Специальные разделы курса. Нуклеозиды: строение, строение и номенклатура. Рибонуклеозиды и дезоксирибонуклеозиды Физические и химические свойства

Лекция Углеводы

Этим названием обозначаются широко распространенные в природе вещества. Они возникают в растительных организмах в результате сложной химической реакции, в которой участвуют вода, углекислый газ из воздуха и солнечная энергия, причем реакция происходит с участием зерен хлорофилла, находящегося в зеленой части растений.

Итак, углеводы (сахара) - одна из наиболее важных и распро­страненных групп природных органических соединений. Общая формула C m H 2 n O n (m и n ³3).

В растительном организме до 80% (сухого веса), а в животных организмах - до 2% (сухого веса) составляют углеводы.

В организме животных и человека углеводы (сахара) поступа­ют с различными пищевыми продуктами растительного проис­хождения, т.к. сахара не могут синтезироваться в организмах животного происхождения.

В растениях же углеводы образуются в процессе фотосинтеза из воды и углекислого газа (см. выше):

Углеводы имеют разное строение, их можно разделить на две группы: простые и сложные углеводы.

Простыми углеводами (моносахаридами) называются такие соединения, которые не могут гидролизоваться с образованием более простых углеводов.

Сложными углеводами (полисахаридами) называют такие со­единения, которые могут гидролизоваться с образованием про­стых углеводов.

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Понятие о пространственных изомерах углеводов. Циклические формы моносахаридов

В молекулах моносахаридов может содержаться от трех до девяти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на -оза. В зависимости от числа атомов углерода в молекуле моноса­хариды делятся на тетрозы, пентозы, гексозы и т.д. Наибольшее значение имеют гексозы и пентозы.

Рибоза и дезоксирибоза

В природе часто встречаются пентозы. Из них большой инте­рес представляют рибоза и дезоксирибоза, т.к. они входят в состав нуклеиновых кислот.

Название «дезоксирибоза» показывает, что по сравнению с рибозой в ее молекуле на одну-ОН группу меньше.

Молекулы рибозы и дезоксирибозы могут иметь как линей­ное, так и циклическое строение:

Важнейшими представителями гексоз являются глюкоза и фруктоза, на примере которых рассмотрим строение, номенкла­туру, изомерию и свойства моносахаридов.

Строение

Глюкоза и фруктоза являются изомерами и имеют молеку­лярную формулу С 6 Н 12 О 6 .

Строение моносахаридов было установлено с помощью реакций:

1) Восстановления глюкозы йодистым водородом, в результате этой реакции образуется 2-иодгексан.

2) Глюкоза вступает в реакцию с аммиачным раствором оксида серебра, что говорит о наличии в молекуле глюкозы альдегид­ной группы:

(С 5 Н 11 О 5)СОН+2OH®(C 5 H 11 O 5)COONH 4 +2Ag¯+3NH 3 +H 2 O

3) Глюкоза окисляется бромной водой в глюконовую кислоту:

(С 5 Н 11 О 6)СОН+Br 2 +Н 2 O®(С 5 Н 11 O 5)СООН+2HBr

4) При взаимодействии глюкозы с гидроксидом меди происходит окрашивание раствора в синий цвет - это качественная реак­ция для многоатомных спиртов. Количественные эксперимен­ты показали, что в молекуле глюкозы 5 гидроксильных групп. Таким образом, глюкоза - это пятиатомный альдегидоспирт.

5) В молекуле фруктозы также установлено наличие 5 спиртовых групп, но при энергичном окислении фруктоза образует две оксикислоты с двумя и четырьмя атомами углерода. Такое поведение характерно для кетонов. Таким образом, фрукто­за - многоатомный кетоноспирт:

Следовательно, моносахариды - это многоатомные альдегидо- или кетоноспирты.

Однако ряд экспериментальных фактов не находит объясне­ния в рамках такого строения моносахаридов: 1) моносахариды не дают некоторые реакции, характерные для альдегидов; в частности, они не образуют бисульфитных соеди­нений при взаимодействии с NaHSO 3 ;

2) при измерении оптической активности свежеприготовленных растворов глюкозы оказалось, что она с течением времени па­дает;

3) при нагревании моносахаридов с метиловым спиртом в присут­ствии HСl выпадает кристаллический осадок гликозида, кото­рый легко гидролизуется с образованием одной молекулы спирта.

Все эти факты нашли объяснение, когда предположили, что каждый моносахарид может существовать в виде несколь­ких таутомерных форм. В растворе, кроме развернутых цепей, существуют и циклические формы, которые образуются при внутримолекулярном взаимодействии альдегидной группы и гидроксильной группы при пятом атоме углерода:

Наличие циклической формы объясняет все вышеприведен­ные аномалии следующим образом:

1) в растворах преобладают циклические формы моносахаридов, открытые формы находятся в небольших количествах;

2) изменение оптической активности связано с установлением равновесия между открытой и циклической формами.

Образование гликозидов объясняется наличием гликозидного, или полуацетального гидроксила, который отличается большей ре­акционной способностью, чем остальные гидроксиды. Поэтому он легко взаимодействует со спиртами с образованием гликозидов. Хеуорс предложил изображать циклические формы Сахаров так, чтобы отчетливо были видны и кольцо, и заместители:

Циклические формы моносахаридов могут содержать пять или шесть атомов в цикле. Сахара с шестичленным циклом назы­ваются пиранозами, например, глюкоза - глюкопираноза; цик­лические формы Сахаров с пятичленным циклом называются фуранозами. Глюкоза с пятичленным циклом - глюкофураноза, а фруктоза с пятичленным циклом - фруктофураноза.

Номенклатура и изомерия моносахаридов Названия моносахаридов содержат греческие названия числа

атомов и окончание -оза (см. выше).

Наличие альдегидной и кетонной группы обозначается прибавлением слов альдоза, кетоза. Глюкоза - альдогексоза, фруктоза - кетогексоза.

Изомерия обусловлена наличием:

1) альдегидной или кетонной группы;

2) асимметричного атома углерода;

3) таутомерии (т.е. равновесия между разными формами молекулы).

Получение моносахаридов

1) В природе глюкоза и фруктоза (наряду с другими моносахари­дами) образуются в результате реакции фотосинтеза:

Исходя из этого можно сделать вывод, что ряд моносахаридов встречается в природе в свободном виде, например фруктоза и глюкоза содержатся в фруктах, фруктоза - в меде и т.д.

2) Гидролиз полисахаридов. Например, на производстве глюкозу чаще всего получают гидролизом крахмала в присутствии сер­ной кислоты:

3) Неполное окисление многоатомных спиртов.

4) Синтез из формальдегида в присутствии гидроксида кальция (предложен А. М. Бутлеровым в 1861 г.):

Физические свойства

Моносахариды представляют собой твердые вещества, спо­собные кристаллизоваться, гигроскопичны, хорошо растворимы в воде. Водные растворы их имеют нейтральную реакцию на лак­мус, большинство - сладкие на вкус. В спирте растворяются плохо, в эфире нерастворимы.

Глюкоза - бесцветное кристаллическое вещество, сладкое на вкус, хорошо растворимо в воде. Из водного раствора ее выделяют в виде кристаллогидрата С 6 Н 12 О 6 Н 2 О.

Химические свойства

Химические свойства моносахаридов обусловлены наличием в их молекулах различных функциональных групп.

1. Окисление моносахаридов:

(С 5 Н 11 O 6)СОН+2OH®(C 6 H 11 O 5)COONH 4 +2Ag¯+3NH 3 +H 2 O

2. Реакция спиртовых гидроксидов:

а) взаимодействие с гидроксидом меди (II) с образованием алкоголята меди (II);

б) образование простых эфиров;

в) образование сложных эфиров при взаимодействии с карбоновыми кислотами - реакция этерификации. Например, вза­имодействие глюкозы с уксусной кислотой или ее хлорангидридом:

3. Образование гликозидов (см. выше).

4. Брожение. Брожение - это сложный процесс, при котором происходит расщепление моносахаридов под влиянием раз­личных микроорганизмов. Различают брожение:

а) спиртовое:

Химические свойства глюкозы показаны также в табл. 41.

Применение глюкозы

Глюкоза - ценный питательный продукт. В организме она подвергается сложному биохимическому превращению, при этом высвобождается энергия, которая накапливается в процессе фо­тосинтеза, который протекает ступенчато, и поэтому энергия вы­деляется медленно (см. рис. 51).

Большое значение имеют процессы брожения глюкозы. На­пример, при квашении капусты, огурцов, скисании молока про­исходит молочнокислое брожение глюкозы, так же как при сило­совании кормов. Широко используется на практике спиртовое брожение глюкозы, например, при производстве пива.

Фруктоза

Фруктоза имеет такую же, как и глюкоза, молекулярную формулу (С 6 Н 12 О 6), но является не полиоксиальдегидом, а полиоксикетоном. Молекула фруктозы содержит три асимметричес­ких атома углерода, причем конфигурация у них такая же, как и у соответствующих атомов в молекуле глюкозы. Итак, фрукто­за - изомер и «близкий родственник» глюкозы. Она хорошо рас­творима в воде, имеет сладкий вкус (примерно в 3 раза слаще глюкозы).

Фруктоза также наиболее часто встречается в циклических формах (a- или b-), но, в отличие от глюкозы, в пятичленных. В водных растворах фруктозы имеет место равновесие:

Фруктоза и глюкоза в больших количествах содержатся в сладких фруктах, пчелином меде.

    Моносахариды: классификация; стереоизомерия, D– и L–ряды; открытая и циклические формы на примере D–глюкозы и 2–дезокси–D–рибозы, цикло–оксотаутомерия; мутаротация. Представители: D–ксилоза, D–рибоза, D–глю­коза, 2–дезокси–D–рибоза, D–глюкозамин.

Углеводы - гетерофункциональные соединения, являющиеся альдегидо- или кетономногоатомными спиртами или их производными. Класс углеводов включает разнообразные соединения - от низкомолекулярных, содержащих от 3 до 10 атомов углерода до полимеров с молекулярной массой в несколько миллионов. По отношению к кислотному гидролизу и по физико-химическим свойствам они подразделяются на три большие группы: моносахариды, олигосахариды и полисахариды .

Моносахариды (монозы) - углеводы, неспособные подвергаться кислотному гидролизу с образованием более простых сахаров. Монозы классифицируют по числу углеродных атомов, характеру функциональных групп, стереоизомерным рядам и аномерным формам. По функциональным группам моносахариды подразделяются на альдозы (содержат альдегидную группу) и кетозы (содержат карбонильную группу).


По числу углеродных атомов в цепи: триозы (3), тетрозы (4), пентозы (5), гексозы (6), гептозы (7) и т. д. до 10. Наиболее важное значение имеют пентозы и гексозы. По конфигурации последнего хирального атома углерода моносахариды делятся на стереоизомеры D- и L-ряда. В обменных реакциях в организме принимают участие, как правило, стереоизомеры D-ряда (D-глюкоза, D-фруктоза, D-рибоза, D-дезоксирибоза и др.)

В целом название индивидуального моносахарида включает:

Префикс, описывающий конфигурацию всех асимметрических атомов углерода;

Цифровой слог, определяющий число атомов углерода в цепи;

Суффикс -оза - для альдоз и -улоза - для кетоз, причем локант оксо- группы указывают только в том случае, если она находится не при атоме С-2.

Строение и стереоизомерия моносахаридов.

Молекулы моносахаридов содержат несколько центров хиральности, поэтому существует большое число стереоизомеров, соответствующих одной и той же структурной формуле. Так, число стереоизомеров альдопентоз равно восьми (2 n , где n = 3 ), среди которых 4 пары энантиомеров. У альдогексоз будет уже 16 стереоизомеров, т. е. 8 пар энантиомеров, так как в их углеродной цепи содержится 4 асимметрических атома углерода. Это аллоза, альтроза, галактоза, глюкоза, гулоза, идоза, манноза, талоза. Кетогексозы содержат по сравнению с соответствующими альдозами на один хиральный атом углерода меньше, поэтому число стереоизомеров (2 3) уменьшается до 8 (4 пары энантиомеров).

Относительная конфигурация моносахаридов определяется по конфигурации наиболее удаленного от карбонильной группы хирального атома углерода путем сравнения с конфигурационным стандартом - глицериновым альдегидом. При совпадении конфигурации этого атома углерода с конфигурацией D-глицеринового альдегида моносахарид в целом относят к D-ряду. И, наоборот, при совпадении с конфигурацией L-глицеринового альдегида, считают, что моносахарид принадлежит к L-ряду. Каждой альдозе D-ряда соответствует энантиомер L-ряда с противоположной конфигурацией всех центров хиральности.

(! ) Положение гидроксильной группы у последнего центра хиральности спра­ва свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. так же, как и в стереохимическом стандарте - глицерино­вом альдегиде.

Природная глюкоза является стереоизомером D -ряда . В равновесном состоянии растворы глюкозы обладают правым вращением (+52,5º), поэтому глюкозу иногда называют декстрозой. Название виноградный сахар глюкоза получила в связи с тем, что ее больше всего содержится в соке винограда.

Эпимерами называются диастереомеры моносахаридов, различающиеся конфигурацией только одного асимметрического атома углерода. Эпимером D-глюкозы по С 4 является D-галактоза, а по С 2 - манноза. Эпимеры в щелочной среде могут переходить друг в друга через ендиольную форму, и этот процесс называется эпимеризацией .

Таутомерия моносахаридов. Изучение свойств глюкозы показало:

1) спектрах поглощения растворов глюкозы отсутствует полоса, соответствующая альдегидной группе;

2) растворы глюкозы дают не все реакции на альдегидную группу (не взаимодействуют с NaHSО 3 и фуксинсернистой кислотой);

3) при взаимодействии со спиртами в присутствии «сухого» НСl глюкоза присоединяет, в отличие от альдегидов, только один эквивалент спирта;

4) свежеприготовленные растворы глюкозы мутаротируют в течение 1,5–2 часов меняют угол вращения плоскости поляризованного света.

Циклические формы моносахаридов по химической природе являются циклическими полуацеталями , которые образуются при взаимодействии альдегидной (или кетонной) группы со спиртовой группой моносахарида. В результате внутримолекулярного взаимодействия (А N механизм ) электрофильный атом углерода карбонильной группы атакуется нуклеофильным атомом кислорода гидроксильной группы. Образуются термодинамически более устойчивые пятичленные (фуранозные ) и шестичленные (пиранозные ) циклы. Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать клешневидную конформацию.

Представленные ниже графические изображе­ния циклических форм называются формулами Фишера (можно встретить и название «формулы Колли-Толленса»).


В этих реакциях С 1 атом из прохирального, в результате циклизации, становится хиральным (аномерный центр ).

Стереоизомеры, отличающиеся конфигурацией атома С-1 альдоз или С-2 кетоз в их циклической форме, называются аномерами , а сами атомы уг­лерода называются аномерным центром .

Группа ОН, появившаяся в результате циклизации, является полуацетальной. Она называется еще гликозидной гидроксильной группой. По свойствам она значительно отличается от остальных спиртовых групп моносахарида.

Образование дополнительного хирального центра приводит к возникновению новых стереоизомерных (аномерных) α- и β-форм. α-Аномерной формой называется такая, у которой полуацетальный гидроксил находится с той же стороны, что и гидроксил у последнего хирального центра, а β-формой - когда полуацетальный гидроксил находится по другую сторону, чем гидроксил у последнего хирального центра. Образуется 5 взаимно друг в друга переходящих таутомерных форм глюкозы. Такой вид таутомерии называется цикло-оксо-таутомерией . Таутомерные формы глюкозы находятся в растворе в состоянии равновесия.

В растворах моносахаридов преобладает циклическая полуацетальная форма (99,99 %) как более термодинамически выгодная. На долю ациклической формы, содержащей альдегидную группу, приходится менее 0,01 %, в связи с этим не идет реакция с NaHSO 3 , реакция с фуксинсернистой кислотой, а спектры поглощения растворов глюкозы не показывают наличия полосы, характерной для альдегидной группы.

Таким образом, моносахариды - циклические полуацетали альдегидо- или кетоно- многоатомных спиртов, существующие в растворе в равновесии со своими таутомерными ациклическими формами.

У свежеприготовленных растворов моносахаридов наблюдается явление мутаротации - изменения во времени угла вращения плоскости поляризации света. Аномерные α- и β-формы имеют различный угол вращения плоскости поляризованного света. Так, кристаллическая α,D-глюкопираноза при растворении ее в воде имеет начальный угол вращения +112,5º, а затем он постепенно уменьшается до +52,5º. Если растворить β,D-глюкопиранозу, ее начальный угол вращения + 19,3º, а затем он увеличивается до +52,5º. Это объясняется тем, что в течение некоторого времени устанавливается равновесие между α- и β-формами: 2/3 β-формы → 1/3 α-формы.

Предпочтительность образования того или другого аномера во многом определяется их конформационным строением. Наиболее выгодной для пиранозного цикла является конформация кресла , а для фуранозного цикла - конверта или твист -конформация. Наиболее важные гексозы - D-глюкоза, D-галактоза и D-манноза - существуют исключительно в конформации 4 С 1 . Более того, D-глюкоза из всех гексоз содержит максимальное число экваториальных заместителей в пиранозном цикле (а ее β-аномер - все).

У β-конформера все заместители находятся в наиболее выгодном экваториальном положении, поэтому этой формы в растворе 64 %, а α-конформер имеет аксиальное расположение полуацетального гидроксила. Именно α-конформер глюкозы содержится в организме человека и участвует в процессах метаболизма. Из β-конформера глюкозы построен полисахарид - клетчатка.

Формулы Хеуорса . Циклические формулы Фишера удачно описывают конфигурацию моносахаридов, однако они далеки от реальной геометрии мо­лекул. В перспективных формулах Хеуорса пиранозный и фуранозный циклы изображают в виде плоских правильных многоугольников (соответственно шести- или пятиугольника), лежащих горизонтально. Атом кислорода в цикле располагается в удалении от наблюдателя, причем для пираноз - в правом углу.

Атомы водорода и заместители (главным образом, группы СH 2 OH, если таковая имеется, и он) располагают над и под плоскостью цикла. Символы атомов углерода, как это принято при написании формул циклических соеди­нений, не показывают. Как правило, опускают и атомы водорода со связями к ним. Связи С-С, находящиеся ближе к наблюдателю, для наглядности иног­да показывают жирной линий, хотя это не обязательно.

Для перехода к формулам Хеуорса от циклических формул Фишера по­следнюю необходимо преобразовать так, чтобы атом кислорода цикла распо­лагался на одной прямой с атомами углерода, входящими в цикл. Если преобразованную формулу Фишера расположить гори­зонтально, как требует написание формул Хеуорса, то заместители, находив­шиеся справа от вертикальной линии углеродной цепи, окажутся под плоско­стью цикла, а те, что были слева, - над этой плоскостью.

Описанные выше преобразования показывают также, что полуацеталь­ный гидроксил у α-аномеров D-ряда находится под плоскостью цикла, у β-аномеров - над плоскостью. Кроме того, боковая цепь (при С-5 в пиранозах и при С-4 в фуранозах) располагается над плоскостью цикла, если она свя­зана с атомом углерода D-конфигурации, и снизу, если этот атом имеет L-кон­фигурацию.

Представители .

D -Ксилоза - «древесный сахар», моносахарид из группы пентоз с эмпирической формулой C 5 H 10 O 5 , принадлежит к альдозам. Содержится в эмбрионах растений в качестве эргастического вещества, а также является одним из мономеров полисахарида клеточных стенок гемицелюллозы.

D–Рибоза представляет собой вид простых сахаров, образующих углеводный остов РНК, управляя, таким образом, всеми жизненными процессами. Рибоза также участвует в производстве аденозинтрифосфорной кислоты (АТФ) и является одним из ее структурных компонентов.

2–Дезокси–D–рибоза - компо­нент дезоксирибонуклеиновых кислот (ДНК). Это исторически сложившееся название не является строго номенклатурным, так как в молекуле содержатся только два центра хиральности (без учета атома С-1 в циклической форме), поэтому это соединение с равным правом может быть названо 2-дезокси-D-арабинозой. Более правильное название для открытой формы: 2-дезокси-D-эритро-пентоза (D-эритро-конфигурация выделена цветом).

D–глюкозамин вещество, вырабатываемое хрящевой тканью суставов, является компонентом хондроитина и входит в состав синовиальной жидкости.

    Моносахариды: открытая и циклические формы на примере D–галактозы и D–фруктозы, фуранозы и пиранозы; – и β–аномеры; наиболее устойчивые конформации важнейших D–гексопираноз. Представители: D–галактоза, D–манноза, D–фруктоза, D–галактозамин (вопр. 1).

Таутомерные формы фруктозы образуются так же, как и таутомерные формы глюкозы, по реакции внутримолекулярного взаимодействия (А N). Электрофильным центром является атом углерода карбонильной группы у С 2, а нуклеофилом - кислород ОН-группы у 5 или 6 атома углерода.

Представители.

D–галактоза в животных и растительных организмах, в том числе в некоторыхмикроорганизмах. Входит в состав дисахаридов - лактозы и лактулозы. При окислении образует галактоновую, галактуроновуюи слизевую кислоты.

D–манноза компонент многих полисахаридов и смешанных биополимеров растительного, животного и бактериального происхождения.

D–фруктоза - моносахарид, кетогексоза, в живых организмах присутствует исключительно D-изомер, в свободном виде - почти во всех сладких ягодах и плодах - в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

"

Состоящий из 5 атомов углерода (пентоза), который образуется из рибозы, когда она теряет один атом кислорода. Эмпирическая химическая формула дезоксирибозы C 5 H 10 O 4 , и из-за потери атома кислорода она не согласуется с общей формулой для моносахаридов (CH 2 O) n , где n - целое число.

Физические и химические свойства

Формула дезоксирибозы в линейном виде может быть представлена следующим образом: H-(C=O)-(CH2)-(CHOH) 3 -H. Однако, существует она и в форме замкнутого кольца из атомов углерода.

Дезоксирибоза - это бесцветное твердое вещество, которое не имеет запаха и хорошо растворяется в воде. Ее молекулярная масса составляет 134,13 г/моль, температура плавления 91 °C. Получается она из рибозо-5-фосфата благодаря действию соответствующих ферментов во время химической реакции восстановления.

Различие между рибозой и дезоксирибозой

Как уже было сказано и как показывает название, дезоксирибоза - это химическое соединение, атомный состав которого отличается от такового для рибозы всего одним атомом кислорода. Как показано на рисунке ниже, у дезоксирибозы нет гидроксильной группы OH на втором атоме углерода.

Дезоксирибоза является частью цепи в то время как рибоза входит в состав кислота).

Интересно отметить, что моносахариды арабиноза и рибоза являются стереоизомерами, то есть отличаются пространственным расположением относительно плоскости кольца группы OH около 2-го атома углерода. Дезоксиарабиноза и дезоксирибоза - это одно и то же соединение, но используется именно второе название, поскольку получается эта молекула именно из рибозы.

Дезоксирибоза и генетическая информация

Поскольку дезоксирибоза является частью цепи ДНК, она играет важную - источник генетической информации, состоит из нуклеотидов, в состав которых входит дезоксирибоза. Молекулы дезоксирибозы связывают один нуклеотид с другим в цепи ДНК через фосфатные группы.

Установлено, что отсутствие гидроксильной группы OH в дезоксирибозе придает механическую гибкость всей цепи ДНК в сравнении с РНК, что, в свою очередь, позволяет молекуле ДНК образовывать двойную цепь и находиться в компактной форме внутри ядра клетки.

Кроме того, благодаря гибкости связей между нуклеотидами, образованных молекулами дезоксирибозы и фосфатными группами, цепь ДНК имеет значительно большую длину, чем РНК. Этот факт позволяет кодировать генетическую информацию с большой плотностью.

Из моносахаридов при замещении гидроксильных групп на аминогруппу (-NH 2) образуются аминосахара. В организме человека наиболее важными аминосахарами являются глюкозамин и галактозамин:

Они входят в состав сложных углеводов мукополисахаридов, которые выполняют защитную и специфическую функции, характерные для слизей, стекловидного тела глаза, синовиальной жидкости суставов, системы свертывания крови и др.

Из глюкозы в процессе ее окисления или восстановления образуются многие функционально важные вещества: аскорбиновая кислота, спирт сорбит, глюконовая, глюкуроновая, сиаловые и другие кислоты.

2.1.4. Рибоза и дезоксирибоза

Эти углеводы в свободном виде встречаются редко. Чаще они входят в состав сложных веществ, т.е. используются в организме в пластических процессах. Так, рибоза входит в состав нуклеотидов (АТФ,АДФ,АМФ) и РНК, а также многих коферментов (НАДФ,НАД,ФАД,ФМН,КоА). Дезоксирибоза входит в состав ДНК. В организме рибоза и дезоксирибоза (как и другие пентозы) находятся в циклической форме.

2.1.5. Глицериновый альдегид и диоксиацетон

Они образуются в тканях организма в процессе метаболизма глюкозы и фруктозы. Являясь изомерами, эти триозы способны к взаимопревращению:

В тканях организма в процессе метаболизма углеводов и жиров образуются фосфорные эфиры глицеринового альдегида и фосфодиоксиацетона. Фосфоглицериновый альдегид является высокоэнергетическим субстратом биологического окисления. В процессе его окисления образуется АТФ, пировиноградная кислота (ПВК) и молочная кислота (лактат).

Моносахариды легко вступают в химические взаимодействия, поэтому редко встречаются в живых организмах в свободном состоянии. Особенно важными для организма производными моносахаридов являются олигосахариды.

2.2. Олигосахариды

Это сложные углеводы, построенные из небольшого количества (от 2 до 10) остатков моносахаридов. Если два остатка моносахаридов соединены между собой 1,4 или 1,2-гликозидными связями, то образуются дисахариды. Основными дисахаридами являются сахароза, мальтоза и лактоза.Их молекулярная формула С 12 Н 22 О 12 .

2.2.1. Сахароза

Сахароза - (тростниковый или свекловичный сахар) состоит из остатка глюкозы и фруктозы, соединенных между собой 1,2-гликозидной связью, которая образуется при взаимодействии гидроксильной группы первого атома углерода глюкозы и гидроксильной группы второго атома углерода фруктозы.

Сахароза является основным компонентом пищевого сахара. В процессе пищеварения под влиянием фермента сахаразы расщепляется на глюкозу и фруктозу.

2.2.2. Мальтоза

Мальтоза - (фруктовый сахар) состоит из двух молекул глюкозы, соединенных 1,4-гликозидной связью:

Много мальтозы содержится в солодовых экстрактах злаков, проросших зернах. Она образуется в желудочно-кишечном тракте в процессе гидролиза крахмала или гликогена. При пищеварении распадается на две молекулы глюкозы под воздействием фермента мальтазы.

2.2.3. Лактоза

Лактоза - (молочный сахар) состоит из молекулы глюкозы и галактозы, которые соединены между собой 1,4-гликозидной связью:

Лактоза синтезируется в молочных железах в период лактации. В системе пищеварения человека лактоза расщепляется под воздействием лактазы на глюкозу и галактозу. Поступление лактозы в организм с пищей способствует развитию молочнокислых бактерий, подавляющих развитие гнилостных процессов. Однако, у людей, имеющих низкую активность фермента лактазы (у большинства взрослого населения Европы, Востока, арабских стран, Индии), развивается интолерантность к молоку.

Рассмотренные дисахариды имеют сладкий вкус Если сладость сахарозы принять за 100, то сладость лактозы составит 16, мальтозы -30, глюкозы -70, фруктозы -170. Кроме того, они обладают и высокой питательной ценностью. Поэтому они не рекомендуются для питания людей, страдающих ожирением и диабетом. Их заменяют искусственными веществами, например сахарином, которые имеют сладкий вкус (сладость сахарина -40000), но не усваиваются организмом.

Большинство углеводов в природе находятся в виде полисахаридов и делятся на две большие группы - гомо- и гетерополисахариды.

Тема урока

Ход урока:

1. Организационный момент

Приветствие. Отметка отсутствующих. Проверка готовности к уроку. Подготовка к работе.

Здравствуйте! На предыдущих уроках мы изучали моносахариды - гексозы. Но мир моносахаридов очень многообразен и кроме гексоз большое значение имеют пентозы.

2. Создание мотивации к изучению темы

Сегодня нам предстоит познакомиться с:

Классификацией пентоз,

Физическими свойствами,

Особенностями строения альдопентоз,

Биологической ролью пентоз в организме человека.

3. Повторение опорных знаний

Прежде чем перейти к изучению новой темы, вспомним, что мы изучали на прошлых занятиях.

Повторим следующие понятия: моносахариды, гексозы, альдогексозы, кетогексозы.

Студенты дают определения понятиям.

Моносахариды - это простые углеводы, не подвергающиеся гидролизу.

Гексозы - это моносахариды, содержащие 6 атомов углерода.

Альдогексозы - это гексозы, содержащие функциональную группу альдегидов.

Кетогексозы- это гексозы, содержащие функциональную группу кетонов.

Теперь необходимо ответить на следующие вопросы:

Задаются вопросы.

Какие вещества относят к углеводам?

Предполагаемый ответ: глюкоза, фруктоза, лактоза, крахмал, целлюлоза, мальтоза, рибоза.

Что служит источником углеводов?

Предполагаемый ответ: источником углеводов являются растения, в листьях которых под действием солнечной энергии протекает фотосинтез.

Какие углеводы относят к моносахаридам?

К каким классам веществ относится глюкоза по своему химическому строению?

Предполагаемый ответ: глюкоза относится к альдегидоспиртам.

Перечислите известные вам процессы брожения глюкозы.

Предполагаемый ответ: спиртовое, молочнокислое, маслянокислое брожение.

Какова роль глюкозы в жизни живых организмов?

Предполагаемый ответ: является источником энергии.

4. Изучение нового материала

Молекулы моносахаридов могут содержать от трех до десяти атомов углерода.

Ребята, давайте вспомним классификацию моносахаридов в зависимости от числа атомов углерода в молекуле.

Один студент выходит к доске и записывает в виде схемы классификацию моносахаридов.

Задаются вопросы.

Какие моносахариды из этой классификации вы уже изучали?

Предполагаемый ответ: гексозы.

Каков химический состав гексоз? Напишите формулу.

Предполагаемый ответ: С 6 Н 12 О 6.

Приведите примеры гексоз, которые мы изучали.

Предполагаемый ответ: глюкоза, фруктоза.

Объяснение схемы.

К триозам относятся молочная и пировиноградная кислоты, участвующие в процессах брожения и окисления, происходящих в живых организмах.
К тетрозам в первую очередь относится эритроза, активно участвующая в протекающих в организме процессах обмена веществ, она является посредником прежде всего в процессах фотосинтеза и выпрямляет кольцевидную форму молекул углеводов.
Сегодня мы будем изучать пентозы.

Задается вопрос.

Каков химический состав пентоз? Напишите формулу.

Предполагаемый ответ: С 5 Н 10 О 5.

Из пентоз состоят клетки животных и растительных организ-мов — это рибоза и дезоксирибоза. Они входят в состав нуклеиновых кислот: рибоза входит в состав рибонуклеиновой кислоты (РНК), дезоксирибоза - дезоксирибонуклеиновой кислоты (ДНК)

Итак, сформулируйте тему урока.

Студенты формулируют тему урока.

Тема урока: «Пентозы. Рибоза и дезоксирибоза как представители альдопентоз».

Все пентозы в зависимости от наличия кето- или альдогруппы делятся на кетопентозы (рибулоза, ксилулоза) и альдопентозы (рибоза, арабиноза, ксилоза, ликсоза).

Запись схемы на доске.

Объяснение схемы.

Изомер рибозы — рибулоза в виде фосфорного эфира участвует в обмене углеводов.

В растениях в обмене углеводов участвует и ксилулоза в виде фосфорного эфира.

Наибольший интерес представляют альдопентозы.

Рибоза играет очень важную роль в живых организмах. Она входит в состав РНК, нуклеотидов, витаминов, коферментов. Ее фосфорные эфиры участвуют в обмене углеводов.

Задается вопрос.

Какие функциональные группы входят в состав альдопентоз?

Предполагаемый ответ: группы альдегидов и спиртов.

Как с помощью качественных реакций подтвердить наличие функциональных групп в альдопентозах?

Предполагаемый ответ: реакция серебряного зеркала (альдегидная группа), реакция со свежеприготовленным гидроксидом меди (11) (спиртовая группа).

Для выяснения особенностей свойств и строения рибозы и дезоксирибозы заполним таблицу, используя опорный конспект, который у каждого на парте (Приложения А, Б).

п / п

Признак

Рибоза

Дезоксирибоза

Кем и когда открыто вещество

1905 г.

Фибус Ливен,

1929 г.

Физические свойства

Бесцветные кристаллы, легко растворимые в воде и имеющие сладкий вкус.

Бесцветное кристаллическое вещество, хорошо растворимое в воде.

Формула

C 5 H 10 O 5

C 5 H 10 O 4

Ациклическая форма

Циклическая форма

Нахождение в природе

Не встречается в свободном виде;

Составная часть олиго- и полисахаридов;

Находится в коже и слюнных железах животных;

Входит в состав РНК (рибонуклеиновых кислот),

Витамина В 2 ;

- компонент АТФ (аденозинтрифосфорной кислоты).

Не встречается в свободном виде.

- составная часть нуклеопротеидов, которыми богаты мясные и рыбные продукты;

Входит в состав ДНК (дезоксирибонуклеиновых кислот).

Биологическая роль

Перенос информации и энергии, а также некоторых коферментов и бактериальных полисахаридов. Участвует в синтезе белков и передаче наследственных признаков.

Для синтеза нуклеиновых кислот. Она является составным компонентом нуклеотидных коферментов, играющих важную роль в метаболизме живых существ. Участвуют в синтезе белков и передаче наследственных признаков.

Применение

Рибоза выпускается в виде отдельной спортивной пищевой добавки.

Нет информации по применению.

Объяснение таблицы.

Особенности рибозы и дезоксирибозы.

Состав дезоксирибозы не отвечает формуле С n (Н 2 О) m , считавшейся общей формулой всех углеводов.

Дезоксирибоза отличается от рибозы отсутствием в молекуле одной гидроксильной группы (оксигруппы), которая заменена атомом водорода. Отсюда и произошло название вещества (дезоксирибоза).

Структурные формулы точно указывают, при каком именно атоме углерода дезоксирибозы нет гидроксильной группы.

Подобно глюкозе молекулы пентоз существуют не только в альдегидной, но и в циклической форме. Замыкание кольца в них можно представить аналогичным образом. Отличие будет лишь в том, что карбонильная группа взаимодействует с гидроксилом не пятого, а четвертого атома углерода, и в результате перегруппировки атомов образуется не шестичленный, а пятичленный цикл.

5. Закрепление знаний

Студенты выполняют тест. Приложение А.

Студенты обмениваются тетрадями и сверяют свои ответы с верными, которые записаны на доске. Выставляют оценки друг другу.

Ответы к тесту.

1) Б,

2) В, Г,

3) А, Д,

4) А,

5) А.

6. Подведение итога урока

На этом уроке вы рас-смот-ре-ли тему « Пентозы. Рибоза и дезоксирибоза как представители альдопентоз ». В ходе за-ня-тия вы смог-ли углу-бить свои зна-ния об углеводах, узна-ли об особенностях строения рибозы и дезоксирибозы, а также об их биологической роли в организме человека.

Оценивание работы студентов. Выставление оценок.

7. Домашнее задание

Объяснение выполнения домашнего задания.

Подготовить сообщение на тему «Состав нуклеиновых кислот РНК и ДНК».

ПРИЛОЖЕНИЕ А

РИБОЗА

Рибоза - моносахарид из группы пентоз; бесцветные кристаллы, легко растворимые в воде и имеющие сладкий вкус. Открыта в 1905 году. Её формула С 5 Н 10 О 5 .

Моносахариды с пятью атомами углерода и пятью атомами кислорода не встречаются в природе в свободном виде, но являются важными составными частями олиго- и полисахаридов, содержащихся, например, в древесине.

В форме белковых соединений рибоза находится в коже и слюнных железах животных.

Она является основой рибонуклеиновой кислоты (РНК), а также основным ингредиентом, используемым организмом для создания молекулы АТФ.

Рибоза является неотъемлемой частью витамина В 2 и нуклеотидов.

Биологическая роль

Рибоза входит в состав рибонуклеиновых кислот (РНК), нуклеозидов, моно- и динуклеотидов, осуществляющих в клетках перенос информации и энергии, а также некоторых коферментов и бактериальных полисахаридов.

Применение

Дополнительное употребление рибозы существенно помогает восстановлению в сердечной мышце и скелетной мускулатуре энергетических запасов, утраченных в ходе изнурительных тренировок, при тяжелой физической работе или при ишемических состояниях, когда сокращается поступление кислорода в ткани. Такое сильное влияние рибозы обусловлено тем, что в тканях недостает ферментов, необходимых для ее быстрого синтеза, когда в этом есть потребность. Восполнение энергетических запасов замедляется, когда расходуются большие количества АТФ. В результате запасы АТФ и других соединений, необходимых для его замещения, уменьшаются. Все это объясняет, почему атлеты чувствуют себя уставшими в течение нескольких дней после интенсивной тренировки.

С недавних пор рибоза стала выпускаться в виде отдельной спортивной пищевой добавки, которая может быть представлена в форме порошка или в жидкой форме. Несмотря на всю пользу этого вещества, рибозу рекомендуют принимать в комплексе с другими спортивными добавками, так как она способна в разы усилить их действие. Наиболее удачной комбинацией с рибозой считается креатин.

ПРИЛОЖЕНИЕ Б

ДЕЗОКСИРИБОЗА

Дезоксирибоза - моносахарид из группы пентоз, содержащий на одну гидроксильную группу меньше, чем рибоза. Является бесцветным кристаллическим веществом, хорошо растворимым в воде. Химическая формула была открыта в 1929 году Фибусом Ливеном. Её формула С 5 Н 10 О 4 .

В свободном виде пентозы в пищевых продуктах не встречаются и поступают в организм человека в составе нуклеопротеидов, которыми богаты мясные и рыбные продукты.

Входит в состав углеводно-фосфатного скелета молекул ДНК (дезоксирибонуклеиновых кислот).

Биологическая роль

Дезоксирибоза используется для синтеза нуклеиновых кислот. Она является составным компонентом нуклеотидных коферментов, играющих важную роль в метаболизме живых существ. Участвуют в синтезе белков и передаче наследственных признаков.

Применение

Возможно применение в качестве пищевой добавки. В научной литературе пока не существует практического руководства по применению этой добавки - то есть, того, как ее использовать, в каких количествах, в какое время и каких результатов следует ожидать.

ПРИЛОЖЕНИЕ В

Тест по теме

«Пентозы. Рибоза и дезоксирибоза как представители альдопентоз».

1) Моносахаридом является:

2) Какое из соединений является кетозой?

5) Сколько гидроксильных групп входит в состав дезоксирибозы?

А) 3,

Б) 4,

В) 1,

Г) 2.

Критерии оценивания.

Верно 5 заданий - оценка «5»;

Верно 4 задания - оценка «4»;

Верно 3 задания - оценка «3»;

Верно 2 задания - оценка «2».



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...