Износ покрытий переходного типа и его причины. Износ дорожных покрытий и его причины. Способы укрепления верхнего слоя асфальта

Всегда удобно ехать в автомобиле по ровной и гладкой автостраде, развивая большую скорость. Отнюдь не редко качество трассы не позволяет это сделать, так как покрытие имеет отклонение от нормы и малопригодно для качественной езды. Со временем под давлением колес машин, особенно больших грузовых, влиянием неблагоприятных природных условий в виде дождя, града, резкой смены температуры, асфальтобетонный настил теряет свой первозданный вид. Покрывается мелкими трещинами, ямками, выбоинами, что укорачивает время качественной работы автотрассы. Езда по таким изношенным дорогам ведет к порче автомобилей и даже может привести к аварии.

Причины разрушения

В результате использования покрытий из асфальтобетона, они подвергаются различным деформациям. Износ дорог образуется из-за внешних и внутренних воздействий на . Дефекты на покрытии от влияния внешних факторов включают в себя:

  • силовые нагрузки от автомобильных колес;
  • атмосферные осадки (дождь, температурные изменения, оттаивание, снег, замораживание).

Основные причины разрушений — несоблюдение технологии укладки или ремонта дорожного полотна и воздействие автомобилей.

Внутренние факторы, связанные с разрушением асфальтобетонного покрытия, возникают вследствие неправильного составления проекта для дорог, их строительства и ремонта:

  1. К разрушению дорожной поверхности приводит неправильное проектирование асфальтобетонной автомобильной трассы. Неточно проведенные исследования, расчеты и допущенные ошибки при определении интенсивности потока транспортных средств могут способствовать образованию дефектов на дороге из асфальтобетона и привести к разрушению дорожного сооружения, а именно: нарушится целостность асфальтного слоя на дорожных покрытиях; грунт основания просядет; снизится прочность грунтовой подушки; последует износ асфальтобетонного настила.
  2. Применены старые методики и выбраны материалы низкого качества при работе с покрытием из асфальтобетона. Совсем недавно, для монтажа, укладки асфальтного раствора и ремонта трасс использовали горячие , в состав которых входил некачественный битум. Он вызывал повреждения дорожного настила и ухудшал прочностные характеристики готовой смеси для асфальтирования дорожной поверхности. Однако строительство не стоит на месте, и уже сегодня разрабатываются и внедряются новейшие полимерно-битумные материалы, способные значительно повысить свойства материала и будущей трассы. Большую популярность приобрели различные добавки в смесь для: улучшения сцепления, повышения стойкости к воздействию воды и образованию трещин. Благодаря этим добавкам обеспечивается стойкость дорожного полотна к минусовым температурам. Чтобы избежать дефектов и износа дорожного полотна, следует не только применять новые смеси для укладки асфальта, но и выбирать новые технологии, которые позволят стабилизировать и укрепить ослабшие подвижные почвы основания. Чтобы предотвратить разрушения покрытий, используют армирующую сетку, которая усилит дорожную конструкцию и увеличит продолжительность срока эксплуатации асфальтированного полотна.
  3. Дефекты и износ на асфальтобетонном покрытии возникают вследствие неправильного технологического процесса при возведении дорожной конструкции. Разрушения образовываются из-за допущенных ошибок при укладке асфальта и ремонте трассы. Способствуют возникновению дефектов нарушения правил перевозки асфальтобетонного раствора, в результате чего, смесь подается неправильной температуры. При уплотнении уложенной смеси не были удалены пузырьки воздуха или, наоборот, раствор был слишком уплотнен, тогда асфальтированное полотно начнет трескаться и расслаиваться. Разрушения трассы могут возникнуть в результате некачественной подготовки земельного полотна и работ по укладке дорожного сооружения.
  4. Дефекты на дорожном покрытии чаще всего образовываются в результате погодных условий, когда во время дождей влага проникает в асфальтированное полотно, а жаркие лучи солнца портят верхний слой трассы – осуществляется ухудшение прочности асфальтобетона, что приводит к образованию выбоин. В период минусовых температур собравшаяся влага в слоях асфальтобетона способна увеличиваться в объеме и тем самым разрушать структуру и уплотнение асфальта.
  5. В результате больших нагрузок от транспортных средств происходит разрушение дорожного полотна. Высокие нагрузки на поверхность трассы обусловлены интенсивным потоком транспортных средств, в результате чего, норма пропускной способности за 24 часа превышается и как последствие – ресурс полотна трассы снижается. Повышение осевой нагрузки вследствие эксплуатации дорожного покрытия транспортными средствами большой грузоподъемностью, приводит к разрушениям асфальтобетонного полотна, образованию колеи и трещин.

Повреждения дорожного покрытия из асфальтобетона могут происходить вследствие комплексного влияния внешних и внутренних факторов.

Основные виды дефектов


Типичные дефекты автомобильных дорог.

Асфальтобетонные повреждения бывают следующих видов:

  • Пролом. Представляет собой прорези на асфальтированном участке, где проходит поток транспортных средств. Если вовремя не залатать трещины, они способны увеличиться в размерах и превратиться в пролом большого диаметра.
  • Истечение срока службы. Разрушения, связанные с продолжительной эксплуатацией полотна, на котором не осуществлялся ремонт, сказываются на толщине слоя асфальтобетона.
  • Уменьшение прочности асфальтобетона. В результате больших нагрузок от тяжеловесных грузовых автомобилей образуется просадка полотна и разрушение верхнего слоя покрытия в виде неровностей, выбоин и колеи.
  • Выбоины. Разрушения в виде выбоин – это углубления с резким обрывом края, которые происходят из-за неправильной кладки асфальтобетона с использованием материалов низкого качества.
  • Шелушение. Образование шелушений на дорожной поверхности вследствие отделения из верхнего слоя частиц покрытия. Образуется из-за постоянных переменных воздействий на дорожную поверхность мороза и оттепели.
  • Климатические воздействия. В период таянья снежных масс образуется большое количество жидкости, которая способна разрушить полотно трассы, что влечет за собой снижение прочностных характеристик асфальтобетона.
  • Выкрашивание. Возникает этот тип повреждений вследствие нарушения укладки или ремонта дорожного полотна, а именно работы при атмосферных осадках или минусовых температурах.
  • Трещины. Образуются щели на дорожной поверхности в результате резкой перемены температурного режима.
  • Просадка. Возникает просадка из-за выбранных материалов низкого качества для укладки полотна, а также в результате недостаточного уплотнения асфальтной смеси или почвы.

Износ дорожных покрытий и его причины [доп. в. 29]

Наибольшее влияние на износ покрытий оказывают движущиеся автомобили. Под нагрузкой, передаваемой на колесо, шина деформируется (рис). При этом на участке входа шины в зону контакта с покрытием в шине происходит сжатие, а на выходе из контакта -- расширение. Путь, проходимый точкой на шине в плоскости контакта?1, меньше, чем вне его?. Поэтому в плоскости контакта точка движется с ускорением, большим по сравнению с тем, как она двигалась до входа в контакт с покрытием. В то же время угловая скорость a в секторах практически одна и та же. Поэтому точка проходит по покрытию путь определённой длины с проскальзыванием вместо одного качения.

Под действием этих усиленных касательных напряжений в плоскости следа происходит истирание покрытия и шины автомобиля. Наибольшие касательные усилия и наибольший износ возникают при торможении автомобиля. Износ при движении грузовых автомобилей примерно в 2 раза больше, чем при движении легковых. Чем больше прочность материала покрытия, тем меньше и равномернее по ширине износ покрытия. На покрытиях из малопрочных материалов интенсивность износа значительно выше, чаще образуются колеи и выбоины. Применение изверженных пород для щебня взамен осадочных уменьшает износ на 60 %. Увеличение содержания битума с 5 до 7 % снижает износ на 50--80 %.

Износ покрытия в пределах проезжей части и толщины покрытий происходит неравномерно и на покрытии образуются колеи истирания по полосам наката, глубина которых может колебаться от нескольких миллиметров до 40--50 мм. В таких колеях во время дождя создается значительный слой воды, что проводит к снижению сцепных качеств покрытия и аквапланированию.

Средняя величина износа по всей площади покрытия hср, составляет.

Срок службы асфальта в зависимости от его состава, характера укладки, места укладки и использованных технологий может различаться. Каждый слой асфальта имеет свой срок. К примеру, земляное покрытие может держаться без вмешательства до 10 лет. В то время как верхние слои асфальта без ремонта должны просуществовать около 3-5 лет. Однако дорога — это не естественное сооружение, а весьма сложная инженерная конструкция, и поэтому требует постоянного контроля, диагностики и периодического ремонта Износ дороги — это закономерное явление. На него оказывают влияние разные факторы, которые обычно разделяют на внутренние и внешние. К внутренним принято относить:

  • Погрешности во время проектирования дорог. Нередко к трещинам, заломам, ямам и преждевременному износу приводят ошибки в расчётах, геодезических замерах. Такие ошибки как правило, очень тяжело исправимы, чаще всего для их устранения необходимы дорогостоящие меры в частности капитальный ремонт.
  • Использование дешёвых и низкокачественных материалов. Привычно слышать о недобросовестных подрядчиках, использующих материалы, о которых не было условлено в соглашении. Между тем использование каждого вида материалов в строительстве дороги, обусловлено назначением трассы, её пропускной способностью, климатическими условиями, в которых ей предстоит функционировать. Поэтому использование низкокачественных материалов приводит к очень быстрому износу дороги. Порой за 1-2 года использования дорога проходит все стадии износа и подходит к критическому, требуя полного капитального ремонта.

  • Неправильная укладка дороги и несоблюдение правил СНИП и ГОСТ. Неправильная укладка дороги — ещё одна ситуация, о которой приходится нередко слышать. Например, ставшая уже анекдотической, укладка горячего асфальта в дождь. Или поставка горячего асфальта к месту укладки ниже требуемой температуры, что должно считаться браком. Несоблюдение технологий, указанных в ГОСТ и СНИП при укладке дорожного полотна могут впоследствии стать причиной раннего износа дороги — преждевременного образования трещин, ям, сколов, деформации земляного полотна и верхних слоёв дороги. Как правило, такие дефекты исправляются “латанием” трещин, проведением ямочного ремонта. Но они не всегда могут исправить ситуацию, а иной раз и вовсе способны только усугубить. Ямочный ремонт целесообразен для устранения проблемы на отдельном участке дороги. Если участок чересчур большой или источник дефекта располагается в глубинных слоях, ямочный ремонт дела не поправит.

Дорога — это сложная инженерная конструкция, где любая ошибка непременно скажется на будущем состоянии трассы.

К внешним факторам, приводящим к износу дороги относят:

  • Климатическая обстановка и погода. Чем более контрастный и переменчивый климат, тем хуже придётся дороге. Почти на всей европейской части России в году три контрастных сезона – похожие между собой весна и осень, изобилующие дождями и паводками, морозная зима и жаркое лето. Такие условия для дороги могут оказаться сложнее, чем, например, в южных регионах и странах, где основная проблема для дороги — это жара. То же и для северных регионов — основная задача морозоустойчивость дорожного полотна. В зонах с большим количеством осадков, перепадами температур, требования к асфальту выше. Асфальтовые смеси должны иметь возможность работать в широком температурном диапазоне. Это достигается особыми составами полимерно-битумных вяжущих.

  • Чрезмерно интенсивный транспортный поток. Интенсивность движения — один из главных факторов, способствующих износу дороги. Расчёты воздействия транспортных средств берутся на основе следующих показателей — марки автомобилей (легкие, средние, тяжелые) грузоподъёмности, общего веса, вместимости людей, интенсивности движения в обоих направлениях (количества автомобилей в сутки). Также в расчёт берется соотношение местного и транзитного транспорта. Интенсивность потока — очень динамичная категория, за которой нужен постоянный контроль. Так как на интенсивность транспорта могут повлиять разные факторы, не имеющие никакого отношения к дорожному хозяйству. Например, проведение спортивных соревнований в населённом пункте может резко увеличить количество транспорта и нагрузку на трассу. Строительство складов, торговых баз, торговых центров и иных объектов городской инфраструктуры может сказаться тем же образом. Повлиять могут и сами объекты дорожного хозяйства. Ремонт одной трассы или её критический износ могут резко увеличить интенсивность транспортного потока на другой трассе.

Стоит добавить, что разделение на внешние и внутренние факторы весьма условное, так как при проектировке дороги внешние факторы должны просчитываться с максимально возможной точностью.

Стадии износа дорожного полотна

Как было сказано выше, дорожный износ — ситуация закономерная. Если дорога строилась без ошибок в проектировании, а её укладка велась при должных условиях, то и износ будет вполне предсказуемым. Можно условно выделить три стадии износа дорожного полотна.

На первую стадию указывают незначительные сколы, трещины, вмятины на асфальте. Покрытие становится менее шероховатым. Такие изменения в зависимости от типа дороги, её категории и интенсивности транспортного потока могут возникнуть как спустя 1-2 года после укладки асфальта, так и спустя 3-4 года. Стоит отметить, что первая стадия износа — это нормальное состояние дорожного полотна. В этой стадии дорога может просуществовать очень долго без серьёзных изменений.

При переходе на вторую стадию износа дорожное полотно характеризуют заметные деформации — ямы, трещины и выбоины становятся объёмнее. Появляются ощутимые вмятины и неровности. На этой стадии требуется точечная реконструкция дороги — ямочный ремонт, санация трещин, армирование.

Третья стадия — это сильный износ. Если дорога вообще подходит к третьей стадии, это говорит в первую очередь о её крайне запущенном состоянии. Передвижение по такому асфальту становится опасным — сильные выбоины, трещины, глубокие ямы, разрушение обочины. Единственно возможный выход из этой ситуации — это капитальный ремонт дороги.

Способы укрепления верхнего слоя асфальта

Укрепление дорожной одежды и в частности верхнего слоя дороги, как наиболее уязвимого – важное мероприятие, которое продлевает срок службы полотна, и отодвигает необходимость проведения точечного или капитального ремонта.

Классическим способом укрепления асфальта является — укладка поверх старого покрытия нового слоя асфальтобетона. Слой может быть не один, а несколько. Такой способ довольно затратный, как в финансовом, так и в трудовом отношении. Дело в том, что, как показывает практика, толщина нового укрепляющего слоя должна быть от 12 до 15 см, для того, чтобы эффективно сопротивляться деформациям, которые провоцирует нижележащий слой. Если армирующий слой будет меньше, то он не сможет противостоять старому покрытию и работы потеряют всякую целесообразность.

Дополнительной защитной мерой служит установка так называемых мембран, которые служат в качестве отражателей трещин. Эти мембраны представляют собой смеси на основе резины и битума, а также минеральных добавок. Популярный способ — смешение мелкофракционного щебня с битумной добавкой. Слой прокладывается между новым и старым покрытием. Суть такого способа в прочном сцеплении обоих слоёв.

Хорошо зарекомендовало себя армирование верхнего слоя георешёткой. Материалом для георешёток служит полиэтилен, полиэфир, поливинилалкоголь и подобные синтетические волокна. Сетка предохраняет нижние слои дорожного полотна от старения и продлевает срок их службы. Она также снижает возможность образования колей и вмятин, что весьма актуально на дорогах с высокой интенсивностью движения. Кроме того, георешётки в некотором роде упрощают процесс укладки асфальта, снижая возможность технологических ошибок.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОУ ВПО ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра Строительных материалов

КОНТРОЛЬНАЯ РАБОТА

По дисциплине

"Стандартизация, метрология, сертификация"

по теме: "Нормативные сроки службы и износ дорожных конструкций"

Тюмень 2011г.

Литература

Глава 1. Элементы дорожной одежды, основные термины и определения

Дорожная одежда - многослойное искусственное сооружение, ограниченное проезжей частью автомобильной дороги, состоящее из дорожного покрытия, слоев основания и подстилающего слоя, воспринимающая многократно повторяющееся воздействие транспортных средств и погодно-климатических факторов и обеспечивающее передачу транспортной нагрузки на верхнюю часть земляного полотна.

К нежестким дорожным одеждам относят одежды со слоями, устроенными из разного вида асфальтобетонов (дегтебетонов), из материалов и грунтов, укрепленных битумом, цементом, известью, комплексными и другими вяжущими, а также из слабосвязных зернистых материалов (щебня, шлака, гравия и др.).

Различают следующие элементы дорожной одежды:

Покрытие - верхняя часть дорожной одежды, воспринимающая усилия от колес транспортных средств и подвергающаяся непосредственному воздействию атмосферных факторов.

По поверхности покрытия могут быть устроены слои поверхностных обработок различного назначения (слои для повышения шероховатости, защитные слои и т.п.).

Основание - часть конструкции дорожной одежды, расположенная под покрытием и обеспечивающая совместно с покрытием перераспределение напряжений в конструкции и снижение их величины в грунте рабочего слоя земляного полотна (подстилающем грунте), а также морозоустойчивость и осушение конструкции.

ОПРЕДЕЛЕНИЯ

Дорожная конструкция - инженерное сооружение, состоящее из дорожной одежды и верхней части земляного полотна в пределах рабочего слоя.

Прочность (несущая способность) дорожной конструкции - свойство, характеризующее способность дорожной конструкции воспринимать воздействие движущихся транспортных средств и погодно-климатических факторов.

Работоспособность дорожной конструкции - свойство дорожной конструкции сохранять запас прочности на многократно повторяющееся воздействие автомобильных нагрузок в пределах расчетных, межремонтных сроков службы.

Срок службы дорожной конструкции - период времени, в пределах которого происходит снижение ее прочности и надежности до расчетного уровня, предельно допустимого по условиям дорожного движения.

Надежность дорожной одежды - вероятность безотказной работы дорожной одежды в пределах расчетного (нормативного) межремонтного срока службы.

Уровень надежности дорожной одежды - количественный показатель надежности, определяемый как отношение длины прочных (недеформированных) участков дороги к ее общей длине.

Нормативный межремонтный период дорожной одежды - установленный действующими нормами временной период от момента строительства до капитального ремонта или между капитальными ремонтами.

Глава 2. Нормы межремонтных (расчетных) сроков службы

При конструировании дорожной одежды необходимо руководствоваться следующими принципами:

а) тип дорожной одежды и вид покрытия, конструкция одежды в целом должны удовлетворять транспортно-эксплуатационным требованиям, предъявляемым к дороге соответствующей категории и ожидаемым в перспективе составу и интенсивности движения с учетом изменения интенсивности движения в течение заданных межремонтных сроков и предполагаемых условий ремонта и содержания;

б) конструкция одежды может быть принята типовой или разработана индивидуально для каждого участка или ряда участков дороги, характеризующихся сходными природными условиями (грунт рабочего слоя земляного полотна, условия его увлажнения, климат, обеспеченность местными дорожно-строительными материалами и др.) с одинаковыми расчетными нагрузками. При выборе конструкции одежды для данных условий предпочтение следует отдавать проверенной на практике в данных условиях типовой конструкции;

в) в районах, недостаточно обеспеченных стандартными каменными материалами, допускается применять местные каменные материалы, побочные продукты промышленности и грунты, свойства которых могут быть улучшены обработкой их вяжущими (цемент, битум, известь, активные золы уноса и др.). Одновременно надо стремиться к созданию конструкции, по возможности наименее материалоемкой;

г) конструкция должна быть технологичной и обеспечивать возможность максимальной механизации и индустриализации дорожно-строительных процессов. Для достижения этой цели число слоев и видов материалов в конструкции должны быть минимальными;

д) при конструировании необходимо учитывать реальные условия проведения строительных работ (летняя или зимняя технология и др.).

Дорожную одежду следует проектировать с требуемым уровнем надежности, под которой понимают вероятность безотказной работы в течение межремонтного периода. Отказ конструкции по прочности физически может характеризоваться образованием продольной и поперечной неровности поверхности дорожной одежды, связанной с прочностью конструкции (поперечные неровности, колея, усталостные трещины), с последующим развитием других видов деформаций и разрушений (частые трещины, сетка трещин, выбоины, просадки, проломы и т.д.). Номенклатура дефектов и методика количественной оценки их определяется специальными нормами, используемыми при эксплуатации дорог.

Нормативный срок службы - эксплуатационный межремонтный период (от момента сдачи дороги в эксплуатацию до первого капитального ремонта) - задаваемый параметр на этапе проектирования. В зависимости от него подбираются строительные материалы воспринимающие различные расчетные нагрузки.

При отсутствии региональных норм расчетный срок службы дорожной одежды допускается назначить в соответствии с рекомендациями табл 2.1

Тип дорожной одежды

Срок службы в дорожно-климатических зонах Т сл, лет

Капитальные

Капитальные

Капитальные

Облегченные

Капитальные

Облегченные

Облегченные

переходные

Срок службы дорожной одежды - это период времени, в пределах которого происходит снижение несущей способности дорожной конструкции до уровня, предельно допускаемого по условиям движения.

Ремонт дорожной одежды осуществляют при достижении в процессе эксплуатации расчетного уровня надежности дорожной одежды и соответствующего ему предельного состояния покрытия по ровности.

Под надежностью дорожной одежды понимают вероятность безотказной работы конструкции в течение всего периода эксплуатации до ремонта. Количественно уровень надежности представляет отношение протяженности прочных (неповрежденных) участков к общей протяженности дорожной одежды с соответствующим значением коэффициента прочности.

Нормативные межремонтные сроки службы дорожной одежды и соответствующие им нормы уровней надежности принимают по табл. 2.2

дорожный автомобильный покрытие межремонтный

Таблица 2.2 Нормы межремонтных (расчетных) сроков службы (Т о) и нормы уровней надежности (К H) нежестких дорожных одежд

Интенсивность движение транспортного потока,

Тип дорожной одежды

Дорожно-климатическая зона

капитальный

капитальный

капитальный

облегченный

капитальный

облегченный

переходный

облегченный

переходный

Примечания

1. Промежуточные значения принимаются по интерполяции (для К H и Т о).

2. При расчете слоев усиления капитальных и облегченных дорожных одежд допускается уменьшение на 15 % нормы срока службы от минимальных значений при сохранении нормы уровня надежности.

При решении практических задач, связанных с оценкой фактических сроков службы нежестких дорожных одежд и транспортно-эксплуатационных качеств автомобильных дорог, руководствуются предельно допускаемыми эксплуатационными состояниями покрытия по ровности " i " в зависимости от уровня надежности дорожной одежды.

Срок службы дорожного покрытия - это период времени, в пределах которого снижаются сцепные качества покрытий (капитальные и облегченные дорожные одежды) или увеличивается износ поверхности покрытий (переходные и низшие дорожные одежды) до величин, предельно допускаемых по условиям движения.

Нормы межремонтных сроков службы дорожных покрытий (Т п) на дорогах с капитальными и облегченными дорожными одеждами принимают в зависимости от интенсивности движения транспортного потока в первый год после строительства или работ по устройству шероховатых поверхностей при ремонте дорог (табл. 2.3).

Таблица 2.3

Интенсивность движения по наиболее загруженной полосе, авт./сут.

Дорожно-климатические зоны

Нормы межремонтных сроков службы дорожных покрытий (Т п)

от 200 до 2500

от 200 до 2000

от 200 до 1500

от 2500 до 4500

от 2000 до 4000

от 1500 до 3000

or 4500 до 6600

от 4000 до 6000

от 3000 до 5000

Глава 3. Износ дорожных конструкций

3.1 Оценка качества и состояния автомобильной дороги

Качество дороги - степень соответствия всего комплекса показателей технического уровня, эксплуатационного состояния, инженерного оборудования и обустройства, а также уровня содержания нормативным требованиям, изменяющихся в процессе эксплуатации в результате воздействия транспортных средств, метеорологических условий и уровня содержания. Потребительские свойства дороги - совокупность ее транспортно-эксплуатационных показателей (ТЭП АД), непосредственно влияющих на эффективность и безопасность работы автомобильного транспорта, отражающих интересы пользователей дорог и влияние на окружающую среду, необходимо сохранить таким образом, чтобы она минимально теряла свою пропускную способность к окончанию расчетного эксплуатационного периода. К потребительским свойствам относятся обеспеченные дорогой: скорость, непрерывность, безопасность и удобство движения, пропускная способность и уровень загрузки движением; способность пропускать автомобили и автопоезда с разрешенными для движения осевыми нагрузками. Для сохранения потребительских свойств необходимо проводить диагностику автомобильных дорог, для своевременного вмешательства и предотвращения предельных состояний характеристик а/д. Диагностика включает в себя обследование, сбор и анализ информации о параметрах, характеристиках и условиях функционирования дорог и дорожных сооружений, наличии дефектов и причин их появления, характеристиках транспортных потоков и другой необходимой для оценки и прогноза состояния дорог и дорожных сооружений в процессе дальнейшей эксплуатации. Оценку качества и состояния автомобильных дорог производят:

* при сдаче дороги в эксплуатацию после строительства с целью определения начального фактического транспортно-эксплуатационного состояния и сопоставления с нормативными требованиями;

* периодически в процессе эксплуатации для контроля за динамикой изменения состояния дороги, прогнозирования этого изменения и планирования работ по ремонту и содержанию;

* при разработке плана мероприятий или проекта реконструкции, капитального ремонта или ремонта для определения ожидаемого транспортно-эксплуатационного состояния, сопоставления его с нормативными требованиями и оценки эффективности намеченных работ;

* после выполнения работ по реконструкции, капитальному ремонту и ремонту на участках выполнения этих работ с целью определения фактического изменения транспортно-эксплуатационного состояния дорог.

Для оценки состояния дорог и дорожных сооружений необходимы сбор и анализ значительного объема основной исходной информации по следующим показателям, параметрам и характеристикам:

1. Общие данные о дороге:

Номер и титул дороги, район ее расположения;

Орган управления и обслуживающая организация;

Оценка уровня содержания дороги за последние 12 месяцев.

2. Геометрические параметры и характеристики:

Ширина проезжей части, основной укрепленной поверхности дороги и укрепительных полос;

Ширина обочин, в т.ч. укрепленных; тип и состояние укрепления обочин; продольные уклоны;

Поперечные уклоны проезжей части и обочин;

Радиусы кривых в плане и уклон виража;

Высота насыпи, глубина выемки и уклоны их откосов; состояние земляного полотна;

Расстояние видимости поверхности дороги в плане и профиле.

3. Характеристики дорожной одежды и покрытия:

Конструкция дорожной одежды и тип покрытия;

Прочность и состояние дорожной одежды и покрытия (наличие, вид, расположение и характеристика дефектов);

Продольная ровность покрытия;

Поперечная ровность покрытия (колейность);

Шероховатость и коэффициент сцепления колеса с покрытием.

4. Искусственные сооружения:

Местоположение, тип, протяженность и габариты мостов, путепроводов, эстакад, тоннелей;

Грузоподъемность мостов, путепроводов и эстакад;

Наличие и высота бордюров;

Тип и состояние мостового полотна;

Наличие, материал, тип, размеры и состояние труб.

5. Обустройство и оборудование дорог:

Километровые знаки и сигнальные столбики;

Дорожные знаки, их дислокация, состояние и соответствие нормам и правилам размещения;

Разметка дороги, ее состояние и соответствие нормам и правилам нанесения;

Ограждения, их конструкция, место расположения, протяженность, состояние, соответствие нормам и правилам установки;

Освещение;

Примыкания, пересечения с автомобильными и железными дорогами, их тип, местоположение, соответствие нормам проектирования;

Автобусные остановки и павильоны, площадки отдыха, площадки для остановки и стоянки автомобилей, их основные параметры и их соответствие нормативным требованиям;

Дополнительные полосы проезжей части и переходно-скоростные полосы, их основные параметры.

6. Характеристики движения по дороге:

Интенсивность движения на характерных перегонах и динамика ее изменения за последние 3-5 лет;

Состав транспортного потока и динамика его изменения с выделением доли легковых и грузовых автомобилей различной грузоподъемности, автобусов, других транспортных средств;

Данные о дорожно-транспортных происшествиях за последние 3-5 лет с привязкой к километражу и выделением количества происшествий по дорожным условиям.

Кроме основной исходной информации для различных управленческих задач и формирования общей автоматизированной базы дорожных данных (АБДД) в процессе диагностики может собираться дополнительная информация, в частности: Конкретный объем дополнительно собираемой информации определяется договором (контрактом) на выполнение работ по диагностике и оценке состояния дорог

Конечным результатом оценки является обобщенный показатель качества и состояния дороги (П д), включающий в себя комплексный показатель транспортно-эксплуатационного состояния дороги (КП Д), показатель инженерного оборудования и обустройства (К ОБ) и показатель уровня эксплуатационного содержания (K Э):

П д = КП Д К ОБ К Э. (3.1)

Показатели П д, КП Д, К ОБ, К э являются критериями оценки качества и состояния дороги. Их нормативные значения для каждой категории принимают в соответствии с действующими нормативно-техническими документами. Нормативным считается такое состояние дороги, при котором ее параметры и характеристики обеспечивают значения комплексного показателя транспортно-эксплуатационного состояния не ниже нормативного (КП Д КП Н) в течение всего осенне-весеннего периода. Допустимым, но требующим улучшения и повышения уровня содержания, считается такое состояние дороги, при котором ее параметры и характеристики обеспечивают значение комплексного показателя транспортно-эксплуатационного состояния в осенне-весенний период ниже нормативного, но не ниже предельно допустимого (КП Н > КП Д > КП П).

Таблица 3.1 Нормативные значения КП Н (числитель) и предельно-допустимые КП П (знаменатель) значения комплексного показателя транспортно-эксплуатационного состояния дорог

Основная расчетная скорость, км/ч

На основном протяжении

На трудных участках местности

пересеченной

Примечание. Критерии выделения трудных участков пересеченной и горной местности приняты в соответствии с примечанием 1 к п. 4.1 СНиП 2.05.02-85. Недопустимым, требующим немедленного ремонта или реконструкции, считается такое состояние дороги, при котором значение комплексного показателя транспортно-эксплуатационного состояния дороги в осенне-весенний период ниже предельно допустимого (КП Д < КП П).

3.2 Формирование информационного банка данных о состоянии дорог

На основе результатов диагностики автомобильных дорог формируется и систематически обновляется автоматизированный банк дорожных данных (АБДД). АБДД является важнейшим элементом системы управления состоянием автомобильных дорог. Он представляет собой автоматизированную информационно-аналитическую систему, содержащую периодически обновляемую информацию об автомобильных дорогах, искусственных сооружениях, движении автотранспортных средств, ДТП, объектах сервиса и др. Кроме того, АБДД содержит комплекс расчетно-аналитических программ, позволяющих выполнять оценку состояния автомобильных дорог и решать комплекс вопросов, связанных с управлением состоянием автомобильных дорог. В зависимости от решаемых задач, АБДД делятся на общеотраслевые и локальные. Общеотраслевые банки данных функционируют в системе государственного органа управления дорожным хозяйством и содержат в основном технические данные об автомобильных дорогах и искусственных сооружениях, а также информацию о движении автотранспортных средств, ДТП, объектах сервиса и др. Комплекс расчетно-аналитических программ, входящих в структуру общеотраслевых банков данных, ориентирован в основном на решение вопросов, связанных с управлением состоянием сети федеральных автомобильных дорог, в том числе, с планированием ремонтных работ и распределением денежных средств, выделяемых на дорожные работы. Локальные банки данных функционируют в различных органах управления дорожным хозяйством и включают в себя технические данные об отдельных автомобильных дорогах (участках дорог) и искусственных сооружениях, а также информацию о движении автотранспортных средств, ДТП, объектах сервиса на этих дорогах. Кроме того, эти банки данных могут содержать специфические модули, отвечающие за отдельные направления административно-хозяйственной деятельности дорожных организаций.

Таблица 3.2 Укрупненный состав отраслевого автоматизированного банка дорожных данных (АБДД) (наименование баз данных)

Общие сведения по дороге

Интенсивность дорожного движения

Данные о ДТП

Ровность покрытия

Сцепные свойства покрытия

Прочность дорожной одежды

Дефекты а/б покрытия

дефекты ц/б покрытия

дорожно-климатическая зона

кривые в плане

ширина проезжей части

видимость в плане

продольный уклон

репер участка дороги

водопропускные трубы

разметка проезжей части

дорожные знаки

коммуникации

дорожная одежда

границы (областей и др.)

участки дорог, расположенные в населенных пунктах

стационарные пункты автоматизированного учета дорожного движения

реконструируемые участки дорог

расстояние между километровыми знаками

элементы земляного полотна и системы водоотвода

станции технического обслуживания

противошумовые и противоослепляющие экраны

сигнальные столбики

мостовые сооружения

лесополосы

развязки

ограждения

метеостанции

автобусн.

остановки

пешеходные дорожки и тротуары

снегозащитные сооружения

примыкания и пересечения

дорожные здания и сооружения

освещение дороги

подземные переходы

стационарные посты ДПС

вызывная связь

пункты питания

застройка

ремонтные работы

пункты медицинской помощи

кемпинги

автовокзалы

площадки отдыха

стационарные пункты весового контроля

объекты сервиса

3.3 Планирование дорожно-ремонтных работ

Таблица 3.3 Виды дорожных работ в зависимости от частных коэффициентов K pc i

Частный коэффициент K pc i

Учет влияния

Вид дорожно-ремонтных работ при K pc i < КП Н

Ширины и состояния обочин

Укрепление обочин

Интенсивности и состава движения, ширины фактически используемой укрепленной поверхности покрытия

Уширение проезжей части, устройство укрепительных полос, укрепление обочин, уширение мостов и путепроводов

Продольного уклона и видимости поверхности дороги

Смягчение продольного уклона, увеличение видимости

Радиуса кривых в плане

Увеличение радиусов кривых, устройство виражей, спрямление участка

Продольной ровности покрытия

Устройство выравнивающего слоя с поверхностной обработкой или восстановление верхнего слоя методами термопрофилирования и регенерации (ремонт покрытия при Е ф Е Т р). Ремонт (усиление) дорожной одежды при Е Ф < е тр

Сцепных качеств покрытия

Устройство шероховатой поверхности методом поверхностной обработки, втапливания щебня, укладки верхнего слоя из многощебенистого асфальтобетона

Поперечной ровности покрытия (колеи)

Ликвидация колеи методами перекрытия, заполнения, фрезерования

Безопасности движения

Мероприятия по повышению безопасности движения на опасных участках

Планирование ремонтных работ на основе "индексов соответствия"

Под "индексом соответствия", назначаемым экспертным путем, понимают уровень соответствия состояния участков дорог требованиям безопасности движения в сочетании с соответствием нормативным требованиям сцепных качеств и ровности покрытия, наличия виража и укрепленных обочин на этих участках.

Использование "индекса соответствия" не заменяет экономический критерий, а служит инструментом для анализа результатов диагностики в первую очередь на участках концентрации дорожно-транспортных происшествий и планирования дорожно-ремонтных работ в условиях недостаточного их финансирования.

При определении очередности ремонтных работ руководствуются таблицей3.4 с использованием которой может быть установлен средневзвешенный показатель очередности ремонтных работ.

Таблица 3.4

Очередность ремонтных работ

Состояние участка по условиям безопасности дорожного движения

Показатель очередности и состояния участка

Очень опасные или опасные и с неудовлетворительным коэффициентом сцепления

Очень опасные или опасные и с неудовлетворительной ровностью, или (и) отсутствием виража, или (и) с неукрепленной обочиной

Малоопасные и неопасные и с неудовлетворительным коэффициентом сцепления

Четвертая

Малоопасные и неопасные и с неудовлетворительной ровностью или (и) отсутствием виража, или (и) с неукрепленной обочиной

Остальные участки, нуждающиеся в ремонте

Примечание. Участкам, не требующим ремонта, присваивается показатель очередности или состояния, равный 5.

Глава 4. Нормы объемов работ и периодичность диагностики и обследования

Таблица 4.1

Параметры и элементы

Федеральные дороги

Местные дороги (территориальные)

Магистральные

Геометрические параметры плана и профиля (ширина проезжей части и обочин, продольные и поперечные уклоны, радиусы горизонтальных кривых, ширина разделительной полосы и др.)

При первичной диагностике эксплуатируемых дорог.

При повторной диагностике только на участках изменения геометрических параметров после проведения соответствующих ремонтных мероприятий или реконструкции

Ровность покрытия проезжей части: на участках с неудовлетворительной ровностью

Ежегодно

Раз в 2 года

Раз в 3 года

на остальных участках

Раз в 2 года

Раз в 3 года

Раз в 3 года

Сцепные свойства дорожных покрытий

Ежегодно

Раз в 2 года

Раз в 3 года

Визуальная регистрация дефектов дорожных одежд и покрытий с целью определения их состояния

Ежегодно

Ежегодно

Ежегодно

Прочность дорожной одежды, оценка состояния и системы водоотвода:

* на участках с к пр < 0,80

Ежегодно

Ежегодно

Раз в 3 года

* на остальных участках

Раз в 3 года

Раз в 4 года

Раз в 5 лет

а также после проведения работ по ремонту и реконструкции

Состояние дорожных устройств и обстановки дороги (площадки отдыха, площадки для стоянки автомобилей, автобусные остановки и автопавильоны, дорожные знаки и указатели, ограждения и др.)

Раз в 3 года

Раз в 4 года

Раз в 5 лет

Состояние водопропускных труб

Раз в 3 года

Раз в 4 года

Раз в 5 лет

Учет интенсивности движения и состава транспорта потока

Ежегодно

Раз в 3 года

Раз в 5 лет

Сбор информации об аварийности с выявлением участков концентрации ДТП и их детальным обследованием

Ежегодно

Ежегодно

Ежегодно

Формирование и обновление банка данных о состоянии дорог

Ежегодно

Ежегодно

Ежегодно

Литература

1. ВСН 41-88 Нормы межремонтных сроков службы дорожных одежд

2. ОДН 218.046-01 Проектирование дорожных одежд

3. ОДН 218.0.006 Правила диагностики и оценки состояния автомобильных дорог

Размещено на Allbest.ru

Подобные документы

    Определение основных технических нормативов автомобильной дороги. Проектирование плана закругления малого радиуса. Профили земляного полотна и проезжей части. Определение объемов земляных, планировочных и укрепительных работ. Конструкция дорожной одежды.

    курсовая работа , добавлен 26.02.2012

    Дорожно-климатические условия района строительства автомобильной дороги. Конструкция дорожной одежды. Технологическая последовательность строительства конструктивных слоев дорожной одежды. Определение сводной потребности в материальных ресурсах.

    курсовая работа , добавлен 24.05.2012

    Назначение конструкций дорожной одежды и расчет вариантов. Контроль качества работ при возведении земполотна и строительстве дорожной одежды. Рытьё котлована экскаватором, прокладка водопропускных труб. Определение сметной стоимости строительства.

    дипломная работа , добавлен 08.02.2017

    Природно-климатическая характеристика района строительства. Анализ проекта автомобильной дороги. Составление плана трассы. Конструирование и расчёт дорожной одежды. Определение сроков выполнения работ, необходимого количества транспортных средств.

    дипломная работа , добавлен 15.07.2015

    Анализ природно-климатических условий района строительства. Определение продолжительности работы специализированных отрядов. Проектирование организации работ по строительству дорожной одежды. Технологическая схема потока по устройству дорожной одежды.

    курсовая работа , добавлен 31.03.2010

    Физико-географическая характеристика района строительства. Выбор типа покрытия и конструкции дорожной одежды. Определение приведенных затрат и сроков строительства участка автодороги. Проект производства работ по устройству искусственных сооружений.

    дипломная работа , добавлен 27.02.2011

    Разработка локальной сметы на сооружение земляного полотна, на подготовительные работы, на устройство дорожной одежды, на искусственные сооружения и на обустройство дороги. Расчет экономической эффективности проекта от сокращения сроков строительства.

    курсовая работа , добавлен 11.09.2014

    Проектирование дорожной одежды и земляного полотна автомобильной трассы. Конструирование и расчет дорожной конструкции на прочность, морозоустойчивость, осушение. Определение приведенной интенсивности движения к расчетной нагрузке на одну полосу дороги.

    курсовая работа , добавлен 31.03.2008

    Анализ природно-климатических, грунтовых и гидрологических условий района строительства дороги. Определение сроков и объемов производства работ. Технология и организация строительства дорожных одежд. Контроль качества, охрана труда и окружающей среды.

    курсовая работа , добавлен 23.04.2009

    Исследование подготовительных работ при строительстве автомобильных дорог. Определение объёмов работ по расчистке дорожной полосы. Расчёт потребности в машинах, механизмах, рабочей силе. Устройство земляного полотна. Уклада верхних слоёв дорожной одежды.

Опыт скандинавских стран

Износ асфальтобетонных покрытий шипованной резиной

Данная статья ставит своей целью облегчить и ускорить адаптацию к российским условиям зарубежного, в первую очередь, скандинавского опыта проектирования, строительства, содержания и эксплуатации автомобильных дорог – с учетом износа дорожных покрытий шипованной резиной.

Проблема колейности – одна из самых злободневных, наряду с другими дорожными «болезнями», имеющими более солидный возраст. Она особенно актуальна для проектировщиков, строителей, эксплуатационников и владельцев тех автомобильных дорог, которые отличаются высокой интенсивностью движения и/или расположенных в I и II дорожно-климатических зонах и в высокогорных районах.

Обобщение результатов исследований, выполненных в зарубежных странах с холодным климатом, а также обследования эксплуатационно-технического состояния покрытий автомобильных дорог в Санкт-Петербурге показали, что существенной причиной образования колейности на нежестких дорожных одеждах является износ шипованной резиной. Шипованные автопокрышки, применяемые в холодное (и не только) время года, по своему воздействию напоминают дорожную фрезу, только с меньшим эффектом.

Годовой износ верхнего слоя асфальтобетонного покрытия на дорогах с разным уровнем интенсивности движения колеблется в довольно широких пределах – от 5 до 10 и более мм.

К сожалению, действующими в РФ нормативными документами износ дорожных покрытий шипованной резиной практически не учитывается, отсутствуют методики прогнозирования данного износа, а также требования к износостойкости покрытий автомобильных дорог разных технических категорий.

При этом в скандинавских странах (особенно в Финляндии и Швеции), северных штатах США, Канаде и других странах проведен огромный объем научных исследований по данной проблеме, разработаны методики оценки величины износа и предложены методы снижения колееобразования.

Актуальность и статистика

Согласно исследованиям Unhola (1997 г.), в Финляндии легковым автомобилем с четырьмя шипованными шинами при скорости движения 100 км/ ч, при 100 км пробега в 1960 х годах изнашивалось 11 кг материала покрытия, в 1990 х – только 2,5 кг. Исследования Lampinen (1993 г.) показали, что колейность удалось снизить путем внедрения эффективной системы управления состоянием дорожной одежды (Pavement Management System), а также за счет регламентации требований к шипованным шинам, снижения скорости движения в зимний период и применения высококачественных каменных заполнителей асфальтобетона.

Износ покрытий в Швеции в 1975 г. составлял 100 г/ машино-км, а в 1995 г – только 20 г/ машино-км (Jacobson, 1997 г.). Исследованиям Gustafson (1997 г.), показали, что за зимний период 1988-1989 г.г. дорожные покрытия в Швеции «потеряли» 450000 тонн материала. Это обошлось шведам около $35 млн. Öberg (1997 г.) сообщает те же цифры, отмечая, что дополнительные затраты на ликвидацию износа дорожной разметки и очистку дорожных знаков от загрязнения снизились с $4-8 млн. до $2-4 млн.

Jacobson и Hornwall в 1999 г. пришли к выводу, что 60-90 % колейности на дорогах интенсивным движением создает именно шипованная резина.

Испытания на стенде-имитаторе ДД, проведенные шведским Дорожно-транспортным институтом (VTI), показали, что шины с легкими шипами (1,0 г) создают вдвое меньший износ, чем шины с более тяжелыми стальными шипами (1,8 г), (Jacobson and Wågberg, 1998 г.). Даже при возросшем использовании шипованной резины, износ покрытий значительно уменьшился (Jacobson и Hornwall, 1999 г.). Сейчас шведским правительством принято решение об обязательности использования шипованной резины в условиях зимней скользкости (Öberg, 2002 г.).

Cогласно исследованиям Løberg (1997 г.), на норвежских автомобильных дорогах с твердым покрытием протяженностью 63000 км шипованной резиной ежегодно изнашивается 300000 тонн материала.

В последние годы во всех скандинавских странах наблюдается устойчивая тенденция к снижению износа покрытий шипованной резиной. Факторы, способствующие этому, подробнее рассматриваются ниже.

Нормативное регулирование применения шипованной резины в скандинавских странах

Шипованную резину в зимний период разрешено применять (с некоторыми сезонными ограничениями) в Дании, Финляндии, Норвегии и Швеции. В Дании и Швеции периоды разрешенного использования шипованных шин одинаковы (с 1 октября до конца апреля). В Финляндии и Норвегии – с 1 ноября до первого понедельника после Пасхи (исключение – Северная Норвегия где этот период несколько продлен). В Финляндии и Швеции регламентируется количество устанавливаемых на одной шине шипов, выступ шипа и его вес. В Норвегии эти требования несколько снижены. В таблице 1 приведена сводка нормативов, действующих в скандинавских странах («Оrdic Regulations», 2003 г.)

Таб. 1. Сводка скандинавских нормативов на шипованные шины

Страна Разрешенный сезон использования шипованной резины Количество шипов на одной шине, шт Выступ шипа Сила действия шипа /вес
Дания С 1 октября по 30 апреля Не ограничено Не ограничено Не ограничено
Финляндия С 1 ноября по первый понедельник после Пасхи Количество зависит от размера шины:шина13” – max. 90 шт.

шина 14 – 15“-max. 110 шт.

PC – 3,2 ммCV – 3,5 мм
Норвегия С 1 ноября по первый понедельник после Пасхи. (В северной Норвегии с 16 октября по 30 апреля)

шина 14 – 15“-max. 110 шт.

шина 16” или более – max. 150 шт.

PC – 3,2 ммCV – 3,7 мм PC 120N/3,1г.C/LT 180N/2,3 г.
Швеция С 1 октября по 30 апреля Количество зависит от размера шины:шина 13” – max. 90 шт.

шина 14 – 15“-max. 110 шт.

шина 16” или более – max. 130 шт.

PC – 3,2 ммCV – 3,5 мм PC 120N/3,1г.C/LT 180N/2,3 г.
Исландия С 1 ноября по 15 апреля

В Финляндии шипованная резина применяется с 1960 х годов, и в зимний период она устанавливается примерно на 95% пассажирских автомобилей. Антигололедная обработка дорожных покрытий в Финляндии производится дорожной солью. Совместное применение соли и шипованной резины вызывает ряд негативных последствий для окружающей природы. В начале 1990 х годов финское правительство провело серию экспериментальных работ для выяснения возможности относительного уменьшения количества автомобилей с шипованной резиной и снижения расхода соли (или обоих мероприятий в разных комбинациях). Исследования показали, что с учетом социально-экономических затрат, связанных с повышением риска дорожно-транспортных происшествий, оптимальным является использование шипованной резины и расхода соли на существующем в настоящее время уровне.

Если в Финляндии шипованные шины применяют массово, то в Норвегии за последние годы попытались ограничить это применение, особенно в городских поселениях, где дороги освобождаются от снежного покрова почти в течение всей зимы. Установлено, что шипованная резина создает в городах до 17 % пылевого загрязнения воздуха (Krokeborg, 1998 г.). В Осло, чтобы снизить применение шипованной резины на 20%, в 1999 г. издано постановление о взимании на нее налога в сумме $160. Норвежские власти активно пропагандируют применять нешипованную зимнюю резину и цепи противоскольжения (Fridstrom, “Winter Tires and Chains”, 1998 г.).

Некоторые исследователи сообщают о неудачной попытке снизить применение шипованных шин в Швеции (“Studded Tires”, 2001 г.). Предложенные ограничения не дали результата, и в последние годы применение шипованной резины несколько возросло.

Альтернативы шипованной резине

Основными альтернативами шипам являются традиционные способы зимнего содержания автомобильных дорог. К ним относятся россыпь по обледеневшему покрытию песка (фрикционный способ), профилактическая обработка покрытий до образования ледяного слоя или же плавление ледяного или снежно-ледяного слоя, если он уже образовался, дорожной солью (химические способы). Все это негативно влияет на окружающую среду и здоровье людей.

Зарубежный и отечественный опыт эксплуатации дорог в зимний период показывает, что введение запрета на шипованную резину, даже при применении традиционных способов зимнего содержания, приводит к росту количества ДТП.

Фрикционный способ является основной альтернативой шипованным шинам. Однако повышенный расход песка приводит к увеличению пыли на дорогах. Изучение респираторных заболеваний, вызванных образованием дорожной пыли, показало, что увеличение расхода песка не дает преимуществ по сравнению с применением шипованных шин. Кроме того, следует учитывать затраты на распределение песка и его удаление.

Финские власти достигли ряда успехов в снижении общего количества пыли, образующейся из фрикционного песка. С этой целью выдвинуты требования к качеству песчаных материалов и применяется технология распределения влажного песка (Valtonen, 2002 г.). Установлено что вред пыли может быть снижен путем применением песка из темного каменного материала с пониженным содержанием кварца, который меньше крошится на дороге.

Дальнейшее изучение, выполненное Tervahuttu (2004 г.), показало, что фрикционный песок, распределенный на проезжую часть, выкрашивает из асфальтобетонного покрытия значительное количество материала, приводя к износу дорожного покрытия (эффект наждачной шкурки), и этот износ может быть очень большим. Данная проблема в настоящее время исследуется в Финляндии.

Что касается применения дорожной соли или ее комбинации с песком (пескосоляной смеси), то в Финляндии в качестве антигололедного материала обычно применяется хлорид натрия (NaCl). Финские власти установили, что на дорогах с высокой интенсивностью движения снижение расхода соли увеличивает количество ДТП на 5-20%. На дорогах с низкой интенсивностью движения вместо соли применяется песок.

Применение соли создает ряд экологических проблем: загрязнение источников питьевой воды, токсическое воздействие на флору и фауну и др. Кроме того, соль вызывает коррозию автомобилей, стальных и бетонных конструкций. Одним из исследований установлено, что ущерб от применения соли в 15 раз превышает затраты на ее приобретение и распределение

Исследования износа дорожной одежды

Финляндия

В 1982 – 1988 гг. Lampinen изучал данные по температуре и атмосферным осадкам и измерял глубину колеи на финских автомобильных дорогах общей протяженностью от 8000 до 10000 км. Исследуя факторы, влияющие на образование колеи, он определил их относительную значимость. Также выяснено, что основной объем колеи (70-80%) образуется вследствие износа шипованной резиной. Пластические деформации материалов дорожной одежды при движении тяжелых автомобилей создают 10-20% объема колеи. Обычно одна большегрузная машина образует такую же колею как 3 – 5 легковых автомобиля с шипованными шинами. В Финляндии с декабря по февраль шипованной резиной оборудуется 85-90% легковых автомобилей и менее 50% тяжелых автомобилей. Исходя из этих данных, Lampinen пришел к выводу о возможности частичного снижения колейности путем регламентации требований к шипованным шинам и ограничения сезона их разрешенного применения.

В период с 1982 по 1988 г.г. колейность на финских автомобильных дорогах равномерно снижалась. Так, в 1982 г. средняя глубина колеи составляла 9,5 мм, а в 1988 г. только 5,9 мм. Снижение обусловлено увеличением объемов перекладки верхнего слоя покрытий, а также внедрением эффективной системы управления состоянием дорожной одежды (PMS). Согласно требованиям PMS, участки дорог с наиболее глубокой колеей должны своевременно перекрываться новым верхним слоем покрытия. Результаты измерений показали, что среднегодовой прирост колейности (увеличение площади поперечного сечения) составил около 487 мм 2 на 1000 автомобилей ССИД. Среднегодовое увеличение глубины колеи составило около 0,36 мм на 1000 автомобилей ССИД. Один легковой автомобиль изнашивает за 1 км пробега около 24 г материала покрытия, а износ одним шипом – 100 микрограмм. Ежегодные издержки оцениваются суммой $35 млн.

Установлено, что на образование колеи сильно влияет тип шипа (Lampinen, 1993 г.). Износ является следствием удара шипа и соскабливания материала при выходе шипа из контакта с покрытием (напоминает работу дорожной фрезы). Энергия удара зависит от массы шипа и вертикальной скорости. Вертикальная скорость составляет 10 – 15 % скорости автомобиля и зависит от типа шины и размера выступа шипа над поверхностью протектора. Сила удара зависит от размера выступа шипа и его конструкции. На абразивный эффект также влияют скорость и стиль вождения автомобиля, т.е. движение по прямой или кривой, ускорение и торможение.

Дальнейшие исследования Lampinen направлены на уточнение размера выступа и определение силы воздействия шипа. Из рисунка 1.1. видно, что чем легче шип, тем меньше износ. Выявлено, что на износ сильно влияет тип каменного заполнителя (щебня). Влияние скорости движения на износ показано на рис. 1.2. Величина выступа шипа и сила его воздействия влияют на износ меньше, чем тип каменного заполнителя, масса шипа и скорость движения автомобиля (Sistonen and Alkio, 1986 г.).

Unhola продолжил исследования, выполнявшиеся Sistonen и Alkio, применив аналогичную методику испытаний (метод “run – over”). Он подтвердил, что в основном износ покрытия определяется массой шипа и типом каменного заполнителя. Также подтвердилось, что размер выступа и сила воздействия шипа не оказывают заметного влияния на износ. Исследования производились при скорости автомобиля 100 км/ч.

Lampinen отметил, что износостойкость покрытия значительно повышается при увеличении размера крупной фракции щебня и процентного содержания фракции крупнее 8 мм. Удельная площадь минерального заполнителя должна быть по возможности меньше.

Рис. 1.1. Влияние на износ покрытия массы шипа при скорости автомобиля 100 км/ч, Sistonen и Alkio , 1986 г.

Рис. 1.2. Влияние на износ покрытия скорости движения при массе шипа 2,3 г.,

Sistonen и Alkio, 1986 г.

Обобщив данные указанных наблюдений, выполненных при обследовании финских дорог в 1982-1988 г.г., Lampinen исследовал влияние погодных условий на образование колеи. Процесс образования колеи ускоряется (по сравнению с сухой поверхностью) при повышении влажности покрытия и снижении температуры ниже 0 С 0 . Влажность поверхности влияет на образование колеи сильнее, чем низкая температура.

Lampinen считает, что образование колей на покрытиях может быть снижено уменьшением количества ударных воздействий шипов (т.е. уменьшением количества автомобилей с шипованной резиной и уменьшением количества шипов, заделанных в протектор); снижением начальной колейности за счет совершенствования технологии устройства покрытий; совершенствованием конструкции шипов для снижения их абразивных свойств (при сохранении сцепных характеристик) и путем разработки типов покрытий менее чувствительных к образованию колеи.

В итоговом отчете «Проектирование асфальтобетонных покрытий», выполненном группой исследователей совместно с финской национальной нефтяной компанией (Saarela, 1993 г.), констатируется, что наиболее важной характеристикой покрытия, влияющей на износ шипованной резиной, является износостойкость асфальтобетона. К важнейшим факторам, влияющим на износ, отнесены также интенсивность движения автомобилей и влажность поверхности покрытия. В некоторых случаях при проектировании следует учитывать скорость движения автомобилей и холодный климат.

Для определения износостойкости покрытия к воздействию шипованной резины применяются лабораторные испытания методом SRK (“SRK” method). При испытаниях методом SRK три миниатюрные шипованные шины при температуре 5 С 0 в течение двух часов вращаются на поверхности влажного образца асфальтобетона диаметром 100 мм, применяемого при проектировании асфальтобетонной смеси по Маршаллу. Показатель абразивного износа по методу SRK (SRK-value) оценивается по потере объема образца в см 3 (Европейский стандарт, 2000 г.).

Используя показатель SRK, можно определить срок службы покрытия при известной интенсивности движения. Наиболее важным фактором, влияющим на износ покрытия, является качество применяемого каменного заполнителя (рис. 1.3). Например, применение качественного щебня (при прочих одинаковых факторах) может обеспечить срок службы слоя покрытия 5 лет, плохого качества – 2 года.

Не рекомендуется выбирать щебень по его минералогическому составу, поскольку в этом случае, в зависимости от процентного содержания разных минералов, пригодность щебня к применению в покрытии изменяется в широких пределах. Щебень следует выбирать по результатам лабораторных испытаний. Существует несколько методов испытаний щебня, однако основным, используемым в настоящее время в Финляндии методом лабораторных испытаний, является испытание в шаровой мельнице (Ball Mill Test), именуемое в США “Скандинавский метод испытания абразивного износа” (Nordic Abrasion Test), (Alkio, 2001 г.).

Образец каменного заполнителя (щебня) весом 1000 г в течение одного часа вращается со скоростью 90 об./мин. в стандартной мельнице совместно с 7 кг стальных шаров диаметром 15 мм в присутствии примерно 2 л воды. Испытанию подвергается щебень фракции 11,2 – 16 мм. Результат испытания (показатель Ball Mill Value) оценивается по процентному содержанию частиц мельче 2 мм, остающихся по окончании испытания. На рисунке 1.4 показана зависимость между результатами испытаний в шаровой мельнице и результатами испытаний методом SRK.

Установленные Финской Дорожной Администрацией нормативы применения результатов испытаний в шаровой мельнице (Ball Mill Value = Nordic Abrasion Value) приведены в таблицах 2.1. и 2.2 (Alkio, 2001 г.). Каменный заполнитель (щебень) в зависимости от прочности подразделяется на четыре класса. Наиболее прочный щебень рекомендуется применять на дорогах с интенсивностью движения ССИД > 5000 авт./сут. при скорости движения более 60 км/ч и ССИД > 10000 авт./сут. – при скорости движения менее 60 км/ч.

В Финляндии обычно используется и другой метод испытания каменного заполнителя (Saarela, 1993 г.). Доводится до разрушения керн из скальной породы, размещенный между двумя пирамидальными (угол 60 0 , радиус 5 мм) головками. Головки изготовлены из стали с твердостью по Виккерсу более 1200. Индекс прочности при точечной нагрузке вычисляется из уравнения 1.1.

Натурные испытания показали, что величина колейности коррелируется с величиной этого индекса. Проведение данного испытания входит в состав финских требований к асфальтобетонным покрытиям (Finnish Asphalt Pavement Specifications).

PLI = (D/50) 0,45 F/D Уравнение 1.1

где: PLI = индекс прочности при точечной нагрузке, МПа;

В = диаметр керна;

F = разрушающая сила, N.

Рис. 1.3. Относительная важность факторов, влияющих на износ покрытия шипованными шинами, Saarela , 1993 г.

Рис. 1.4. Зависимость между результатами испытаний в шаровой мельнице и результатами испытаний SRK методом, Saarela , 1993 г.

Таблица 2.1. Классификация качества каменного заполнителя (щебня), Alkio , 2001 г.

Таблица 2.2. Выбор качества минерального заполнителя (щебня), Alkio , 2001 г.

Класс I II III IV
Интенсивность (ССИД, авт/сут) на дорогах со скоростью движения > 60 км/ч > 5000 2500-5000 1500-2500 500-1500
Интенсивность (ССИД, авт/сут) на дорогах со скоростью движения < 60 км/ч > 10000 5000-10000 2500-5000 500-2500

Следующим по важности после качества минерального заполнителя фактором, влияющим на износ покрытия, является состав асфальтобетонной смеси. Результаты полевых испытаний показали, что покрытие из плотного мелкозернистого асфальтобетона с максимальной крупностью щебня 20 мм (АВ20) изнашивается на 10% быстрее, чем покрытие из ЩМА с крупностью щебня 16 мм (SMA16). По этой причине на дорогах с большой интенсивностью движения Министерство автомобильных дорог Финляндии (FINRA) рекомендует использовать ЩМА. Характеристики состава смесей АВ16 и SMA16 согласно Финским Нормам на Асфальтобетон 2000 (Finnish Asphalt Specifications, 2000 г.) приведены в таб. 3 и на рис. 1.5. На рис. 1.6 приведена зависимость между процентным содержанием в щебне частиц крупнее 8 мм и показателем абразивного износа (SRK-value), определенного методом SRK. Чем крупней щебень, применяемый в асфальтобетонной смеси, тем меньше износ.

Таблица 3. Характеристики состава смесей АВ16 и SMA 16 (Финские Нормы на Асфальтобетон, 2000 г.)

Рис. 1.5. Зерновой состав АВ20 и SMA 16 (Финские Нормы на Асфальтобетон, 1995 г.)

Битумное вяжущее не оказывает значительного влияния на износ. Применение более вязкого битума несколько увеличивает износостойкость. На величину износа непосредственно не влияет введение добавок в битумное вяжущее. Добавки обычно применяются для улучшения иных характеристик. Однако в некоторых случаях (когда применяется щебень более крупной фракции, чем в типовой плотной асфальтобетонной смеси)_введение добавок может повысить износостойкость. В качестве добавок могут применяться фибра, природный битум и полимеры. Введение полимерных добавок улучшает износостойкость в экстремально холодные зимы (Saarela, 1993 г.).

Рис. 1.6. Влияние процентного содержания фракции > 8 мм на износ, определенный методом SRK (Saarela , 1993 г.).

Результаты натурных обследований 14-ти опытных автодорог подверг анализу Kurki (1998 г.). Эти опытные дороги включали участки покрытий с разными характеристиками: тип щебня, зерновой состав, битумное вяжущее, адгезионная добавка, минеральный порошок, фибра, гилсонит и природный битум. В начале и конце каждой опытной дороги устраивался контрольный участок. Покрытия на контрольных участках устраивались из плотного асфальтобетона (AB20/IV) с максимальным номинальным размером частиц 20 мм. Применялся щебень из гранодиарита. В качестве битумного вяжущего использовался остаточный битум с пенетрацией 120, полученный при перегонке тяжелой арабской нефти. Поперечный профиль покрытия и глубина колеи измерялись профилометром. Величина износа оценивалась площадью (см 2) или коэффициентом износа.

Результаты испытаний показали, что по сравнению со средним износом за три зимы 1990-91, 91-92 и 92-93 г.г. износ покрытий за зиму 1996-1997 г уменьшился на 20%. Это целиком объясняется переходом на легкие шипы. В 1997 г. резина с легкими шипами устанавливалась на 43% легковых автомобилей, в то время как в 1990 г легкие шипы вообще не использовались. В холодные зимы износ был примерно на 10% меньше, чем в теплые. Во внутренних районах Финляндии, где климат холодней и суше, износ оказался меньше, чем в прибрежных.

Соотношение между площадью износа и глубиной колеи зависит от ширины дороги. Глубину колеи в зависимости от площади износа и ширины дороги можно определить из уравнений 1.2 – 1.5.

Рис. 1.6. Влияние процентного содержания фракции > 8 мм на износ, определенный методом SRK (Saarela, 1993 г.).
Результаты натурных обследований 14-ти опытных автодорог подверг анализу Kurki (1998 г.). Эти опытные дороги включали участки покрытий с разными характеристиками: тип щебня, зерновой состав, битумное вяжущее, адгезионная добавка, минеральный порошок, фибра, гилсонит и природный битум. В начале и конце каждой опытной дороги устраивался контрольный участок. Покрытия на контрольных участках устраивались из плотного асфальтобетона (AB20/IV) с максимальным номинальным размером частиц 20 мм. Применялся щебень из гранодиарита. В качестве битумного вяжущего использовался остаточный битум с пенетрацией 120, полученный при перегонке тяжелой арабской нефти. Поперечный профиль покрытия и глубина колеи измерялись профилометром. Величина износа оценивалась площадью (см2) или коэффициентом износа.
Результаты испытаний показали, что по сравнению со средним износом за три зимы 1990-91, 91-92 и 92-93 г.г. износ покрытий за зиму 1996-1997 г уменьшился на 20%. Это целиком объясняется переходом на легкие шипы. В 1997 г. резина с легкими шипами устанавливалась на 43% легковых автомобилей, в то время как в 1990 г легкие шипы вообще не использовались. В холодные зимы износ был примерно на 10% меньше, чем в теплые. Во внутренних районах Финляндии, где климат холодней и суше, износ оказался меньше, чем в прибрежных.
Соотношение между площадью износа и глубиной колеи зависит от ширины дороги. Глубину колеи в зависимости от площади износа и ширины дороги можно определить из уравнений 1.2 – 1.5.

Глубина колеи (мм) = 0,071 * площадь износа (см2) – 3 ширина <8 м – 1.2
Глубина колеи (мм) = 0,089* площадь износа (см2) – 9 10 м >ширина > 6,5 м – 1.3
Глубина колеи (мм) = 0,077* площадь износа (см2) – 8 ширина > 12 м – 1.4
Глубина колеи (мм) = 0,071* площадь износа (см2) – 3 правая полоса
многополосной дороги – 1.5

Глубина колеи хорошо коррелируется с показателем износа, определенным методом SRK. Из этого следует, что на образование колейности сильно влияет качество каменного заполнителя (Kurki, 1998 г.). Взаимозависимость между глубиной колеи и показателем SRK отражена в уравнении 4.1.6

Глубина колеи (мм) = 3.31 SRK + 8,14 (R = 0,80) – 1.6

На опытных дорогах для конвертирования глубины колеи в показатель SRK было использовано уравнение 1.6. Затем было произведено сравнение результатов испытаний минерального заполнителя с конвертированным показателем SRK. Результаты сравнения подтвердили, что на опытных дорогах показатель испытания в шаровой мельнице (Ball Mill value) и индекс точечной нагрузки (Point Load Index) хорошо коррелировался с величиной износа, в то время как результат испытаний абразивного износа методом Лос-Анджелес – коррелировался хуже (Kurki, 1998 г.).

Битумное вяжущее оказывает на износ покрытия значительно меньшее влияние, чем щебень. Это затрудняет оценку влияния вяжущего на износ. Однако установлено, что применение полимерно-битумного вяжущего повышает износостойкость примерно на 10 %. Минеральный порошок не оказывает влияния на износостойкость. Адгезионные добавки повышают износостойкость при применении некоторых видов щебня. Вопрос применения адгезионных добавок рекомендуется рассматривать как составную часть проектирования (подбора) состава смеси (Kurki, 1998 г.).

Kurki разработал модель прогнозирования показателя SRK в зависимости от свойств материалов. Модель (описывается уравнением 1.7) хорошо коррелируется с результатами измерений на опытных дорогах.

SRK = G * B* (1,15 BM – 1,25 * PLI + 33,01) – 1.7,

где: ВМ – показатель испытания в шаровой мельнице, PLI – индекс точечной нагрузки, G – поправочный коэффициент, учитывающий зерновой состав (уравнение 1.8) и В – поправочный коэффициент, учитывающий битумное вяжущее (В = 0,9 для полимерно-модифицированных вяжущих и 1,0 – для всех остальных).

G = 0,0069 * А + 0,004 *В + 0,496 – 1.8,

где: А = процент прохода через сито 8 мм, В = процент прохода через сито 16 мм.

Влияние на износ интенсивности движения, скорости и климатических условий на опытных дорогах не исследовалось.
Влияние на износ методов зимнего содержания дорог изучила Leppänen (1995 г.). Так, обработка солью ускоряет износ покрытия шипованной резиной, т.к. поверхность обработанного солью покрытия дольше остается влажной, чем необработанного. Поэтому влажное покрытие изнашивается сильнее, чем сухое. Кроме того, предотвращение зимней скользкости путем обработки солью создает проблемы коррозии и негативно влияет на качество грунтовой воды. Затраты $3,5 млн. на программу исследований совместного влияния шипованных шин и соли при зимнем содержании дорог можно считать оправданными, т.к. убытки от ДТП – значительно превышают эту сумму.

Швеция

По данным отчета (Jacobson, 1997 г.) износ покрытий в Швеции в 1975 г. составил 100 г/машино-км, а в 1995 г.– только 20 г/машино-км. Исследования показали, что применение покрытий с более высокой износостойкостью снижает износ на 20 г/машино-км, применение ЩМА – на 20 г/машино-км, внедрение метода испытаний щебня в шаровой мельнице (Ball Mill Test) – на 10 г/машино-км и введение ограничений по максимально допускаемому весу шипов – на 30 г/машино-км. Использование более подходящего щебня позволило снизить общий износ на 38%. Применительно к щебню к факторам, влияющим на износ, относятся процентное содержание крупного щебня и максимальный размер щебенок. К прочим, влияющим на износ покрытий факторам, относятся: степень уплотнения асфальтобетона, интенсивность движения и количество шипов на шине, скорость движения автотранспорта, ширина дороги, влажность поверхности покрытия, тип шипа, размер выступа и сила воздействия шипа. Износ мокрого покрытия значительно превышает износ сухого (в зависимости от типа щебня). Износ покрытия легкими шипами весом 0,7 – 1,0 г вдвое меньше, чем стальными шипами весом 1,8 г. (Jacobson, 1997 г. и Hornwall, 1999 г.).

Gustafson (1997 г.) подтвердил, что в идеальном покрытии асфальтобетон должен включать прочно скрепленный вяжущим износостойкий щебень с наибольшим (по возможности) содержанием крупной фракции. Однако такая фракция должна быть ограничена размером 16 мм, т.к. применение более крупной фракции увеличивает сопротивление качению и повышает шумность. В настоящее время шведской Национальной дорожной администрацией (SNRA) принята концепция применения щебеночно-мастичных смесей из качественного щебня для устройства верхнего слоя покрытия на автомагистралях с высокой интенсивностью движения при скорости движения 90 – 110 км / ч.

В своей статье Gustafson, ссылаясь на работу Jacobson, констатирует, что ежегодный износ покрытий из ЩМА, приготовленного на высококачественном щебне, в настоящее время составляет от 0,2 до 2 мм, в то время, как при применении чуть менее качественного щебня ежегодный износ возрастает до 3 – 4 мм. При большой интенсивности движения износ покрытия шипованной резиной составляет около 50 – 70% общего износа. Gustafson также ссылается на исследования выполненные Carlsson, согласно которым износ покрытий, выполненных из качественного ЩМА, составляет около 6 г/машино-км, а износ покрытий из обычного плотного асфальтобетона на местном щебне 37 г/машино-км. Gustafson констатирует, что в конце 1980 х годов глубокая колея была скорее правилом, чем исключением, а в начале 1990 х стала, в основном, исключением – в результате применения износостойких покрытий, использования менее травматичных шипов и введения правил применения шипованной резины.

Показатель износостойкости покрытий включен в состав действующих в Швеции функциональных требований к дорожной одежде (Safwat and Sterjnberg, 2003 г.).

При лабораторных испытаниях асфальтобетонных смесей применяется метод Пралля (Prall test). Требуемая величина показателя Пралля зависит от уточненной интенсивности движения (ССИД) – таб. 4. Уточнение ССИД производится введением поправочных коэффициентов, учитывающих относительное количество автомобилей с шипованной резиной, скорость движения, поперечное распределение легковых автомобилей (по полосам движения) и методы зимнего содержания.

Таб. 4. Шведские требования к величине показателя Пралля в зависимости от интенсивности движения (Safwat and Sterjnberg , 2003 г.)

При испытании методом Пралля образец цилиндрической формы (рис.1.7.) диаметром 100 ± 1 мм, толщиной 30 ± 1 мм выдерживается при температуре 5 ± 2 С 0 и затем в течение 15 минут обрабатывается отскакивающими от образца стальными шариками (40 шт.) при скорости вращения 950 об / мин. Образец постоянно омывается водой для удаления из испытательной камеры частиц изношенного материала. Показателем Пралля (показателем абразивного износа) является уменьшение объема образца в см 3 . Он определяется из отношения разницы в весе сухого образца до и после испытания к объемной плотности образца (Европейский стандарт 2000).

Рис. 1.7. Цилиндрический образец асфальтобетона после испытания методом Пралля

Jacobson и Hornwall (1999 г.) исследовали влияние шипованных шин на образование колейности на пяти опытных дорогах, имеющих слой износа из ЩМА или пористого асфальтобетона, и на шести контрольных участках – из плотного асфальтобетона или ЩМА. Поперечное сечение колей измерялось лазерным профилометром. Для сплошного обследования поверхностных дефектов применялось оборудование RST (Road Surface Tester) смонтированное на автомобиле. Восьмилетний мониторинг (1990 – 1998 гг.) показал, что износ покрытий шипованной резиной за эти годы значительно снизился. Это снижение Jacobson и Hornwall объясняют устройством более износостойких покрытий, применением высококачественных каменных заполнителей и использованием менее травматичной шипованной резины. Наибольшее влияние на износостойкость покрытий оказывает качество каменного заполнителя. Несколько меньше влияет содержание крупного щебня и применение легких шипов. Тип битумного вяжущего (обычное или ПБВ) не оказывает заметного влияния на износостойкость.

Jacobson and Wågberg (2004 г.) разработали модели прогнозирования колейности, формируемой шипованной резиной. Модели базируются на 10-летней работе, выполненной в 1990 х годах Шведским Национальным Автодорожным НИИ (VTI). Они состоят из трех частей:

  • модель для вычисления величины износа в зависимости от количества автомобилей с шипованной резиной;
  • модель для вычисления распределения износа поперек полосы движения (профиль износа);
  • модель для вычисления ежегодных затрат, базирующаяся на стоимости материалов и сроке службы.

Установлено, что величина износа зависит от величины показателя испытаний в шаровой мельнице, размера максимальной фракции щебня, зернового состава и относительной пористости. Разработано несколько моделей, две из которых представлены уравнениями 1.9. и 2.1.

S d = 2,179 + KV * 0,167 – HALT4 * 0,047 + HM * 0,287 (R 2 = 0,84) – 1.9
S s = 1,547 + KV * 0,143 – MS * 0,087 (R 2 = 0,71) – 2. 1
Sd и Ss = относительный износ плотной асфальтобетонной смеси и ЩМА, соответственно;
KV = показатель испытания в шаровой мельнице;
HALT4 = содержание щебня крупней 4 мм;
HM = относительная пористость по Маршаллу;
MS = максимальная крупность щебня.

При использовании модели для вычисления срока службы покрытия важна информация о распределении величины износа поперек полосы движения (профиля износа) т.к. срок начала работ по текущему ремонту покрытия определяется глубиной колеи (Jacobson and Wågberg, 2004 г.). Разработанные модели распределения износа поперек полосы движения базируются на распределении потока пассажирских автомобилей по полосам движения близкого к нормальному. Стандартное отклонение распределения транспортного потока в поперечном направлении на дорогах с широкими полосами движения и на дорогах с обочинами примерно составляет 0,45 м, на дорогах с узкими полосами движения и многополосных скоростных дорогах и автомагистралях – 0,25 м. На дорогах с очень большой интенсивностью движения стандартное отклонение приближается к 0,20 м.

Комбинация этих двух моделей применена в компьютеризированной версии, используемой для прогнозирования глубины колеи, срока службы и ежегодных затрат. В программу водятся следующие данные:

  • Свойства щебня: содержание фракции > 4 мм (%), номинальный размер крупной фракции (мм), показатель испытания в шаровой мельнице для крупной фракции.
  • Параметры дороги и движения транспорта.
  • Стоимостные данные: щебень, битумное вяжущее, добавки, производство смеси, мобилизация оборудования, транспортировка, укладка смеси, прочие возможные затраты (ед. стоимости / м 2).

Расчет по этим моделям позволяет получить на выходе профиль абразивного износа, срок службы и ежегодные затраты. Модель подтверждена натурными данными, полученными на 16 опытных дорогах зимой 1996-1997 г.г. Опытные дороги разных технических категорий с разной скоростью движения со сроком службы 1- 6 лет, имели слои износа разного типа и качества. Корректность модели подтверждена ее проверкой Jacobson and Wågberg (2004 г.).

Исходные данные для построения моделей обоснованы большой программой лабораторных исследований, выполненных на дорожной моделирующей установке VTI. В отчет по исследованиям включены факторы, перечисленные в таб. 5., и их влияние на износ покрытий. Модели не учитывают долговечность материалов покрытия.

Таблица 5. Факторы, исследованные на дорожной моделирующей установке и их влияние (кроме интенсивности движения, применения шипов, распределения транспортного потока по ширине проезжей части и условий на поверхности (сухая / мокрая или покрытая снегом)

Материалы Небольшое

Иногда

большое

Большое Очень большое
Щебень
Качество Х
Содержание крупной фракции Х
Номинальный размер крупной фракции Х
Проект смеси (плотная или ЩМА) Х
Тип битумного вяжущего Х
Производство
Дробимость (лещадность) Х
Степень уплотнения Х
Внешние факторы
Скорость движения Х
Климатические условия Х
Тип шипов, сила воздействия шипа Х

Норвегия

Согласно отчету Løberg (1997 г.), на норвежских дорогах глубина колеи, образующейся в полосах наката, зависит от проекта смеси, качества строительства покрытия, типа автомобилей, скорости движения, климатических условий и параметров покрытия, причем наиважнейшее значение имеет качество щебня. Норвежская дорожная администрация дважды в год измеряет колейность на 63 000 км автодорог. По результатам этих измерений определяется показатель износостойкости каждого участка дороги. В качестве показателя износостойкости принят вес материала покрытия (в граммах), изнашиваемого за 1 км пробега легкового автомобиля с четырьмя шипованными шинами. Эта величина зависит от качества примененного щебня.

Наиболее важной характеристикой норвежцы считают механическую прочность щебеночного заполнителя асфальтобетонной смеси. Для измерения механической прочности они применяют три метода, определяя ударную прочность, абразивный износ и установленный EN показатель износа шипованными шинами (SRK test). Наиболее важной характеристикой они считают показатель абразивного износа. Он определяется количеством кубических сантиметров каменного материала (щебня), изнашиваемого при установленных методикой испытаний условиях. Результаты лабораторных испытаний согласуются с результатами измерений фактически существующей колейности на дорогах. В отчете Løberg (1997 г.) констатируется, что даже при использовании качественного щебня покрытие будет недолговечным при несоблюдении правил производства работ.

Норвежскими правилами содержания дорог предусматривается укладка нового слоя покрытия на участках дорог с глубиной колеи более 25 мм при колейности превышающей 10%. На городских дорогах с разрешенной скоростью движения менее 60 км/ч допускается колея глубиной не более 35 мм.

Методы уменьшения износа покрытий

Исследования показали, что интенсивность износа покрытий определяется рядом факторов, зависящих от параметров движения транспорта, геометрии дороги, характеристик покрытия, внешнего воздействия и качества строительства покрытия. Некоторые из этих факторов влияют на износ больше других. Степень влияния разных факторов зависит от местных условий. Далее подытоживаются эти факторы и их влияние на интенсивность износа, а также даются рекомендации по уменьшению износа покрытий.

Движение транспорта

На образование колейности непосредственно влияют интенсивность движения, скорость движения, процентное количество автомобилей с шипованной резиной. При увеличении этих параметров процесс колееобразования усиливается.

Для снижения износа покрытий без ущерба безопасности движения предлагаются следующие меры:

  • Снижение интенсивности движения на автомагистралях (переориентация транспортных потоков, транзит и пр.)
  • Регулирование периода разрешенного использования шипованной резины и ограничение количества шипов на шине.
  • Ограничение скорости движения в зимний период.

Материалы покрытий

Исследования показали, что к главным факторам, влияющим на интенсивность износа покрытий шипованной резиной, относятся свойства материалов покрытия и тип асфальтобетонной смеси. Установлено, что наиболее важными факторами являются свойства щебня. К главным характеристикам щебня относятся сопротивляемость абразивному износу и содержание крупной фракции. Рекомендуется применять щебень, прошедший лабораторные испытания в шаровой мельнице (Ball Mill test) и асфальтобетон, испытанный по Праллю (Prall test). Чем больше содержание крупного щебня, тем меньше износ. При проектировании асфальтобетонной смеси следует определять адгезию щебня с битумным вяжущим и необходимость введения адгезионных добавок.

Следующим после щебня по важности фактором является состав асфальтобетонной смеси. Исследования показали, что ЩМА имеет большую износостойкость, чем плотные асфальтобетонные смеси. Битумное вяжущее меньше влияет на износ, чем щебень и состав смеси. Степень этого влияния не поддается количественному определению. Установлено, что некоторых случаях использование полимерно-битумного вяжущего несколько снижает износ.

Внешние факторы

С понижением температуры наружного воздуха менее 0 0 С и повышением влажности покрытия интенсивность колееобразования растет. На интенсивность колееобразования влажность покрытия влияет сильней, чем холодная температура. Покрытие, обработанное противогололедными реагентами, дольше остается влажным, чем необработанное. Следует учитывать социально-экономический эффект зимнего содержания дорог.

Наиболее важным внешним фактором снижения износа является ограничение использования шипованных шин теми зимними месяцами, когда покрытия покрыты льдом или снежно-ледяным слоем.

Геометрия дороги

Интенсивность износа возрастает на участках разгона и торможения автотранспорта. К этим участкам относятся кривые, подъемы и спуски, пересечения. На глубину колеи влияет ширина полосы движения. Чем уже полоса движения, тем глубже колея.

Интенсивность колееобразования шипованными шинами можно уменьшить положением кривых, снижением крутизны подъемов и спусков, сокращением длины переходно-скоростных полос, уширением полос движения.

Важным фактором является поперечный профиль покрытия, ускоряющий сток воды, т.к. влажный асфальтобетон изнашивается шипованной резиной более интенсивно. Устройство основания дорожной одежды из несвязных материалов ускоряет сток воды с поверхности.

Строительство

Установлено, что очень важным условием сокращения колееобразования на дорогах является качество строительства. На снижение колееобразования шипованной резиной влияют следующие факторы:

  • Спецификация и соблюдение требуемой плотности асфальтобетона.
  • Применение подходящего оборудования для производства и укладки соответствующих смесей, например, ЩМА.
  • Укладка асфальтобетона на сухую поверхность (без воды и ледяной корки) и при достаточно высокой температуре наружного воздуха.
  • Интенсивное выполнение мероприятий по контролю и гарантированию качества.

Опыт скандинавских и других стран свидетельствует о возможности значительного снижения износа покрытий шипованной резиной.

На интенсивность износа верхнего слоя покрытия шипами наибольшее влияние оказывает качество каменного заполнителя асфальтобетона. Предполагается, что из доступных в Северо-Западном регионе каменных материалов, наибольшей стойкостью к воздействию шипованной резины обладает щебень из порфирита. Данное предположение следует подтвердить испытаниями.

В зависимости от прогнозируемой интенсивности движения автотранспорта каменный заполнитель, применяемый на проектируемой / ремонтируемой дороге, должен отвечать требованиям таблиц 2.1, 2.2 – (финский опыт).

На участках дорог с высокой интенсивностью движения не рекомендуется применять в верхнем слое покрытия плотный, мелкозернистый асфальтобетон, рекомендуется применять ШМА-20 (SMA 16 по Финским нормам на асфальт 2011). При подборе состава смеси следует, по возможности, стремиться к наибольшему процентному содержанию частиц крупней 8 мм.

По финскому опыту износостойкость щебня должна периодически контролироваться лабораторными методами: испытание в шаровой мельнице (Ball Mill Test), испытание горной породы точечной нагрузкой (Point Load Test), а также методом Лос-Анджелес (факультативно).

Рекомендуется использовать принятый в ЕС, в частности в Финляндии (Финские нормы на асфальт 2011), функциональный метод проектирования асфальтобетонной смеси. В частности, для верхнего слоя покрытия к функциональным свойствам смеси (ЩМА) верхнего слоя покрытия относятся: износостойкость, сдвигоустойчивость, водостойкость, морозостойкость, старение асфальтобетона.

Следует периодически контролировать лабораторными методами износостойкость асфальтобетона: SRK test (финский опыт) или Prall test (шведский опыт) или EN 16697-16 (европейские нормы).

Также следует включать в проектную документацию функциональные требования к износостойкости верхнего слоя с учетом данных таб. 4 или согласно Финским нормам на асфальт 2011 г.

– регламентировать сезон разрешенного использования шипованной резины. Устанавливать соответствующие дорожные знаки;

– рассмотреть возможность снижения разрешенной скорости движения в зимний период (на автомагистралях до 90 – 100 км/ч);

– pассмотреть целесообразность применения технологий заделки колей без поверхностного фрезерования существующего покрытия. Например, технология Microsurfaсing (заполнение колеи эмульсионно – минеральной смесью модифицированной полимерами) или технология, использованная на мостах в Санкт-Петербурге ЗАО «Лемминкяйнен Дор Строй», (заполнение колеи литым асфальтобетоном с втапливанием порфиритового щебня);

– для прогнозирования износа покрытий шипованной резиной и затрат на устранения колейности рассмотреть целесообразность использования разработанной в Швеции компьютерной программы (Jacobson and Wågberg, 2004 г.).

©А.Г. Спектор , главный специалист ООО «Дорсервис»

При полном или частичном использовании данного аналитического материала ссылка на сайт
ГК «Дорсервис» обязательна!



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...