Самодельный насос для отопления своими руками. Тепловые насосы своими руками: делаем тепловой насос для дома. Можно ли собрать тепловой насос с воими руками

Тепловой насос - штука интересная, но дорогая. Примерная стоимость оборудования + устройства внешнего контура от 300$ до 1000$ за 1 кВт мощности. Зная «рукастость» российского люда, легко предположить, что уже не один тепловой насос, сделанный своими руками, работает на просторах нашей необъятной и разноклиматической родины. Чаще всего встречаются самодельные аппараты, которые изготовили «холодильщики». И это понятно, ведь тепловой насос и морозильная камера работают по одному и тому же принципу, просто система тепловых установок ориентирована на сбор тепла, а не на его отведение, и компрессор используется большей мощности.

Что может стать источником тепла для теплового насоса

Тепло для обогрева помещения можно отбирать у воздуха на улице. Но тут неминуемо возникнут сложности при эксплуатации: слишком велики колебания температуры даже среднесуточные, не говоря уже о том, что нормальную эффективность тепловой насос показывает при температуре выше 0 o C. А как много регионов у нас имеют зимой такую картину? Весной, да и то не ранней, и не на всей территории, и не постоянно.

Намного более приемлемым выглядит источник тепла, расположенный в воде. Если рядом есть речка, озеро или приличной глубины пруд - это просто здорово: можно трубопровод просто утопить. Важно только чтобы там рыбаки с донками не рыбачили.

Еще один неплохой вариант - колодец, однако есть вероятность, что упадет уровень воды и придется вам искать другой источник. Но пока все нормально, работать будет неплохо: средняя температура воды в подземных горизонтах 5-7 o C. Этого для работы теплового насоса более чем достаточно.

Вы будете, возможно, удивлены, но использовать можно и канализацию - там температуры выше, чем в колодцах. Трубопровод можно будет разместить в сточной яме или колодце, но при условии, что он будет покрыт водой постоянно. И трубу нужно будет выбрать химически стойкую.

Горизонтальный подземный коллектор - дело чрезвычайно трудоемкое: снять грунт придется с нескольких соток на глубину ниже точки промерзания. Это очень большие объемы, которые в одиночку или даже с помощником не осилить. И, как показала практика, в наших климатических условиях такие системы малоэффективны: слишком суровы зимы.

С вертикальными коллекторами дело не лучше - без бурильной техники обойтись вряд ли удастся. Количество и глубина скважин зависят от грунта: разброс возможного съема тепла с метра скважины очень большой. От 25 Вт/м в сухом щебенистом и песчаном грунте, до 80-85 Вт/м во влажных щебенистых и песчаных почвах или в граните. Соответственно и разница в длине скважин в 3 раза и выше.

Вот схема отопления дома тепловым насосом. При использовании, как в описываемом примере, двух скважин и при отсутствии замкнутого контура, расстояние между двумя колодцами должно быть не менее 20 метров. И нужно учесть направление потока, чтобы холодная вода от насоса не снижала температуру в «донорской» скважине

В описываемом примере самодельного теплового насоса, источник тепла - колодец с хорошей скоростью поступления воды. Вода прибывает настолько быстро, что покрывает расход на бытовые потребности и ее хватает для переноса нужного количества тепла (была рассчитана необходимая скорости подачи воды, и соответственно подобран насос). Но источником тепла для этой модификации может служить любой из описанных выше, кроме воздуха. Определившись с источником тепла, можно будет изготовить тепловой насос для отопления дома.

Тепловой насос вода-вода из компрессора кондиционера

Этот тепловой насос из кондиционера несложно изготовить своими руками, но вам понадобиться помощь хорошего мастера по ремонту холодильной техники. Для изготовления вам нужно приобрести:


Все эти составляющие с платой за работу холодильщика (за сборку и пайку, заливку фреона) составили примерно 600$. Плюс затраты личного времени на обустройство входного контура и сборку.

Теперь приступаем к изготовлению самого теплового насоса.


Уделите больше внимания виброизоляции и шумопоглощению: если устройство будет стоять в доме, они без дополнительных мер по их нейтрализации прилично действуют на нервы.

В описываемом примере воду качают из колодца, водоносный горизонт расположен на глубине 4 метров. Один насос поднимает ее и подает в тепловой насос, во вторую скважину вода сбрасывается. Но можно организовать и замкнутый контур, тогда нужно будет рассчитать мощность циркуляционного насоса.

Это после работы «холодильщика»

Из опыта эксплуатации сделанного своими руками теплового насоса

Как показала практика использования, производительность представленного варианта невелика: 2,6-2,8 кВт. Говорить о высокой эффективности данного теплового насоса не приходится: на площади 60 м 2 при -5 o C на улице, сам он поддерживает +17 o C. Но система считалась и монтировалась под котел - радиаторы, при входящей температуры +45 o C, больше выдать просто не могут. Система в доме работала старая и количество радиаторов не увеличено, но пока в холода догревались печкой.

Если в конструкцию добавить регенеративный теплообменник, это повысит эффективность на 10-15%. Учитывая то, что затраты невелики, можно делать. Понадобиться две медные трубки по 1,5 метра. Одна диаметром 22 мм, вторая - 10 мм. На более тонкую для увеличения площади теплообмена, наматывается 4-х жильный проводник (длина 3-4 метра, диаметр 4 мм), концы его припаиваются к трубке, чтобы не разматывались. Трубка с намотанной проволокой аккуратно вставляется в трубку большего диаметра. Ее нужно установить между компрессором и испарителем. Доработка незначительная, но довольно ощутимо повышает эффективность. Правда, при определенных условиях небезопасная: в компрессор может попасть теплый фреон, что приведет к выходу его из строя.

Второй вариант повышения эффективности, более безопасный и не менее эффективный — встроить дополнительный теплообменник для подогрева воды или гликоля.

На что обратить внимание, если вы решили делать тепловой насос своими руками. Есть несколько вещей, о которых узнать можно только на опыте:

    • Пусковые токи конкретно этой установки были очень даже приличными. Не всегда ресурсов сети хватало для запуска установки. Потому, если делать серьезную установку, лучше брать трехфазный компрессор, и подводить, соответственно, трехфазный ввод. Да, недешево, но для стабильного старта однофазного компрессора требуется электронный стабилизатор приличной мощности, что тоже дешевым не назовешь.
    • Тепловой насос на готовой радиаторной системе не даст нормальной температуры в помещении. Они рассчитаны на другую температуру теплоносителей, которую эти установки, тем более самодельные, дать в состоянии крайне редко. Потому или модернизируйте систему (добавив как минимум столько же секций радиаторов), или устанавливайте водяные полы.
    • Если в колодце есть три кольца воды, это не значит, что дебет у него большой. Нужно знать, сколько он в состоянии давать воды при постоянном ее отборе.

Итоги

Несомненно, стоимость теплового насоса из кондиционера в разы ниже готовых заводских вариантов, даже китайского производства. Но нюансов тут море: нужно позаботиться об источнике и количестве подаваемого тепла, правильно рассчитать длину теплообменников (змеевиков), установить автоматику, обеспечить гарантированное питание, и т.д. Но если вы в состоянии решит эти проблемы, то это, несомненно, выгодно. Позволим дать вам совет: в первый год очень желательно иметь резервное отопление, а испытания и пробный пуск, лучше проводить еще летом, чтобы было время на доработку агрегата до начала отопительного сезона.

Экология познания. Усадьба: В последние десятилетия у владельцев домов появился довольно большой выбор систем отопления. Уже необязательно подключаться к централизованным сетям и использовать традиционные источники. Можно выбрать оборудование, работающее на альтернативной энергии, но его главный недостаток – дороговизна. Впрочем, если сделать тепловой насос своими руками из старого холодильника, систему можно существенно удешевить.

Сегодня мало кто сомневается в том, что тепловой насос для отопления дома – самое эффективное средство из всех существующих. Оно же - самое дорогое и сложное в исполнении. По этой причине многие домашние умельцы взялись за самостоятельное решение данной проблемы.

Но ввиду ее высокой сложности достижение положительных результатов дается весьма непросто, нужно иметь энтузиазм, терпение и вдобавок хорошо изучить теорию. Наша статья для тех, кто делает первый шаг на пути внедрения у себя дома такого альтернативного источника энергии, как тепловой насос, сделанный своими руками.

Устройство и принцип работы теплового насоса

Для сборки действующей модели теплового насоса не обойтись без знания теории, а точнее, принципа действия этого устройства. Хотелось бы изначально отметить, что утверждения о КПД в 300, 500 и 1000% - это миф или просто маркетинговый ход, рассчитанный на незнание рядовым пользователем законов физики. Так вот, тепловой насос – это устройство, берущее тепловую энергию в одном месте и перемещающее ее в другое с определенным КПД, не превышающим 100%. В отличие от котельных установок, он самостоятельно тепло не производит.

Примером могут служить домашние холодильники и кондиционеры, чья конструкция основана на так называемом цикле Карно, его же использует принцип работы теплового насоса для отопления или ГВС. Суть этого цикла заключается в движении вещества (рабочего тела) по замкнутой системе и меняющего свое агрегатное состояние с жидкого на газообразное и наоборот. В момент перехода выделяется или поглощается огромное количество энергии.

Чтобы пояснить на более доступном языке, перечислим основные элементы, которые включает в себя устройство теплового насоса:

  • компрессор;
  • теплообменник, где рабочее тело переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочее тело конденсируется (конденсатор);
  • расширительный (редукционный) клапан;
  • средства управления и автоматики;
  • магистрали из медных трубок.

В качестве рабочего тела выступает вещество, закипающее при низких температурах – фреон. Циркулируя по трубке в виде жидкости, первым делом он попадает в испаритель. После взаимодействия с теплоносителем от внешнего источника (воздух, вода, грунт) рабочее тело испаряется и продолжает свое движение в виде газа. На этом участке давление в системе - низкое. Всю цепочку цикла отражает принципиальная схема теплового насоса:

Пройдя компрессор, фреон под давлением движется ко второму теплообменнику, где ему предстоит сконденсироваться и передать полученное тепло воде, снова приняв жидкое состояние. Далее, рабочее тело попадает в расширительный клапан, давление снова падает и оно продолжает свой путь к испарению. Цикл завершен.

Заводские теплонасосы для жилого дома способны выдавать теплоноситель с температурой 55-60 ºС, этого достаточно для обогрева помещений радиаторами либо теплыми полами. При этом вся система отопления затрачивает электроэнергию на такие цели:

  • питание компрессора;
  • вращение роторов циркуляционных насосов наружного и внутреннего контура;
  • питание средств автоматики и контроля.

Получается, что при потреблении 1 кВт электричества действие теплового насоса может переместить в дом до 5 кВт тепловой энергии извне, отсюда и небылицы о КПД 500%.

Тепловой насос воздух-воздух

Теоретически любая среда, имеющая температуру выше абсолютного нуля (минус 273 ºС), обладает запасом тепловой энергии. А значит, ее можно извлечь, уж тем более это нетрудно сделать при температуре окружающего воздуха минус 10-30 ºС.

Для этой цели служит тепловой насос воздух-воздух, отнимающий тепло у наружной окружающей среды и перемещающий его внутрь частного дома. Это самый доступный способ по цене оборудования и стоимости монтажа, он же – наименее эффективный. Чем крепче мороз на улице, тем меньше тепла удается получить. Принцип действия системы показан на рисунке:

Наружный блок воздушного теплового насоса внешне похож на такой же агрегат сплит-системы, только внутри у него нет компрессора. Остается лишь пластинчатый теплообменник и вентилятор, чьей задачей является повысить интенсивность процесса путем нагнетания через пластины большого количества воздуха.

Тепловой насос вода-вода

Более эффективным вариантом считается тепловой насос вода-вода. Он извлекает тепловую энергию из ближайшего водоема, если таковой есть на расстоянии до 100 м от дома. Другой, более распространенный способ – отбор тепла у грунтовых вод через скважину. По сути, скважин нужно 2: одна для выкачивания воды, другая – для ее сброса. Ниже представлены схемы тепловых насосов, действующих по такому принципу:

Здесь есть свои нюансы. Вода из скважины должна проходить очистку перед попаданием теплообменник, а трубы надо прокладывать ниже глубины промерзания грунта. Другое дело – контур на дне водоема, он заполняется незамерзающей жидкостью (пропиленгликолем), что служит посредником между водой и хладагентом.

Способность обеспечить частный дом тепловой энергией в этом случае зависит от производительности скважины и объема воды в пруде. Также существуют варианты погружения внешнего контура в проточную воду реки или канализационный септик.

Также существуют геотермальные тепловые насосы, чей принцип работы не отличается от предыдущих типов аппаратов, только тепло извлекается из грунта на глубине, где температура всегда одинакова – плюс 7 ºС. Для этого в землю закапывается горизонтальный контур из труб, занимающий большую площадь, либо в скважины глубиной 25 м опускаются геотермальные зонды. В обоих случаях в качестве теплоносителя используется антифриз.

Считается, что работа теплового насоса, добывающего тепло из грунта, - самая стабильная и эффективная. Но покупка и монтаж подобного оборудования очень дороги, а домашние мастера-умельцы редко прибегают к реализации этого варианта.

Как собрать тепловой насос в домашних условиях?

Поскольку термодинамический расчет теплового насоса представляет для большинства домашних мастеров - самодельщиков немалую сложность, приводить его здесь мы не будем. Наша задача – представить несколько действующих моделей, чтобы любой энтузиаст мог взять какую-нибудь из них за основу для создания собственного детища.

Необходимо отметить, что тепловой насос, придуманный и собранный своими руками, для подавляющего большинства рядовых пользователей останется недостижимой мечтой, если не приложить к его изготовлению массу усилий и времени.

Простейший тепловой насос из старого холодильника был описан в статье журнала «Инженер» за 2006 г. Он позиционируется, как нагреватель воздух – воздух для небольшого помещения или теплицы. Кстати, какой бы ни был мощный бытовой холодильник, на обогрев даже небольшого дома его не хватит, а вот на 1 комнатку – вполне. Решение реализуется 2 способами, причем внутренняя автоматика отключения демонтируется и все агрегаты соединяются напрямую для непрерывной работы. В первом случае старый холодильник находится в помещении, конструкция насоса показана на схеме:

Снаружи к нему прокладывается 2 воздуховода и врезается в переднюю дверку. Воздух по верхнему каналу попадает в морозилку, охлаждается и опускается к нижнему воздуховоду из-за увеличения плотности. Затем он покидает корпус холодильника, вытесняемый верхним потоком. Помещение прогревается от теплообменника, расположенного на задней стенке агрегата. По второму способу сделать своими руками тепловой насос так же просто, надо лишь встроить холодильник в наружную стену, как изображено на схеме:

Самодельный обогреватель из холодильника может функционировать до наружной температуры минус 5 ºС, не ниже.

Тепловой насос из кондиционера

Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.

Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.

По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1-1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350-400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.

Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.

Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование. Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.

Заключение

Конечно, отопление дома тепловым насосом – мечта многих домовладельцев. К сожалению, стоимость установок слишком высокая, а справиться с собственноручным изготовлением могут единицы. И то зачастую мощности хватает лишь на ГВС, об отоплении речь не идет. Если бы все было так просто, то у нас в каждом доме стоял самодельный тепловой насос, а пока что он остается недоступным широкому кругу пользователей.

Повышение эффективности системы отопления дома является одной из главных задач его хозяина, поскольку расходы по этой статье в российских климатических условиях весьма значительны. Поэтому задача использования энергии окружающего пространства для отопления весьма интересна, постоянно развивается и остается предметом внимания, особенно в сообществе «самоделкиных». Собрать тепловой насос своими руками вполне доступно подготовленному человеку, поскольку особых сложностей эта работа не представляет, и необходимости в изготовлении деталей сложной конфигурации нет.

Он основан на сборе тепла из окружающего пространства и использовании его для системы отопления дома с целью уменьшения затрат на эту функцию. Аппараты такого типа имеются во многих домах, это холодильники, сплит – системы и кондиционеры. Некоторые из них имеют двойное назначение, выполняя по выбору пользователя либо отопление, либо охлаждение помещений в зависимости от потребности.

Теоретической основой таких машин является обратный цикл Карно. Но, не вникая в подробности, просто опишем процесс работы такого устройства.

Рис.1. Принципиальная схема работы теплового насоса в сети отопления

Рабочим телом в таких устройствах, как и в холодильниках, является фреон или аммиак, который компрессором нагнетается в нагревательный контур. При этом давление внутри системы резко повышается, поскольку выход теплоносителя перекрыт дросселем. Полученным теплом согревается теплоноситель в системе отопления дома, как правило, температура достигает уровня 64 о С. Горячий поток дополняет циркулирующий в основной отопительной сети, снижая потребление топлива. При определенном давлении дроссель открывается, и рабочее тело поступает в камеру испарителя. При этом его температура снижается. Дополнительное тепло получается из регистра сбора тепла. Далее цикл повторяется, как и в устройстве холодильника.

Расчет параметров системы

Мощность, которую потребует самодельный тепловой насос, можно рассчитать из соотношения:

R = ( k * v * T )/860, где

R мощность, необходимая для обогрева помещения

k коэффициент для учета тепловых потерь зданием (1 – качественно утепленное помещение, 4 – дощатый барак);

v – общий объем помещения, подлежащего отоплению;

T наибольший перепад температур внешнего мира и внутридомового пространства;

860 – коэффициент перевода результата расчета в кВт из ккал.

В качестве примера приведем расчет для дома 200 квадратных метров с высотой потолков 2,8 метра:

R = 1 * 200*2,8 * (22 — -25)/860 = 560 * 47 /860 = 30,6 кВт.

Целесообразно использовать теплонасос с запасом мощности 10 – 12%, то есть – порядка 35 кВт.

Нужно обратить внимание на такой показатель, как разность наружной и внутренней температур. Если брать подогретый воздух из окружающего пространства с температурой порядка 7 о С, показатель разности составит (22 – 7) 15 градусов, а мощность теплонасоса составит 9,8 кВт. Сравните два этих показателя и почувствуйте разницу при использовании тепла окружающего пространства.

Состав оборудования

Внешний контур

Для внешнего контура агрегата отопления дома понадобятся трубы. Наибольшей теплопроводностью обладают изделия из металла (но не из нержавеющей стали), поэтому для системы сбора тепла лучше применять их.

Тепловой насос полностью самому (фоторепортаж)
(модераторы , если необходимо, прошу подкорректировать, а то не получилось залить пост правильно)

Добрый день, форумчане!

Расскажу свою историю в которой пытался решить проблему отопления своего дома.

Предыстория:

Имелся только построенный дом на 2,5 этажа. Площадь:

1 этаж 64 м2,
2 этаж 94 м2,
2,5 этаж 55 м2,
гараж 30 м2.

С самого начала был куплен б/у газогенерационный котёл на дровах мощностью 40 к. в. Но как подошло время инсталляции совсем меня перестала радовать перспектива заготовки дров, извечная борьба с мусором, да и по натуре я больше дервиш, могу запросто пару дней дома не появляться.

И тогда я склонился к сжиженному газу. Замечу, что труба природного газа низкого давления проходит в 1,5 км от дома. Но плотность заселения у нас маленькая, и тянуть трубу ради меня одного + проект + инсталляция просто ввергает меня в ужас.

Ставить бочку на несколько кубов на участке я тоже не могу. Не хочется портить внешний вид. Решил установить пару шкафов с батареей 80-литровых пропановых баллонов из 6 штук в каждом.

Газовый оператор уверял, что сами приезжают, сами меняют, вы лишь только нам позвоните. К неудобствам относил лишь головную боль раз в три недели, а также возможность несанкционированного заезда газовой машины на мою бедующую брусчато-легковую стоянку, качения-волочения баллонов по ней же. В общем человеческий фактор. Но проблему разрешил случай:

Идея теплового насоса:

Идею теплового насоса вынашивал давно. Но камнем преткновения было однофазное электричество и допотопный счётчик на 20 ампер максимальной нагрузки. Поменять эклектическое питание на трёхфазное или прибавить мощность в нашем районе пока нет. Но неожиданно мне планово поменяли счётчик на новый, 40 амперный.

Прикинув, решил, что этого хватит на частичный обогрев (2,5 этаж я не планировал использовать зимой), взялся зондировать рынок тепловых насосов. Запрошенные в одной фирме цены (однофазные ТН на 12 киловат) заставили задуматься:

Thermia Diplomat TWS 12 к. в. ч. 6797 евро
Thermia Duo 12 к. в. ч. 5974 евро

Требовалось не менее 45 ампер на пусковой ток.
К тому же, так как планировалось брать теплосъём со скважинной воды, не было уверенности в дебете моей скважины. Чтобы не рисковать такой суммой решил собрать ТН сам, благо какие-то навыки были из жизни. Работал в бытность менеджером по распространению вентиляционно-кондиционерного оборудования.

Концепция:

Решил делать ТН из двух однофазных компрессоров по 24000 БТУ (7 кв. ч. по холоду). Так получался каскад общей тепловой мощностью 16-18 киловат при потреблении электричества при СОP3 около 4-4,5 киловат/часа. Выбор двух компрессоров был обусловлен меньшими стартовыми токами, так как их запуски думано не синхронизировать. А также поэтапность ввода в эксплуатацию. Пока обжит только второй этаж и хватит одного компрессора. Да и поэкспериментировав на одном, потом будет смелее доделать вторую секцию.

Отказался от использования пластинчатых теплообменников. Во первых, из соображения экономии, не хотелось выкладывать за Данфос по 389 евро за штуку. А во вторых, совместить теплообменник с ёмкостью теплоакомулятора, то есть, увеличив инерционность системы, убив тем самым двух зайцев. Да и не хотелось делать водоподготовку для нежных пластинчатых теплообменников, снижая тем самым КПД. А вода у меня плохая, с железом.

Первый этаж уже оснащён обвязкой тёплого пола с примерным шагом 15 см.


Второй этаж радиаторы (слава Богу, хватило скупости поставить их с 1,5 тепловым запасом ранее). Забор теплоносителя из скважины (12,5 м. Установлена на первый слой доломита. +5,9 замер на 03.2008). Утилизация отработанной воды в общедомовую канализацию (двух камерный отстойник + инфильтрационный грунтовый поглотитель). Принудительная циркуляция в контурах теплосъема.

Вот, принципиальная схема:

1. Компрессор (пока один).
2. Конденсатор.
3. Испаритель.
4. Терморегулирующий клапан (ТРВ)

От других устройств безопасности решено отказаться (фильтр-осушитель, смотровое окно, пресостат, ресивер). Но если кто видит смысл их использования, буду рад услышать советы!

Для расчёта системы скачал из Интернета программу расчёта CoolPack 1,46.

И неплохую программку по подбору компрессоров Copeland.

Компрессор:

Удалось закупить у старого знакомого холодильщика, мало б/у-шный компрессор от 7 киловатной сплит системы какого-то корейского кондиционера. Достался практически даром, да и не соврал, масло оказалось внутри совсем прозрачным, поработал всего сезон и был демонтирован в связи изменением концепции помещения заказчиком.

Компрессор оказался на мощность 25500 Бту, а это около 7,5 к. в. по холоду и около 9-9,5 по теплу. Что обрадовало, в корейском сплите стоял добротный компрессор американской фирмы Текумсет. Вот его данные:

Тех. характеристики.

Компрессор на R22 фреоне, а это значит чуть больший коэффициент полезного действия. Температура кипения -10с, конденсации +55с.

Ляпсус номер 1: По старой памяти думал, что на бытовых сплит системах ставятся только компрессоры Скрол типа (спиральные). Мой же оказался поршневым... (Выглядит чуть овальным и внутри болтается обмотка двигателя). Плохо, но не смертельно. К его минусам на четверть меньший ресурс, на четверть меньший коэффициент полезного действия, на четверть более шумный. Но ничего, опыт сын ошибок трудных.

Важно: Фреон R22 по Монреальскому протоколу полностью будет выведен из эксплуатации к 2030 году. С 2001 года запрещён ввод в эксплуатацию ввод новых установок (но я ввожу не новую, а модернизировал старую ). С 2010 года использование R22–го фреона только бывшего в эксплуатации. НО в любой момент можно перевести систему с R22 на его заменитель R422. И не испытывать затруднений далее.

Закрепил компрессор на стене кронштейнами L-300мм. Если буду потом монтировать второй, удлиняю имеющиеся с помощью U-профиля.

2. Конденсатор:

У знакомого сварщика удачно приобрёл бак из нержавейки примерно на 120 литров.
(Кстати, все сварные манипуляции с баком безвозмездно произвел уважаемый сварщик. Но просил упомянуть и его скромную роль для истории!)

Было решено разрезать его на две части вставить змеевик из медной трубы фреоновода, и сварить его обратно. Заодно и вварить несколько технических дюймово-резьбовых соединений.

Формула расчёты площади поверхности трубы медного змеевика:

M2 = kW/0,8 x ∆t

M2 - площадь трубы змеевика в квадратных метрах.
kW – Мощность тепловыделения системой (с компрессором) в киловатах.
0,8 – коофициент теплопроводности меди/воды при условии противотока сред.
∆t – разность температуры воды на входе и выходе системы (см. Схему). У меня это 35с-30с= +5 градусов Цельсия.

Так получается около 2 квадратных метров площади теплообмена змеевика. Я чуть уменьшил, так как температура на входе фреона около +82с градуса, на этом чуть можно сэкономить. Но как писал ранее Дед Морос , не более чем в размере 25% от размера испарителя!

Смоделированная системы в CoolPack показала Cop 2,44 на штатных диаметрах труб теплообменника. И Cop 2,99 при диаметре на шаг выше. А это мне и на руку, так как в будущем рассчитываю присоединить и второй компрессор на эту ветку. Решил использовать медную трубу ½’ дюйма (или 12,7 мм наружного диаметра), холодильную. Но, думаю, можно и обычную сантехническую, не так там и много грязи внутри будет.

Ляпсус номер 2: Использовал трубу со стенкой 0,8 мм. На деле она оказалась очень нежной, чуть передавил и уже она заминается. Сложно работать, тем более без особых навыков. Поэтому рекомендую брать трубу 1мм или 1,2 мм стенки. Так и по долговечности будет дольше.

Важно: Фреоновод змеевика входит в конденсатор сверху, выходит снизу. Так конденсируя жидкий фреон будет скапливаться внизу и уходит без пузырьков.

Взяв, таким образом, 35 метров трубы свернул её в змеевик, намотав на удобный цилиндрический предмет (баллон).

По краям зафиксировал витки двумя алюминиевыми рейками для прочности и равношаговости петель.


Концы вывел наружу с помощью сантехнических переходов на медную тубу на скрутку. Чуть рассверлит их с диаметра 12 на 12,7мм, и вместо обжимного кольца после сборки намотал льна на герметике и зажал контргайкой.

3. Испаритель:

Для испарителя не требовалось высокой температуры, и я выбрал пластмассовую ёмкость типа бочки на 127 литров с широкой горловиной.

Важно: Идеально подошла бы бочка на 65 литров. Но побоялся, труба ¾ очень плохо гнётся, поэтому взял размер побольше. Если у кого другие размеры или есть хороший трубогиб и навыки работы, то можно рискнуть и на этот размер. С бочкой 127 литров размеры моего ТН повысили ожидаемые габариты на 15 см вверх, 5 см в глубину и 10 см в ширину .

Рассчитал и изготовил испаритель по такому же принципу как и у конденсатора. Понадобилось 25 метров трубы ¾’ дюйма (19,2мм наружный) со стенкой 1,2мм. Как рёбра жёсткости использовал отрезки UD профиля для монтажа регипса. Скрутил обычной медной электротехнической проволокой без изоляции.

Важно: Испаритель затопленного типа. То есть жидкая фаза фреона заходит в охлаждаемую воду снизу, испаряется и в газообразном состоянии поднимается вверх к компрессору. Так лучше для теплопередачи.

Переходы можно взять пластмассовые от питьевой трубы PE 20*3/4’ с наружной резьбой, свинтив из с бочкой контргайками и уплотнением из льна и герметика. Подачу и сток воды сделал из обычных канализационных труб и резиновых уплотняющих манжет вставленных враспор.


Испаритель также был установлен на кронштейны L-400мм.


4. ТРВ:

Приобрёл ТРВ фирмы Honeywell (бывшая FLICA). На мою мощность потребовалась дюза к нему 3мм. И наличие выравнивателя давления.


Важно: ТРВ во время пайки нельзя перегреть выше +100с! Поэтому обматал его тряпочкой пропитанной водой для охлаждения. Прошу не ужасаться, после налёт почистил мелкой наждачной.

Припаял трубку линии выравнивания как положено к инструкции по монтажу ТРВ.


Сборка:

Прикупил комплект для жёсткой пайки Rotenberg. И электроды 3 штуки с 0% содержания серебра и 1 штуку с 40% содержания серебра для пайки в стороне компрессора (вибростойкий). С их помощью собрал всю систему.

Важно: Берите сразу баллон Максигаз 400 (жёлтый баллон)! Он не многим дороже Мультигаза 300 (красный), но производитель обещает до +2200с пламени. Но и этого недостаточно для ¾’ трубы. Паялось из рук вон плохо. Приходилось изловчаться, использовать тепловой экран, и т. д. В идеале конечно иметь кислородную горелку.

Да, и надо впаять в систему заправочный пипсик с ниппелем для подсоединения шланга. Не помню с головы его точное название.


Его впаял на входе в компрессор. Рядом же видна и входная труба выравнивателя ТРВ. Она впаивается после испарителя, термобаллона ТРВ, но до компрессора.

Важно: Заправочный пипсик паяем предварительно вывернув из него ниппель. Ни то от жары уплотнитель ниппеля однозначно выйдет из строя.

Редукционные тройники не использовал, так как боялся уменьшения надёжности от дополнительных паечных швов вблизи компрессора. Да и давление в этом месте не большое.


Заправка фреоном:

Собранную, но не заполненную водой систему надо вакуумировать. Лучше использовать вакуумный насос, если нет, то умельцы приспосабливают обычный компрессор от старого холодильника. Можно и просто, продуть-продавить систему фреоном выдавив воздух, но я вам этого не говорил, потому что так делать нельзя!

Баллон фреона самой небольшой ёмкости. Для системы вообще не нужно будет более 2 кг. фреона. Но чем богаты.

Также я приобрёл манометр для замера давления. Но не специальный фреоновый за 10 у. е., а обычный для насосной станции за 3,5 у. е. По нему и ориентировался при заполнении.

Заправил систему, на сколько возможно с помощью внутреннего давления фреона в баллоне. Дал постоять пару дней, давление не упало. Значит, утечки нет. Дополнительно промазал все соединения мыльной пеной, не пузырило.

Важно: Так как в моём случае заправочный ниппель впаян сразу перед компрессором (в дальнейшем будет замеряться давление в этом месте при настройке) ни в коем случае не заправлять систему с работающим компрессором жидким фреоном. Компрессор наверняка выйдет из строя. Только газообразной фазой - баллоном вверх!

Автоматика:

Необходимо однофазное пусковое реле, и при этом, на очень приличный пусковой ток около 40 А! Автоматический предохранитель С группы на 16А. Электрический щиток с DIN рейкой.

Также установил два реле температуры с копелярными термодатчиками. Один поставил на воду на выходе из конденсатора. Выставил примерно на 40 градусов, чтобы отключал систему при достижении водой этой температуры. И на выход воды из испарителя на 0 градусов, чтобы аварийно отключал систему и не разморозил её случаем.

В будущем думаю приобрести простейший контроллер, который учитывает эти две температуры. Но кроме внешнего вида и наглядности пользования у него есть и недостаток – запрограмированные значения сбиваются при даже кратковременном перебои электроснабжения. Пока в раздумьях.


Запуск (пробный):

Перед запуском напумповал в систему примерно 6 бар давления из баллона. Больше не получалось, да и незачем. Кинул временный провод, подсоединил пусковой конденсатор. Наполнил ёмкости водой предварительно. Они постояли с сутки, наполненные и потому, на момент запуска имели комнатную температуру около +15с.

Торжественно включил автомат. Его сразу же выбило. Ещё, то же самое. В этот небольшой промежуток слышно как двигатель гудит, но не запускается. Перебросил клеммы на конденсаторе (их почему-то три). Включил снова автомат. Приятный рокот работающего компрессора приласкал мой слух!

Давление на всасывании сразу упало до 2 бар. Открыл баллон с фреоном, чтобы система заполнялась. По табличке рассчитал необходимое давление кипения фреона.

Для моих необходимых на входе +6 и выходе воды +1, требуется температура кипения -4с. Фреон кипит при такой температуре при давлении 4,3 кг. см. (бар) (атмосфер). Таблицу можно найти и в Интернете.

Как не пытался выставить точное это давление, ничего не получалось. Система пока ещё не выведена на рабочий режим температур. Потому преждевременные регулировки лишь примерны.

Через минут пять подача достигла примерно +80 градусов. Пока не изолированная труба испарения покрылась лёгким инеем. Вода в конденсаторе через минут десять на ощупь уже нагрелась до +30 - +35. Вода в испарителе приблизилась к 0с. Чтобы чего не разморозить отключил систему.

Резюме: Пробный запуск показал полную работоспособность системы. Аномалий не замечено. Потребуется дальнейшие регулировки ТРВ и давления фреона после подключения контура отопления и охлаждения скважинной водой. Поэтому продолжение фоторепортажа и отчёта примерно через две-три недели , когда разберусь с этой частью работы.

К тому моменту, думаю:

1. Подсоединить контур обогрева помещений и контур теплообмена скважинной водой.
2. Произвести полный цикл пусконаладочных работ.
3. Изготовить какой-то корпус.
4. Сделать выводы и дать небольшое резюме.

Важно: ТН получился не такой уж маленький по размерам. Применив за место ёмкостных теплообменников пластинчатые, можно очень сильно сэкономить пространство.

Затраты на изготовление Теплового насоса примерной мощностью 9 киловат час по теплу:

Конденсатор:

Бак нержавейка 100 литров - 25 у. е.
Электроды нержавейка – 6 у. е.
Муфты нержавейка – 5 у. е.
Услуги сварщика (обед) – 5 у. е.
Медная труба 12,7 (1/2”)*0,8мм. 35 метров – 105 у. е.
Медная труба 10*1 мм. 1 метр – 3 у. е.

Отвоздушиватель Ду 15 – 5 у. е.
Предохранительный клапан 2,5 бар – 4 у. е.
Кран сливной Ду 15 – 2 у. е.

Итого: 163 у. е. (к сравнению, пластинчатый теплообменник Данфос 389 у. е)

Испаритель:

Бочка пласм. 120 литров - 12 у. е.
Медная труба 19.2 (3/4”)*1.2мм. 25 метров – 130 у. е.
Медная труба 6*1мм. 1 метр – 2 у. е.
Терморегулирующий вентиль Honeywell (дюза 3мм.) – 42 у. е.
Кронштейны L-400 2 штуки – 9 у. е.
Кран сливной Ду 15 – 2 у. е
Переходы на медь (комплект) – 3 у. е.
РВС труба 50-1м. 2 штуки – 4 у. е.
Резиновые переходы 75*50 2 штуки – 2 у. е.

Итого: 206 у. е. (к сравнению, пластинчатый теплообменник Данфос 389 у. е)

Компрессор:

Компрессор мало б/у 7,2 к. в. (25500 бту) – 30 у. е.
Кронштейны L-300 2 штуки – 8 у. е.
Фреон R22 2 кг. – 8 у. е.
Комплект монтажный – 4 у. е.

Итого: 50 у. е.

Монтажный комплект:

Паяльная лампа ROTENBERG (комплект) – 20 у. е.
Электроды жёсткой пайки (40% серебра) 3 штуки – 3,5 у. е.
Электроды жёсткой пайки (0% серебра) 3 штуки – 0,5 у. е.
Манометр для фреона 7 бар – 4 у. е.
Шланг заправочный - 7 у. е.

Итого: 35 у. е.

Автоматика:

Реле пускателя однофазное 20 А – 10 у. е.
Щиток электрический встраиваемый – 8 у. е.
Предохранитель однофазный С16 А – 4 у. е.

Итого: 22 у. е.

Итого в целом 476 у. е.

Важно: Потребуются на следующем этапе ещё циркуляционные насосы Calpada 25/60-180 60 у. е. и Calpeda 32/60-180 78 у. е. Они хоть и будут вынесены за приделы моего котла, но обычно относятся к самому котлу.

Неприятная динамика цен на энергопотребление стимулирует творческую фантазию и смекалку у владельцев частных домов и загородных коттеджей, которым надоело переплачивать за отопление. На многих участках сталкиваются с еще более насущной проблемой: недоступность прямого подключения к обычным источникам создают массу технических неудобств. Возможности решить эту проблему рационально упираются только в желание и умение — многообразие способов самодельного отопления, например собрать тепловой насос своими руками только подтверждает это.

Технологическая новинка, тепловой насос, востребована в мире уже пару десятилетий, но на российском рынке появляться стала сравнительно недавно. Принцип работы поразительно напоминает привычную бытовую технику, дополнительного знакомства с которой не требуется, — холодильник. Но, если последний использует радиаторы, чтобы передавать тепло из камер наружу, то насосная теплообменная станция действует в точности наоборот — вытягивая энергию из окружающей среды (существует несколько модификаций работающих с водой, воздухом и землей) преобразует ее в несколько этапов в внутренний отопительный контур дома, бассейна, теплицы.

Технологическая новинка, тепловой насос, востребована в мире уже пару десятилетий, но на российском рынке появляться стала сравнительно недавно

Функциональные разновидности тепловых насосов по источнику энергии

Грунт-вода (известен в народе под названием «рассол-вода» — из-за частого использования в качестве охлаждающей жидкости солевого раствора).

Ограниченные небольшими размерами участки оснащаются грунтовыми зондами, крупные — полноценными габаритными коллекторами. Циркулирующий по внешнему контуру хладагент притягивает на себя тепловую энергию, что содержится в рассеянном состоянии в каждой среде. Нагреваясь, теплообменная жидкость (используется аммиак, фреон или гликолевый раствор) проходит через испаритель (переводящий агрегатное состояние в газообразное), далее в компрессор (сжимающий газ, для повышения рабочих характеристик и теплоемкости). Центральный узел — конденсатор, собирающий грунтовое тепло и передающий его внутреннему контуру (системе отопления, по трубам которой циркулирует вода — она и распределит полученную энергию по периметру доступной области для обогрева целевого объекта). Отдавая тепло, хладагент возвращается в рабочее жидкое состояние и снова течет по трубкам под землю (редукционный клапан не пропустит газ) — начинается следующий цикл, каждый из которых дает, в среднем, 50 Вт за один метр глубины скважины.

Аналогичный принцип действия, отличается только тем, что вместо зондов, забирающих тепло из грунта, его аккумулируют воздушные компрессоры. Теплообменник передает полученную энергию как в вышеописанном случае системе жидкостного отопления, или непосредственно, во внутреннюю вентиляцию — актуально для снижения расходов на содержание погребов, теплиц и прочих помещений с обязательной регулировкой температуры и влажности.

Аналогичный принцип действия, отличается только тем, что вместо зондов, забирающих тепло из грунта, его аккумулируют воздушные компрессоры

Вода-вода

Нуждается в прямом доступе к грунтовым или поверхностным водам. Первый вариант позволяет добиться большей стабильности (подземные водоемы зимой не замерзают). Крайне эффективный вариант, особенно для обогрева бассейнов — годовая разница температуры воды в скважине составляет 10 — 15 градусов, но в то же время и самый трудоемкий в исполнении — тепловой насос своими руками собрать в такой конфигурации сможет человек, только обладающий навыками и экипированный профессиональными инструментами.

Тепловой насос системы Френнета (фрикционный теплоэлемент)

Конструкция не связана с предыдущими и отличается высоким КПД (впрочем, энтузиасты и реклама чрезмерно завышают это значение). Запатентованная Евгением Френнетом в 1977 году схема проста, надежна и позволяет собрать эффективный тепловой насос своими руками. Есть несколько модификаций с различным размещением и видоизменением рабочих агрегатов (одна версия будет подробно описана ниже), но общий принцип одинаков: цилиндр помещен в другой побольше, промежутки заливаются маслом. С одной стороны малого элемента располагается электромотор, с другой — радиатор, распространяющий тепло по помещению. Нагрев теплоносителя происходит за счет быстрого вращения внутреннего цилиндра подключенного к электроприводу. Способ доказал свою эффективность на практике и успешно применяется не только для обогрева небольших жилых помещений, но и для промышленных нужд.

Разумеется, точные расходы на приобретение и монтаж теплового насоса можно подсчитать только в индивидуальном случае — каждый вид имеет свои особенности. Грунтовые установки ориентировочно стоят 4 — 7 тысяч евро — и это без учета цены монтажных работ (которое тоже недешевые — в частности, бурение скважины для зондов). Не каждый способен выложить, не моргнув глазом, подобную сумму за аппарат, который окупится не раньше чем через 2-3 года (как показывает практика, параметр упирается в размеры помещения и его теплоизоляцию).Те, кому охота сэкономить, но не выбрасывая подобные суммы, могут собрать отопительную установку самостоятельно — при наличии прямых рук и базовых навыков со сварочными инструментами, это выполнимая задача для новичка. Стоимость же материалов и расходников для агрегата, аналогичного по характеристикам заводскому, не более 500 — 1000 евро.


Стоимость же материалов и расходников для агрегата, аналогичного по характеристикам заводскому, не более 500 — 1000 евро

Это классическая схема теплообменного элемента, работающего по принципу обратной машины Карно (описан выше). Совместима с воздушными, водными и геотермальными установками. Процедура не слишком сложна, ведь большинство деталей можно найти в готовом виде, единственная проблема для неспециалиста — расчеты оптимальных характеристик: мощности компрессора, состава хладагента, диаметра трубок, количество витков змеевика — параметров множество и каждый по своему влияет на качество и срок службы.

На сайтах, занимающихся продажей подобных отопительных систем, традиционно размещены онлайн калькуляторы для расчета необходимой техники. Отдельно можно найти в Сети и специальные приложения для инженеров, занимающихся теплоэнергетикой — программы CoolPack, Copeland и подобные. Разумеется, настоящий специалист даст более точную оценку поэтому, если есть возможность воспользоваться его услугами, то следует прибегнуть к такому варианту незамедлительно.


На сайтах, занимающихся продажей подобных отопительных систем, традиционно размещены онлайн калькуляторы для расчета необходимой техники.

Основные детали и расходные материалы (для теплового насоса мощностью 10-15 кВт)

  • Бак (нержавейка) — 100 литров.
  • Медная трубка — для змеевика, с толщиной стенок более 1 мм.
  • Компрессор — полностью идентичен используемому в кондиционере. Учитывая, что традиционно, срок службы конденсатора больше чем у кондиционных установок в целом, стоит порыться среди поломанных и нерабочих моделей или поискать готовую деталь отдельно. Высокая мощность и возможность работать летом в обратную сторону, на охлаждение помещения, дополняет низкий уровень шума (если повезет найти запчасть от качественной сплит-системы).
  • Пластиковый бак — хотя бы 80 литров. Станет корпусом испарителя.
  • Крепежные устройства, отвоздушиватель, кран сливной, шланги и клапаны. Прокладки, муфты, уплотнители и сантехнические переходники ко всему перечисленному.
  • Электрооборудование: реле, электроды, прочее.
  • Фреон. Средний хладагент имеет температуру кипения -10 и переходит в конденсированное состояние примерно -50. Модель R422 пока соблюдает все экологические стандарты и полностью отвечает требованиям.
  • Манометры, амперметр (пусковой ток включения компрессора может давать кратковременную, но сильную нагрузку на сеть. Стоит заранее убедиться, что все распределители выдержат до 40 ампер).
  • Компрессор прочно и надежно устанавливается с помощью кронштейнов на стену. Над входом приваривается клапан для заправки системы охлаждения.
  • Собирается спиральный змеевик. Нужно разобраться с необходимой площадью трубок — формула расчета прилагается: Общая мощность установки делится на произведение разницы температур системы и коэффициента теплопроводности меди в воде (постоянное число, равное 0,8).
  • Любая прямая труба непринужденно превращается в змеевик после намотки вокруг плотного цилиндра — отлично подойдет как каркас газовый баллон (поможет сохранить одинаковую форму и шаг каждого витка). Важно соблюдать полную герметичность на каждом соединении, не брезгуя уплотнителями, кольцами и прокладками.
  • Готовая деталь монтируется внутрь металлического бака. Для этого он разрезается пополам, внутрь входит змеевик (вход в конденсатор происходит сверху, чтобы внутри не скапливались пузырьки), все плотно германизируется и разрез заваривается.
  • Основой испарителя станет пластиковый бак (желательно с широкой горловиной). Удобнее брать как можно больший объем. Здесь медный змеевик рассчитывается, скручивается и устанавливается полностью согласно вышеприведенной схемы. Вода подается и выводится обычными пластиковыми канализационными трубами, обязательна установка терморегулирующего клапана.
Компрессор прочно и надежно устанавливается с помощью кронштейнов на стену
  • Собрав, сваривая концы труб между собой, отдельные детали в единую систему. Важно проверить герметичность швов и стыков, например, вакуумным насосом.
  • Самостоятельная заправка фреоном не рекомендуется. Но если нет возможности обратиться к мастеру, то нужно закачать не менее 2 кг охлаждающей жидкости. Спешит незачем, после заправки несколько дней проводится постоянная проверка давления и натирание мыльным раствором всех подозрительных участков (поможет выявить утечку).
  • Электроначинка включает в себя однофазное реле, предохранитель, щиток и рейку — на нее вывести два термодатчика — у выхода (до 40 градусов), у испарителя (около нуля — не выключение теплового насоса своими руками или автоматически при замерзании выведет и сроя всю систему).


Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...