетку к перемещению в пространстве. В случае неподвижных клеток, например, реснитчатого эпителия трахеи, описанный механизм используется для выведения из дыхательных путей слизи с оседающими в ней частицами (дренажная функция).

Участие микротрубочек в организации внутриклеточных транспортов иллюстрирует перемещение в цитоплазме пузырьков (везикул). Молекулы кинезина и динеина содержат две глобулярных «головки» и «хвосты» в виде белковых цепей. При помощи головок белки контактируют с микротрубочками, перемещаясь по их поверхности: кинезин от конца (-) к концу (+), а динеин в противоположном направлении. При этом они тянут за собой пузырьки, прикрепленные к «хвостам». Предположительно, макромолекулярная организация «хвостов» вариабельна, чем обеспечивается узнавание различных транспортируемых структур.

С микротрубочками как обязательным компонентом митотического аппарата связывают расхождение центриолей к полюсам делящейся клетки и перемещение хромосом в анафазе митоза. Для животных клеток, клеток части растений, грибов и водорослей характерен клеточный центр (диплосома), образованный двумя центриолями . Под электронным микроскопом центриоль имеет вид «полого» цилиндра диаметром 150 нм и длиной 300-500 нм. Стенка цилиндра образована 27 микротрубочками, сгруппированными в 9 триплетов. В функцию центриолей, сходных по структуре с элементами центра организации микротрубочек (см. здесь же, выше), входит образование нитей митотического веретена (веретена деления, ахроматинового веретена классической цитологии), представляющих собой микротрубочки. Центриоли поляризуют процесс деления клетки, обеспечивая закономерное расхождение к ее полюсам сестринских хроматид (дочерних хромосом) в анафазе митоза

Структура кинезина (а) и транспорт везикулы по микротрубочке (б)

Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый, матрикс. Часто можно обнаружить несколько дополнительных структур, связанных с центриолями: спутники (сателлиты), фокусы схождения микротрубочек, дополнительные микротрубочки, образующие особую зону, центросферу вокруг центриоли.

В клетках микротрубочки принимают участие в создании ряда временных (цитоскелет интерфазных клеток, веретено деления) или постоянных (центриоли, реснички, жгутики) структур.

Микротрубочки представляют собой прямые, неветвящиеся длинные полые цилиндры (см. рис. 18). Их внешний диаметр составляет около 24 нм, внутренний просвет имеет ширину 15 нм, а толщина стенки - 5 нм. Стенка микротрубочек построена за счет плотно уложенных округлых субъединиц диаметром около 5 нм. В электронном микроскопе на поперечных сечениях микротрубочек видны большей частью 13 субъединиц, выстроенных в виде однослойного кольца. Микротрубочки, выделенные из разных источников (реснички простейших, клетки нервной ткани, веретено деления), имеют сходный состав и содержат белки - тубулины. Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, фибробластов и других изменяющих свою форму клеток.

Одно из функциональных значений таких микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного каркаса (цитоскелета), необходимого для поддержания формы клетки.

Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур.

Разрушение микротрубочек колхицином нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и т.д.

9. Лизосомы: строение, функции, классификация

Лизосомы - это разнообразный класс вакуолей размером 0,2-0,4 мкм, ограниченных одиночной мембраной. Характерным признаком лизосом является наличие в них гидролитических ферментов - гидролаз (протеиназы, нуклеазы. глюкозидазы, фосфатазы, липазы), расщепляющих различные биополимеры при кислом рН. Лизосомы были открыты в 1949 г. де Дювом.

Среди лизосом можно выделить по крайней мере 3 типа: первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Разнообразие морфологии лизосом объясняется тем, что эти частицы участвуют в процессах внутриклеточного переваривания, образуя сложные пищеварительные вакуоли как экзогенного (внеклеточного), так и эндогенного (внутриклеточного) происхождения.

Первичные лизосомы представляют собой мелкие мембранные пузырьки размером около 0,2-0,5 мкм, заполненные бесструктурным веществом, содержащим гидролазы, в том числе активную кислую фосфатазу, которая является маркерным для лизосом ферментом. Эти мелкие пузырьки практически очень трудно отличить от мелких везикул на периферии зоны аппарата Гольджи, которые также содержат кислую фосфатазу. Местом ее синтеза является гранулярная эндоплазматическая сеть.



Вторичные лизосомы, или внутриклеточные пищеварительные вакуоли, формируются при слиянии первичных лизосом с фагоцитарными или пиноцитозными вакуолями, образуя фаголизосомы, или гетерофагосомы, а также с измененными органеллами самой клетки, подвергающимися перевариванию (аутофагосомы). Вещества, попавшие в состав вторичной лизосомы, расщепляются гидролазами до мономеров, которые транспортируются через мембрану лизосомы в гиалоплазму, где они реутилизируются, т.е. включаются в различные обменные процессы.

Однако расщепление, переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полостях лизосом накапливаются непереваренные продукты. Такая лизосома носит название «телолизосома», или остаточное тельце. Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Например, у человека при старении организма в клетках мозга, печени и в мышечных волокнах в телолизосомах происходит отложение «пигмента старения» - липофусцина.

Микро-трубочки располагаются, как правило, в самых глубоких слоях примембранного цитозоля. Поэтому периферические микротру-бочки надлежало бы рассматривать как часть динамичного, организующего микротрубочкового «скелета» клетки. Однако и сократимые, и скелетные фибриллярные структуры перифериче-ского цитозоля также связаны непосредственно с фибриллярны-ми структурами основной гиалоплазмы клетки. В функциональ-ном отношении периферическая опорно-сократимая фибрилляр-ная система клетки находится в теснейшем взаимодействии с системой периферических микротрубочек. Это дает нам основа-ние рассматривать последние как часть субмембранной системы клетки.

Система микротрубочек являет-ся вторым компонентом опорно-сократимого аппарата, находящаяся, как правило, в тес-ном контакте с микрофибриллярным компонентом. Стенки микро-трубочек образованы в попереч-нике чаще всего 13 димерными глобулами белка, каждая глобу-ла состоит из α- и β-тубулинов (рис. 6). Последние в большин-стве микротрубочек расположены в шахматном порядке. Тубулин составляет 80% белков содержа-щихся в микротрубочках. Ос-тальные 20% приходятся на до-лю высокомолекулярных белков МАР 1 , МАР 2 и низкомолекуляр-ного тау-фактора. МАР-белки (microtubule-associated proteins- белки, связанные с микротрубоч-ками) и тау-фактор представля-ют собой компоненты, необходи-мые для полимеризации тубулина. В их отсутствие самосборка микротрубочек путем полимери-зации тубулина крайне затруд-нена и образующиеся микротру-бочки сильно отличаются от на-тивных.

Микротрубочки — очень лабильная структура, так, микро-трубочки теплокровных животных, как правило, разрушаются на холоде. Существуют и холодоустойчивые микротрубочки, например в нейронах центральной нервной системы позвоноч-ных их количество варьирует от 40 до 60%. Термостабильные и термолабильные микротрубочки не различаются по свойствам входящего в их состав тубулина; по-видимому, эти отличия определяются добавочными белками. В нативных клет-ках по сравнению с микрофибриллами основная часть микротрубочковой субмем-бранной системы располага-ется в более глубоко лежа-щих участках цитоплазмы Материал с сайта

Так же как и микрофибриллы, микротрубочки под-вержены функциональной изменчивости. Для них ха-рактерны самосборка и саморазборка, причем раз-борка происходит до тубулиновых димеров. Соответ-ственно микротрубочки мо-гут быть представлены боль-шим или меньшим количе-ством в связи с преоблада-нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло-булярного тубулина гиало-плазмы. Интенсивные про-цессы самосборки микротру-бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало-плазмы. Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс-портной системе клетки.

Общая характеристика мкротрубочек

Одним из обязательных компонентов цитоскелета эукариот являются микротрубочки (рис. 265). Это нитчатые неветвящиеся структуры, толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины микротрубочек при полимеризации образуют полые трубки, откуда и их название. Длина их может достигать нескольких мкм; самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.

Микротрубочки встречаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками, или в виде плотноупакованных микротрубочек в составе центриолей, базальных телец и в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.

В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из –тубулина и – тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе убъединицы мономера тубулина связаны с ГТФ, однако на -субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на -субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с -субъединицей одного белка ассоциирует –субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268).

При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз одной молекулы ГТФ, связанной с -тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++ .

Существует ряд веществ, которые влияю на полимеризацию тубулина. Так, алкалоид колхицин, содержащийся в безвременнике осеннем (Colchicum autumnale) , связывается с отдельными молекулами тубулина и предотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действие обладают колцемид и нокодозол, при отмывании которых происходит полное восстановление микротрубочек.

Стабилизирующим действие на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.

Все это показывает, что микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться.

В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).

В последнее время процесс сборки и разборки микротрубочек стали наблюдать в живых клетках. После введения в клетку меченых флуорохромами антител к тубулину и при использовании электронных систем усиления сигнала в световом микроскопе, можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 минут около 80% всей популяции микротрубочек обновляется. При этом отдельные микротрубочки могут на растущем конце медленно (4-7 мкм\мин) удлиняться, а затем достаточно быстро (14-17 мкм\мин) укорачиваться. В живых клетках микротрубочки в составе веретена деления имеют время жизни около 15-20 сек. Считается, что динамическая нестабильность цитоплазматических микротрубочек связана с задержкой гидролиза ГТФ, это приводит к тому, что на (+)-конце микротрубочки образуется зона, содержащая негидролизованные нуклеотиды (“ГТФ-колпачок”). В этой зоне молекулы тубулина связываются с большим сродством друг к другу, и, следовательно, скорость роста микротрубочки возрастает. Наоборот, при потере этого участка, микротрубочки начинают укорачиваться.

Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов). Такая стабилизация наблюдается в большой степени в дифференцированных клетках. Стабилизация микротрубочек связана или с модификацией тубулинов или с их связыванием с дополнительными (МАР) белками микротрубочек и с другими клеточными компонентами.

Ацетилирование лизина в составе тубулинов значительно увеличивает стабильность микротрубочек. Другим примером модификации тубулинов может быть удаление терминального тирозина, что также характерно для стабильных микротрубочек. Эти модификации обратимы.

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как реснички и жгутики, как веретено клетки во время митоза, как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом же роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты.

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.

Центры организации микротрубочек.

Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)-конец микротрубочки. Так как время жизни микротрубочек очень коротко, то должно постоянно происходить образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация , происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)-концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано позже. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления.

Наличие центров организации микротрубочек доказывается прямыми экспериментами. Так, если в живых клетках полностью деполимеризовать микротрубочки или с помощью колцемида или путем охлаждения клеток, то после снятия воздействия первые признаки появления микротрубочек будут появляться в виде радиально расходящихся лучей, отходящих от одного места (цитастер). Обычно у клеток животного происхождения цитастер возникает в зоне клеточного центра. После такой первичной нуклеации микротрубочки начинают отрастать от ЦОМТ и заполнять всю цитоплазму. Следовательно, растущие периферические концы микротрубочек будут всегда (+)-концами, а (-)-концы будут располагаться в зоне ЦОМТ (рис. 271, 272).

Цитоплазматические микротрубочки возникают и расходятся от одного клеточного центра, с которым многие теряют связь, могут быстро разбираться, или, наоборот, могут стабилизироваться при ассоциации с дополнительными белками.

Одно из функциональных назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. Найдено, что у дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).

Действие колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клетки. Так, если отросчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность. Точно таким же образом ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и т.д. Так как при этом не исчезают элементарные формы присущего клеткам движения, такие, как пиноцитоз, ундулирующие движения мембран, образование мелких псевдоподий, то, роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Создавая такой внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения внутриклеточных компонентов, задавать своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек. Разрушение микротрубочек колхицином приводит к нарушению транспорта веществ в аксонах нервных клеток, к прекращению экзоцитоза и блокаде секреции. При разрушении микротрубочек цитоплазмы происходит фрагментация и разбегание по цитоплазме аппарата Гольджи, разрушение митохондриального ретикулума.

Долгое время считалось, что участие микротрубочек в движении цитоплазматических компонентов заключается лишь в том, что они создают систему упорядоченного движения. Иногда в популярной литературе цитоплазматические микротрубочки сравнивают с железнодорожными рельсами, без которых движение поездов невозможно, но которые сами по себе ничего не двигают. Одно время предполагали, что двигателем, локомотивом, может быть система актиновых филаментов, но оказалось, что механизм внутриклеточного перемещения различных мембранных и немембранных компонентов связан с группой иных белков.

Прогресс был достигнут при изучении т.н. аксонального транспорта в гигантских нейронах кальмара. Аксоны, отростки нервных клеток, могут иметь большую длину и заполнены большим числом микротрубочек и нейрофиламентов. В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт). Если аксон перетянуть тонкой лигатурой, то такой транспорт приведет к скоплению мелких вакуолей по обе стороны от перетяжки. Вакуоли, двигающиеся антероградно, содержат различные медиаторы, в том же направлении могут двигаться и митохондрии. Ретроградно двигаются вакуоли, образовавшиеся в результате эндоцитоза при рециклировании мембранных участков. Эти движения происходят с относительно высокой скоростью: от тела нейрона – 400 мм в сутки, в направлении к нейрону –200-300 мм в сутки (рис. 273).

Оказалось, что из отрезка гигантского аксона кальмара можно выделить аксоплазму, содержимое аксона. В капле выделенной аксоплазмы продолжается движение мелких вакуолей и гранул. С помощью видеоконтрастного устройства можно видеть, что движение мелких пузырьков происходит вдоль тонких нитчатых структур, вдоль микротрубочек. Из этих препаратов были выделены белки, ответственные за движение вакуолей. Один из них кинезин , белок с молекулярным весом около 300 тыс. Он состоит из двух сходных тяжелых полипептидных цепей и нескольких легких. Каждая тяжелая цепь образует глобулярную головку, которая при ассоциации с микротрубочкой обладает АТФ-азной активностью, в то время как легкие цепи связываются с мембраной пузырьков или других частиц (рис. 274). При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к (+)-концу микротрубочки. Оказалось возможным приклеить, иммобилизовать молекулы кинезина на поверхности стекла; если к такому препарату в присутствии АТФ добавить свободные микротрубочки, то последние начинают двигаться. Наоборот, можно иммобилизовать микротрубочки, но добавить к ним мембранные пузырьки, связанные с кинезином – пузырьки начинают двигаться вдоль микротрубочек.

Существует целое семейство кинезинов, обладающих сходными моторными головками, но отличающихся хвостовыми доменами. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие – только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы – кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.

За ретроградный транспорт в аксоне отвечает другой белок – цитоплазматический динеин (рис. 275).

Он состоит из двух тяжелых цепей – головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные – участвующие в переносе вакуолей и хромосом, и аксонемные – отвечающие за движение ресничек и жгутиков.

Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.

Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы – движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью.

Как мы видим, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную сиситему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немембранными органеллами; каждый из них образует в клетке трехмерную сетъ с характерньм распределеием, которая взаимодействует с сетями из другах компонентов. Они входят также в состав ряда другах сложно организованных органелл (ресничек, жгутиков, микроворсинок клеточного центра) и клеточных соединений (десмосом, полудесмосом опоясывающих десмосом).

Основные функции цитоскелета:

1. поддержание и изменение формы клетки;

2. распределение и перемещение компонентов клетки;

3. транспорт веществ в клетку и из нее;

4. обеспечение подвижности клетки;

5. участие в межклеточных соединениях.

Микротрубочки – наиболее крупные компоненты цитоскелета. Они представляют собой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толшиной стенки 5 нм и диаметром просвета 14-15 нм (рис. 3-14).

Рис. 3-14. Страение микротрубочки. 1 - мономеры тубулина, образующие протофиламенты, 2 - микротрубочка, 3 - пучок микротрубочек (МТ).

Стенка микротрубочки состоит из спиралевидно уложенных нитей – протофиламентов толшиной 5 нм (которым на поперечном разрезе соответствуют 13 субъединиц), образованных димерами из белковых молекул α- и β-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формируют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем:

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечньми мостиками (в отростках нейронов, в составе митотического веретена, сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки представляют собой лабильную систему, в которой имеется равновесие между их постоянной сборкой и диссоциацией. У большинства мики трубочек один конец (обозначаемый как «–» закреплен, а другой («+») свободен и участвует в их удлинении или деполимеризации. Структурами, обеспечивающими образование микротрубочек, служат особые мелкие сферические тельца - сателлиты (от англ. satellite – спутник), отчего последние называют центрами организации микротрубочек (ЦОМТ). Сателлиты содержатся в базальных тельцах ресничек и клеточном центре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полчаса. К ЦОМТ относят также и центромеры хромосом.



Убедительные опыты показали, что после инъекции меченых аминокислот вблизи тел клеток эти аминокислоты поглощаются телами и включаются в белок, который затем переносится по аксону к его окончаниям. В этих опытах установлены два общих типа аксонного транспорта: медленный транспорт, идущий со скоростью около 1 мм в сутки, и быстрый, идущий со скоростью нескольких сотен миллиметров в сутки. (ШЕППЕРД)

Связь микротрубочек с другими структурами клетки и межд боп осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков креплены к другим клеточным компонентам. (2) По своей длине трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другами образованиями, микротрубочки (которые сами не обладают сократимостью) обеспечивают перемещение, указанных структур по цитоплазме . (3) Некоторые белки, ассоциированные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкристин), вызьшает избирательную гибель быстроделящихся клеток. Поэтому некоторые из таких веществ успешно используются для химиотерапии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микротрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 мкм и диаметром 0.15-0.2 мкм – центриоляии, которые располагаются вблизи друг друга во взаимно перпендикулярных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечными белковьши мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется особая центральная нить), что описывается общей формулой (9х3) + 0. Каждый триплет центриоли связан со сферическими тельцами диаметром 75 нм – сателлитами; расходящиеся от них микротрубочки образуют центросферу.

Рис. 3-15. Клеточный центр (1) и структура центриоли (2). Клеточный центр образован парой центриолей (Ц), расположенных во взаимно-перпендикулярных плоскостях. Каждая Ц состоит из 9 связанных друг с другом триплетов (ТР) микротрубочек (МТ). С каждым ТР посредством ножек связаны сателлиты (С) – глобулярные белковые тельца, от которых отходят МТ.

В неделящейся клетке выявляется одна пара центриолей (диплосома), Которая обычно располагается вблизи ядра. Перед делением в S-периоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в триплеты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматинового веретена деления.

Рис. 3-16. Ресничка. 1 - продольный срез, 2 - поперечный срез. БТ - базальное тельце (образовано триадами микротрубочек), ЦОМТ - центр организации микротрубочек, БК - базальный корешок, ПЛ - плазмолемма, МТА - микротрубочка А, МТВ - микротрубочка В, ПМТ - периферические микротрубочки, ЦМТ - центральные микротрубочки, ЦО - центральная оболочка, ДР - динеиновые ручки, РС - радиаль-ные спицы, НМ - нексиновые мостики.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...