Техническая составляющая неоднозначного проекта

В Транспортно-энергетический модуль (ТЭМ)

В России ведется разработка Транспортно-энергетического модуля (ТЭМ) с ядерной энергоустановкой. Проект может показаться чистой фантастикой, но разработка идет вполне уверенными темпами. Создание такого модуля позволит в разы увеличить эффективность межпланетных полетов по сравнению с химическими двигателями. Пилотируемый полет на Марс, вместо нескольких лет, вполне может продлится несколько месяцев.

В этой статье я расскажу о проекте и его перспективах.

Транспортно-энергетический модуль. Изображение: РКК «Энергия»

Хронология проекта

Указ о начале разработки Транспортно-энергетического модуля был подписан в 2010 году президентом России Д. Медведевым. Разработка разделена между структурами Росатома и Роскосмоса. От Росатома участвует ОАО «НИКИЭТ», которое создает реакторную установку. ГНЦ ФГУП «Центр Келдыша» занимается созданием электроракетных двигателей, а РКК «Энергия» — всего остального корабля. До 2018 года запланировано выделить 17 млрд. рублей, из которых 7,2 пойдут на реактор, 4 млрд. на двигатели, и 5,8 млрд. на корабль.

К началу 2013 года завершилось эскизное и началось рабочее проектирование оборудования. Разработчики начали изготавливать первые узлы для проведения испытаний. В НИИАР на исследовательском реакторе МИР в 2013 году начались испытания теплоносителя для реакторной установки. В июле 2014 года в ОАО «Машиностроительный завод» была завершена сборка первого тепловыделяющего элемента (ТВЭЛ) будущего реактора.

По плану прототип реакторной установки должен быть изготовлен в 2015 году. В 2018 году должны начаться испытания реактора в связке в двигательной установкой. Сборка первого ТЭМа и летные испытания возможны в 2020 году.

Описание проекта

Модуль оснащен высокотемпературным газоохлаждаемым реактором тепловой мощностью 4 МВт. Электроэнергия будет генерироваться двухконтурным турбомашинным преобразователем на основе газодинамического цикла Брайтона, электрической мощностью в 1 МВт. Он же будет выполнять функцию компрессора теплоносителя.

Транспортно-энергетический модуль будет оснащаться электроракетными двигателями большой мощности. Двигатели будут размещаться на четырех штангах, по шесть двигателей на каждой. Дополнительно будет установлено восемь двигателей меньшей мощности, для корректировки курса. Рабочим телом в двигателях будет ксенон, но рассматриваются и альтернативные варианты с использованием лития и натрия.

Расчетное время работы модуля составляет 10 лет. Запускаться он будет с помощью ракеты-носителя Ангара-А5. Предполагается, что модуль будет трансформируемым, то есть при запуске он будет находиться в сложенном виде под головным обтекателем ракеты-носителя, а на орбите раскладываться в рабочее положение.

Сфера применения

Варианты применения ТЭМ весьма обширны. Он может использоваться как орбитальный буксир для доставки спутников с низкой орбиты на геостационарную или любую другую. Это позволит уменьшить стоимость запуска спутников связи и других аппаратов, использующих ГСО.

Ядерный реактор, установленный на модуле. можно использовать как дополнительный источник энергии. Энергоустановка может передавать до 225 кВт для питания полезной нагрузки.

Наибольшие ожидания связаны конечно же с межпланетными путешествиями. Открываются реальные перспективы колонизации Луны. Стоимость отправки грузов на Луну на ядерном буксире, по сравнению с традиционными ракетами, уменьшится в два раза. Станет возможен пилотируемый полет на Марс и полеты к астероидам. Транспортно-энергетический модуль дает 20-кратное увеличение экономической эффективности и 10-кратное увеличение электрической мощности на космическом корабле.

В ТЭМ будут широко применяться нанокомпозитные материалы, устойчивые к износу и нагрузкам. Это большой шаг в материаловедении, и возможно эти элементы найдут свое применение в земных сферах деятельности. На основе энергетической установки возможно создание компактных электростанций для Луны или труднодоступных земных районов.

За рубежом

За рубежом также ведутся работы по созданию компактного реактора для космических кораблей. В Европейском Союзе они пока находятся в начальной стадии. Страны ЕС только разрабатывают «дорожную карту» подобного проекта. Вполне вероятно работают над этой темой и в Китае.

В 1970-е гг. СССР и США вели параллельную разработку реакторов, и надо сказать СССР выбился в лидеры в этой отрасли. Однако, позднее два наших реактора были проданы в США, и в 2003 году их разработки начались с новой силой. Этот случай еще должен получить свою оценку, но тем не менее Россия по прежнему сохраняет свои позиции и наши компактные энергоустановки являются самыми передовыми на сегодняшний день.

January 19th, 2014

В ходе МАКС –2013 кооперация отечественных фирм из структур Роскосмоса и Росатома представила обновленный макет транспортно-энергетического модуля (ТЭМ) с космической ядерной энергодвигательной установкой (ЯЭДУ) мегаваттного класса (НК № 10, 2013, с. 4). Данный проект был представлен публично ровно четыре года назад, в октябре 2009 г. (НК № 12, 2009, с. 40). Что изменилось за это время?

Напомним, что цель проекта – создание энергодвигательной базы и на ее основе новых космических средств высокой энерговооруженности для осуществления амбициозных программ изучения и освоения космического пространства. Данные средства дают возможность реализации экспедиций в дальний космос, более чем 20-кратный рост экономической эффективности космических транспортных операций и более чем 10-кратное увеличение электрической мощности на борту КА.

В основу ЯЭДУ положен ядерный реактор с турбомашинным преобразователем большой долговечности. Разработка ТЭМ проводится по распоряжению президента России от 22 июня 2010 г. № 419-рп. Его создание предусмотрено и госпрограммой «Космическая деятельность России на 2013 – 2020 годы», и Президентской программой по модернизации экономики. Работы по контракту финансируются из федерального бюджета в рамках спецпрограммы «Реализация проектов Комиссии при Президенте Российской Федерации по модернизации и технологическому развитию экономики России»*.

Для реализации этого передового проекта в период с 2010 по 2018 год выделяется более 17 млрд руб.

Точное распределение средств выглядит следующим образом: 7.245 млрд руб предназначаются госкорпорации Росатом на разработку реактора, 3.955 млрд руб – Исследовательскому центру имени М.В.Келдыша на создание ЯЭДУ, и около 5.8 млрд руб – РКК «Энергия» на изготовление ТЭМ. Головной организацией, отвечающей за разработку собственно ядерного реактора, является Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ), входящий в систему Росатома. В кооперацию также включены Подольский научно-исследовательский технологический институт, РНЦ «Курчатовский институт», Физико-энергетический институт в Обнинске, НИИ НПО «Луч», НИИ атомных реакторов (НИИАР) и ряд других предприятий и организаций. По контуру циркуляции рабочего тела многое сделали Центр Келдыша, КБ химического машиностроения и КБ химической автоматики. К разработке генератора подключен Институт электромеханики.

В проекте впервые реализуются инновационные технологии, во многом не имеющие мировых аналогов:
высокоэффективная схема преобразования;
высокотемпературный компактный реактор на быстрых нейтронах с системами газового охлаждения, обеспечения ядерной и радиационной безопасности на всех этапах эксплуатации;
тепловыделяющие элементы на основе высокоплотного топлива;
маршевая двигательная установка на основе блока мощных высокоэффективных электроракетных двигателей (ЭРД);
высокотемпературные турбины и компактные теплообменные аппараты с десятилетним расчетным ресурсом;
высокооборотные электрические генераторы-преобразователи большой мощности;
развертывание крупногабаритных конструкций в космосе и др.

В предложенной схеме ядерный реактор вырабатывает электричество: газовый теплоноситель, прогоняемый через активную зону, крутит турбину, та вращает электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Вещество из реактора не выходит в окружающую среду, то есть радиоактивное заражение исключено. Электроэнергия расходуется на работу ЭРД, который по расходу рабочего тела в 20 с лишним раз экономичнее химических аналогов. Масса и габариты базовых элементов ЯЭДУ должны обеспечивать их размещение в космических головных частях существующих и перспективных российских РН «Протон» и «Ангара».

Хроника проекта показывает его быстрое по нынешним временам развитие. 30 апреля 2010 г. заместитель генерального директора госкорпорации Росатом, директор Дирекции по ядерному оружейному комплексу И. М. Каменских утвердил техническое задание на разработку реакторной установки и ТЭМ в рамках проекта «Создание траспортно-энергетического модуля на основе ЯЭДУ мегаваттного класса». Документ был согласован и утвержден Роскосмосом. 22 июня 2010 г. президент России Д. А. Медведев подписал Распоряжение об определении единственных исполнителей работ по реализации проекта.

9 февраля 2011 г. в Москве на базе Центра Келдыша прошла видеоконференция предприятий – разработчиков ТЭМ. В ней участвовали руководитель Роскосмоса А. Н. Перминов, президент и генеральный конструктор (РКК) «Энергия» В. А. Лопота, директор Центра Келдыша А. С. Коротеев, директор – генеральный конструктор НИКИЭТ** Ю. Г. Драгунов и главный конструктор космических энергетических установок НИКИЭТ В. П. Сметанников. Особое внимание было обращено на необходимость создания стенда «Ресурс» для отработки реакторной установки с блоком преобразования энергии.

Справка:

По этой теме в Союзе работали выпускники 2-го факультета МАИ. Потом эту тему закрыли. и вот только в 2010г. Росатом выдал ТЗ на проект и финансирование соответственно.

Разработка ядерной энергодвигательной установки большой мощности для межорбитального буксира, многофункциональной платформы на геостационарной орбите и межпланетных космических аппаратов.
Шифр: ОКР «ЯЭРДУ».
Начальная (максимальная) цена контракта: 805 000 000,0 руб.
Сроки выполнения контракта: 2011 г. — 2015 г.
Место выполнения работ: по адресу Исполнителя.

Область применения таких двигателей
1. буксировка груза доставленного керосиновыми РН на низкую орбиту на боле высокие рабочие орбиты.Сейчас пользуются небольшими разгонными блоками которые нужно постоянно выводить на орбиту, А с ЯДУ его можно постоянно держать на орбите и использовать по мере необходимости.Отпадает необходимость в разгонном блоке,соответственно снижаются затраты и увеличивается полезная нагрузка керосиновых РН.
2.Для межпланетных экспедиций. Он буксирует посадочные модули к планете и обратно
3. Для отведения,буксировки угрожающих Земле астероидов.

… рассматриваются и капельный, и панельный теплообменники, и пока выбор не сделан. На демонстрируемом макете и плакатах был представлен вариант с капельным холодильником-излучателем, которому отдается предпочтение.

25 апреля 2011 г. Роскосмос объявил открытый конкурс на выполнение опытно-конструкторских работ в рамках создания ЯЭДУ, многофункциональной платформы на геостационарной орбите и межпланетных КА. По итогам конкурса (победителем которого 25 мая того же года стал НИКИЭТ) был заключен государственный контракт сроком действия до 2015 г. стоимостью 805 млн руб на создание стендового образца установки.

Контракт предусматривает разработку: технического предложения по созданию стендового (с тепловым имитатором ядерного реактора) образца ЯЭДУ; его эскизного проекта; конструкторской и технологической документации на опытные образцы составных частей стендового изделия и базовых элементов ЯЭДУ; технологических процессов, а также подготовку производства для изготовления опытных образцов составных частей стендового изделия и базовых элементов установки; изготовление стендового образца и проведение его экспериментальной отработки.

В состав стендового образца ЯЭДУ должны входить базовые элементы штатной установки, призванные обеспечить в последующем создание установок различной мощности на основе модульного принципа. Стендовый образец должен генерировать заданную мощность – тепловую и электрическую, а также создавать импульсы тяги, характерные для всех этапов функционирования ЯЭДУ в составе КА. Для проекта был выбран высокотемпературный газоохлаждаемый реактор на быстрых нейтронах тепловой мощностью до 4 МВт.

23 августа 2012 г. состоялось совещание представителей Росатома и Роскосмоса, посвященное организации работ по созданию испытательного комплекса для ресурсных испытаний, необходимых при реализации проекта ТЭМ. Оно проходило в Научно-исследовательском технологическом институте имени А. П. Александрова в Сосновом Бору под Санкт-Петербургом, где и планируется создавать указанный комплекс.

Эскизное проектирование ТЭМ завершилось в марте текущего года. Полученные результаты позволили перейти в 2013 г. к этапу рабочего проектирования и изготовления оборудования и образцов для автономных испытаний. Испытания и отработка технологий теплоносителя начались в текущем году на исследовательском реакторе МИР в НИИАР (г. Димитровград), где установлена петля для испытаний гелий-ксенонового теплоносителя при температурах свыше 1000°С.

Наземный прототип реакторной установки планируется создать к 2015 г., и уже к 2018 г. должна быть изготовлена реакторная установка для комплектации ЯЭРДУ и начаты ее испытания в Сосновом Бору. Первый ТЭМ для летных испытаний может появиться к 2020 г.

Очередное совещание по проекту состоялось 10 сентября 2013 г. в госкорпорации Росатом. Информацию о состоянии работ и основных проблемах при реализации программы представил руководитель НИКИЭТ Ю. Г. Драгунов. Он подчеркнул, что в настоящее время специалисты института разработали документацию технического проекта ЯЭДУ, определили основные конструкторские решения и выполняют работы в соответствии с «дорожной картой» проекта. По итогам совещания глава корпорации «Росатом» С. В. Кириенко поручил НИКИЭТ подготовить предложения по оптимизации «дорожной карты».

Некоторые подробности конструкции и особенности проекта ЯЭДУ удалось выяснить в ходе беседы с представителями Центра Келдыша на авиасалоне МАКС – 2013. В частности, разработчики сообщили, что установка будет делаться сразу в полноразмерном варианте, без изготовления уменьшенного прототипа.

ЯЭДУ имеет исключительно высокие (для своего типа) характеристики: при тепловой мощности реактора 4 МВт электрическая мощность на генераторе составит 1 МВт, то есть КПД достигнет 25 %, что считается очень хорошим показателем.

Турбомашинный преобразователь – двухконтурный. В первом контуре используются пластинчатый теплообменный аппарат – рекуператор и трубчатый теплообменник-холодильник. Последний разделяет основной (первый) контур теплосъема и второй контур теплосброса.

По поводу одного из самых интересных решений, разрабатываемых в рамках проекта (выбор типа холодильников-излучателей второго контура), был дан ответ, что рассматриваются и капельный, и панельный теплообменники, и пока выбор не сделан. На демонстрируемом макете и плакатах был представлен вариант с капельным холодильником-излучателем, которому отдается предпочтение. Параллельно идут работы и по панельному теплообменнику. Отметим, что вся конструкция ТЭМ – трансформируемая: при запуске модуль умещается под головным обтекателем РН, а на орбите «расправляет крылья» – раздвигаются штанги, разносящие на большое расстояние реактор, двигатели и полезный груз.

На ТЭМ будет использована целая связка усовершенствованных исключительно мощных ЭРД – четыре «лепестка» по шесть маршевых двигателей диаметром 500 мм, плюс еще восемь двигателей поменьше – для управления по крену и корректировки курса. На салоне МАКС – 2013 был показан рабочий двигатель, уже проходящий испытание (пока на неполной тяге, при электрической мощности до 5 кВт). ЭРД работают на ксеноне. Это самое лучшее, но и самое дорогое рабочее тело. Рассматривались и другие варианты: в частности, металлы – литий и натрий. Однако двигатели на таком рабочем теле менее экономичны, и проводить наземные испытания на таких ЭРД очень сложно.

Расчетный ресурс ЯЭДУ, заложенный в проект, составляет десять лет. Ресурсные испытания предполагается выполнить непосредственно на комплектной установке, а агрегаты отработать автономно на стендовой базе предприятий кооперации. В частности, турбокомпрессор, разработанный в КБХМ, уже изготовлен и тестируется в вакуумной камере Центре Келдыша. Сделан также тепловой имитатор реактора на 1 МВт электрической мощности.

Кстати, про вопрос захоронения таких аппаратов:

Существует для спутников с ЯЭУ специальная орбита захоронения .Она расположена на 200км выше ГСО(примерно 35 786 км над уровнем моря).Низкоорбитальные(от 160 км до 2000 км над поверхностью Земли) военные спутники с ядерными реакторами на борту имеют высоту орбиты захоронения порядка 1000 км, куда переводится активная зона ядерного реактора после окончания ее работы. Срок жизни на этих орбитах составляет порядка 2 тыс. лет.

Вот еще дополнение об экспериментальном термальном ядерном ракетном двигателе:

вот и еще по этой теме …

Ведь еще еще в начале 1960-х годов конструкторы рассматривали ядерные ракетные двигатели как единственную реальную альтернативу для путешествия к другим планетам Солнечной системы.

Соревнование между СССР и США, в том числе и в космосе, шло в это время полным ходом, инженеры и ученые вступили в гонку по созданию ЯРД, военные тоже поддержали вначале проект ядерного ракетного двигателя. Поначалу задача казалась очень простой - нужно только сделать реактор, рассчитанный на охлаждение водородом, а не водой, пристроить к нему сопло, и - вперед, к Марсу! Американцы собирались на Марс лет через десять после Луны и не могли даже помыслить о том, что астронавты когда-нибудь его достигнут без ядерных двигателей.

Американцы очень быстро построили первый реактор-прототип и уже в июле 1959 года провели его испытания (они назывались KIWI-A). Эти испытания всего лишь показали, что реактор можно использовать для нагрева водорода. Конструкция реактора - с незащищенным топливом из оксида урана - не годилась для высоких температур, и водород нагревался всего до полутора тысяч градусов.

По мере накопления опыта конструкция реакторов для ядерного ракетного двигателя - ЯРД - усложнялась. Оксид урана был заменен на более термостойкий карбид, вдобавок его стали покрывать карбидом ниобия, но при попытках достигнуть проектной температуры реактор начинал разрушаться. Больше того, даже при отсутствии макроскопических разрушений происходила диффузия уранового топлива в охлаждающий водород, и потеря массы достигала 20% за пять часов работы реактора. Так и не был найден материал, способный работать при 2700-3000 0 С и противостоять разрушению горячим водородом.

Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном выбросе одного килограмма массы рабочего тела; единица измерений - секунда). 860 секунд. Это вдвое превышало соответствующий показатель кислород-водородных двигателей того времени. Но когда у американцев сталочто-то получаться, интерес к пилотируемым полетам уже упал, программа «Аполлон» была свернута, а в 1973 году окончательно закрыли проект «NERVA» (так назвали двигатель для пилотируемой экспедиции на Марс). Выиграв лунную гонку, американцы не захотели устраивать марсианскую.

Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы «гоняли» на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. - примерно 5% стоимости лунной программы.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД (реактивный и импульсный). Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

В первой половине 1960-х годов советские инженеры рассматривали экспедицию на Марс как логичное продолжение разворачиваемой в то время программы полета человека на Луну. На волне воодушевления, вызванного приоритетом СССР в космосе, даже такие чрезвычайно сложные проблемы оценивались с повышенным оптимизмом.

Одной из самых главных проблем была (и остается по сей день) проблема энергодвигательного обеспечения. Было ясно, что ЖРД, даже перспективные кислородно-водородные, если и могут в принципе обеспечить пилотируемый полет на Марс, то только при огромных стартовых массах межпланетного комплекса, с большим количеством стыковок отдельных блоков на монтажной околоземной орбите.

В поисках оптимальных решений ученые и инженеры обратились к ядерной энергии, постепенно присматриваясь к этой проблеме.

В СССР исследования по проблемам использования энергии ядра в ракетно-космической технике начались во второй половине 50-х годов, еще до запуска первых ИСЗ. В нескольких научно-исследовательских институтах возникли небольшие группы энтузиастов, поставивших целью создание ракетных и космических ядерных двигателей и энергоустановок.

Конструкторы ОКБ-11 С.П.Королева совместно со специалистами НИИ-12 под руководством В.Я.Лихушина рассматривали несколько вариантов космических и боевых (!) ракет, оснащенных ядерными ракетными двигателями (ЯРД). В качестве рабочего тела оценивались вода и сжиженные газы – водород, аммиак и метан.

Перспектива была многообещающей; постепенно работы нашли понимание и финансовое обеспечение в правительстве СССР.

Уже самый первый анализ показал, что среди множества возможных схем космических ядерных энергодвигательных установок (ЯЭДУ) наибольшие перспективы имеют три:

  • с твердофазным ядерным реактором;
  • с газофазным ядерным реактором;
  • электроядерные ракетные ЭДУ.

Схемы отличались принципиально; по каждой из них наметили несколько вариантов для развертывания теоретических и экспериментальных работ.

Наиболее близким к реализации представлялся твердофазный ЯРД. Стимулом к развертыванию работ в этом направлении послужили аналогичные разработки, проводившиеся в США с 1955 г. по программе ROVER, а также перспективы (как тогда казалось) создания отечественного межконтинентального пилотируемого самолета-бомбардировщика с ЯЭДУ.

Твердофазный ЯРД работает как прямоточный двигатель. Жидкий водород поступает в сопловую часть, охлаждает корпус реактора, тепловыделяющие сборки (ТВС), замедлитель, а далее разворачивается и попадает внутрь ТВС, где нагревается до 3000 К и выбрасывается в сопло, ускоряясь до высоких скоростей.

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от «сердца» двигателя – ядерного реактора и определялись, прежде всего, его «начинкой» – активной зоной.

Разработчики первых американских (и советских) ЯРД стояли за гомогенный реактор с графитовой активной зоной. Несколько особняком шли работы поисковой группы по новым видам высокотемпературного топлива, созданной в 1958 г. в лаборатории №21 (руководитель – Г.А.Меерсон) НИИ-93 (директор – А.А.Бочвар). Под влиянием развернутых в то время работ по реактору для самолета (соты из оксида бериллия) в группе предприняли попытки (опять же поисковые) получить материалы на основе карбида кремния и циркония, стойкие к окислению.

По воспоминаниям Р.Б. Котельникова, сотрудника НИИ-9, весной 1958 г. у руководителя лаборатории №21 состоялась встреча с представителем НИИ-1 В.Н.Богиным. Он рассказал, что в качестве основного материала для тепловыделяющих элементов (твэлов) реактора в их институте (кстати, в то время головном в ракетной отрасли; начальник института В.Я.Лихушин, научный руководитель М.В.Келдыш, начальник лаборатории В.М.Иевлев) применяют графит. В частности, уже научились наносить на образцы покрытия для защиты от водорода. Со стороны НИИ-9 было предложено рассмотреть возможность применения карбидов UC-ZrC как основы твэлов.

Спустя короткое время появился еще один заказчик на твэлы – ОКБ М.М.Бондарюка, которое идейно конкурировало с НИИ-1. Если последний стоял за многоканальную цельноблочную конструкцию, то ОКБ М.М.Бондарюка взяло курс на разборный пластинчатый вариант, ориентируясь на легкость механообработки графита и не смущаясь сложностью деталей – пластин миллиметровой толщины с такими же ребрышками. Карбиды обрабатываются гораздо сложнее; в то время из них невозможно было изготовить такие детали, как многоканальные блоки и пластины. Стала ясна необходимость создания какой-то иной конструкции, соответствующей специфике карбидов.

В конце 1959 г. – начале 1960 г. было найдено решающее условие для твэлов ЯРД – стержневой тип сердечника, удовлетворяющий заказчиков – НИИ Лихушина и ОКБ Бондарюка. Как основную для них обосновали схему гетерогенного реактора на тепловых нейтронах; ее основные достоинства (по сравнению с альтернативным гомогенным графитовым реактором) таковы:

  • возможно использовать низкотемпературный водородосодержащий замедлитель, что позволяет создать ЯРД с высоким массовым совершенством;
  • возможно разработать малоразмерный прототип ЯРД тягой порядка 30…50 кН с высокой степенью преемственности для двигателей и ЯЭДУ следующего поколения;
  • возможно широко применять в твэлах и других деталях конструкции реактора тугоплавкие карбиды, что позволяет максимально увеличить температуру нагрева рабочего тела и обеспечить повышенный удельный импульс;
  • возможно поэлементно автономно отработать основные узлы и системы ЯРД (ЯЭДУ), такие как тепловыделяющие сборки, замедлитель, отражатель, турбонасосный агрегат (ТНА), систему управления, сопло и др.; это позволяет проводить отработку параллельно, сокращая объем дорогостоящих комплексных испытаний энергоустановки в целом.

Примерно в 1962–1963 гг. работы по проблеме ЯРД возглавил НИИ-1, имеющий мощную экспериментальную базу и прекрасные кадры. Им не хватало только технологии по урану, а также ядерщиков. С привлечением НИИ-9, а потом и ФЭИ сложилась кооперация, которая взяла за идеологию создание минимального по тяге (около 3.6 тс), но «настоящего» летнего двигателя с «прямоточным» реактором ИР-100 (испытательный или исследовательский, мощностью 100 МВт, главный конструктор – Ю.А.Трескин). Поддержанный постановлениями правительства, НИИ-1 строил электродуговые стенды, неизменно поражавшие воображение – десятки баллонов по 6–8 м высоты, громадные горизонтальные камеры мощностью свыше 80 кВт, броневые стекла в боксах. Участников совещаний вдохновляли красочные плакаты со схемами полетов к Луне, Марсу и т.д. Предполагалось, что в процессе создания и испытаний ЯРД будут решены вопросы конструкторского, технологического, физического плана.

По мнению Р.Котельникова, дело, к сожалению, осложнялось не очень ясной позицией ракетчиков. Министерство общего машиностроения (МОМ) с большими трудностями финансировало программу испытаний и строительство стендовой базы. Казалось, что МОМ не имеет желания или возможностей продвигать программу ЯРД.

К концу 1960-х годов поддержка конкурентов НИИ-1 – ИАЭ, ПНИТИ и НИИ-8 – была значительно серьезнее. Министерство среднего машиностроения («атомщики») активно поддерживало их разработку; «петлевой» реактор ИВГ (с активной зоной и сборками центрального канала стержневого типа разработки НИИ-9) в итоге к началу 70-х годов вышел на первый план; в нем начались испытания ТВС.

Сейчас, спустя 30 лет, представляется, что линия ИАЭ была более правильной: сначала – надежная «земная» петля – отработка твэлов и сборок, а потом создание летного ЯРД нужной мощности. Но тогда казалось, что можно очень быстро сделать настоящий двигатель, пусть маленький… Однако, поскольку жизнь показала, что объективной (или даже субъективной) потребности в таком двигателе не было (к этому можно еще прибавить, что серьезность негативных моментов этого направления, например международных соглашений о ядерных устройствах в космосе, поначалу сильно недооценивалась), то соответственно более правильной и продуктивной оказалась фундаментальная программа, цели которой не были узкими и конкретными.

1 июля 1965 г. был рассмотрен эскизный проект реактора ИР-20-100. Кульминацией стал выпуск техпроекта тепловыделяющих сборок ИР-100 (1967 г.), состоящих из 100 стержней (UC-ZrC-NbC и UC-ZrC-C для входных секций и UC-ZrC-NbC для выходной). НИИ-9 был готов к выпуску крупной партии стержневых элементов будущей активной зоны ИР-100. Проект был весьма прогрессивен: спустя примерно 10 лет практически без существенных изменений он был использован в зоне аппарата 11Б91, и даже сейчас все основные решения сохраняются в сборках подобных реакторов другого назначения, уже совсем с другой степенью расчетного и экспериментального обоснования.

«Ракетная» часть первого отечественного ядерного РД-0410 была разработана в воронежском Конструкторском бюро химической автоматики (КБХА), «реакторная» (нейтронный реактор и вопросы радиационной безопасности) – Институтом физики и энергии (Обнинск) и Курчатовским институтом атомной энергии.

КБХА известно своими работами в области ЖРД для баллистических ракет, КА и РН. Здесь было разработано около 60 образцов, 30 из которых доведено до серийного производства. В КБХА к 1986 г. был создан и самый мощный в стране однокамерный кислородно-водородный двигатель РД-0120 тягой 200 тс, использованный в качестве маршевого на второй ступени комплекса «Энергия-Буран». Ядерный РД-0410 создавался совместно со многими оборонными предприятиями, КБ и НИИ.

Согласно принятой концепции, жидкие водород и гексан (ингибирующая присадка, снижающая наводораживание карбидов и увеличивающая ресурс твэлов) подавались с помощью ТНА в гетерогенный реактор на тепловых нейтронах с ТВС, окруженными замедлителем из гидрида циркония. Их оболочки охлаждались водородом. Отражатель имел приводы для поворота поглотительных элементов (цилиндров из карбида бора). ТНА включал трехступенчатый центробежный насос и одноступенчатую осевую турбину.

За пять лет, с 1966 по 1971 гг., были созданы основы технологии реакторов-двигателей, а еще через несколько лет была введена в действие мощная экспериментальная база под названием «экспедиция №10», впоследствии опытная экспедиция НПО «Луч» на Семипалатинском ядерном полигоне.
Особые трудности встретились при испытаниях. Обычные стенды для запуска полномасштабного ЯРД использовать было невозможно из-за радиации. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а «ракетной части» – в НИИхиммаш (Загорск, ныне Сергиев Посад).

Для изучения внутрикамерных процессов было выполнено более 250 испытаний на 30 «холодных двигателях» (без реактора). В качестве модельного нагревательного элемента использовалась камера сгорания кислородно-водородного ЖРД 11Д56 разработки КБхиммаш (главный конструктор – А.М.Исаев). Максимальное время наработки составило 13 тыс сек при объявленном ресурсе в 3600 сек.

Для испытаний реактора на Семипалатинском полигоне были построены две специальные шахты с подземными служебными помещениями. Одна из шахт соединялась с подземным резервуаром для сжатого газообразного водорода. От использования жидкого водорода отказались из финансовых соображений.

В 1976 г. был проведен первый энергетический пуск реактора ИВГ-1. Параллельно в ОЭ создавался стенд для испытания «двигательного» варианта реактора ИР-100, и через несколько лет были проведены его испытания на разной мощности (один из ИР-100 впоследствии был переоборудован в материаловедческий исследовательский реактор малой мощности, который работает до сих пор).

Перед экспериментальным запуском реактор опускался в шахту с помощью установленного на поверхности козлового крана. После запуска реактора водород поступал снизу в «котел», раскалялся до 3000 К и огненной струей вырывался из шахты наружу. Несмотря на незначительную радиоактивность истекающих газов, в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель вел из безопасной зоны сначала к одному бункеру, а из него – к другому, находящемуся возле шахт. По этим своеобразным «коридорам» и передвигались специалисты.

Иевлев Виталий Михайлович

Результаты экспериментов, проведенных с реактором в 1978– 1981 гг., подтвердили правильность конструктивных решений. В принципе ЯРД был создан. Оставалось соединить две части и провести комплексные испытания.

Примерно в 1985 году РД-0410 (по другой системе обозначений 11Б91) мог бы совершить своей первый космический полет. Но для этого нужно было разработать разгонный блок на его основе. К сожалению, эта работа не была заказана ни одному космическому КБ, и тому есть множество причин. Главная из них - так называемая Перестройка. Необдуманные шаги привели к тому, что вся космическая отрасль мгновенно оказалась «в опале» и в 1988 году работы по ЯРД в СССР (тогда еще существовал СССР) были прекращены. Произошло это не из-за технических проблем, а по сиюминутным идеологическим соображениям.А в 1990-м году умер идейный вдохновитель программ ЯРД в СССР Виталий Михайлович Иевлев…

Каких же основных успехов достигли разработчики, создавая ЯРД схемы «А»?

Проведено более полутора десятков натурных испытаний на реакторе ИВГ-1, и получены следующие результаты: максимальная температура водорода – 3100 К, удельный импульс – 925 сек, удельное тепловыделение до 10 МВт/л, общий ресурс более 4000 сек при последовательных 10 включениях реактора. Эти итоги значительно превосходят американские достижения на графитовых зонах.

Следует заметить, что за все время испытаний ЯРД, несмотря на открытый выхлоп, выход радиоактивных осколков деления не превышал допустимых норм ни на полигоне, ни за его пределами и не был зарегистрирован на территории сопредельных государств.

Важнейшим результатом работы явилось создание отечественной технологии таких реакторов, получение новых тугоплавких материалов, а факт создания реактора-двигателя породил ряд новых проектов и идей.

Хотя дальнейшее развитие таких ЯРД было приостановлено, полученные достижения являются уникальными не только в нашей стране, но и в мире. Это неоднократно подтверждено в последние годы на международных симпозиумах по космической энергетике, а также на встречах отечественных и американских специалистов (на последних было признано, что реактор-стенд ИВГ – единственный на сегодня в мире работоспособный испытательный аппарат, который может сыграть важную роль в экспериментальной отработке ТВС и атомных ЭДУ).

Напомню вам еще про , а так же про и то. Ну и конечно же Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Конечно, 50 с лишним лет кружения вокруг Земли на одной орбите заставили забыть о цветущих на Марсе яблонях. Однако теперь мечта о полётах к Красной планете и далее приобретает реальные черты - по мере того как эти черты проявляются у уникального транспортно-энергетического модуля.

Новый двигатель - новые задачи

Начнём с проблемы, которая стала самым очевидным препятствием для космических полётов. Кратко её можно сформулировать так: ресурс двигателей на жидком или твёрдом топливе (а именно такие до сих пор используются в космических аппаратах) выработан практически полностью, как их ни усовершенствуй - никаких значительных изменений не последует, нынешние результаты - это всё, на что они способны.

Соответственно, для того чтобыосуществитьдерзкие мечты о дальних перелётах, нужны принципиально иные решения. Это понимали ещё отцы нашей космонавтики - идеей создания ядерного двигателя занимались академики Сергей Королёв, Игорь Курчатов и Мстислав Келдыш. В 1970-е СССР запустил три десятка спутников, оснащённых ядерными энергетическими установками малой мощности. Одновременно в Семипалатинске проводились испытания ядерного реактора большой мощности - ИВГ-1.

Специалисты говорят, что именно ядерные двигатели могут дать новый импульс развитию космонавтики. И вот было принято решение о реализации проекта создания транспортно-энергетического модуля (ТЭМ) на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса.

Ядерный реактор выделяет тепло, генератор преобразует его в электричество. Инертный газ ксенон ионизируется - положительно заряженные ионы ускоряются в электростатическом поле до заданной скорости, создают необходимую тягу. Таков принцип работы нового ТЭМ.

Главным конструктором реакторной установки стал Научно-исследовательский и конструкторский институт энерготехники (НИКИЭТ) им. Н. А. Доллежаля, входящий в госкорпорацию "Росатом". Юрий ДРАГУНОВ, его директор, генеральный конструктор, член- корреспондент РАН, заведующий кафедрой Э-7 " Ядерные реакторы и установки" МГТУ им. Баумана, говорит, что работы, несмотря на поставленные жёсткие сроки, идут по графику. А это значит, что уже через 4 года такая установка должна быть создана.

Уникальные решения

- Юрий Григорьевич, ядерная энергодвигательная установка - это, очевидно, целый комплекс систем, которые должны работать слаженно...

Да, в состав входят энергоблокстурбомашинным преобразованием энергии на основе газодинамического цикла Брайтона и связка электрореактивных двигателей. Энергоблок представляет собой одноконтурную ядерную энергоустановку на основе высокотемпературного газоохлаждаемого реактора.

- В проекте должно использоваться достаточно много новых решений. Можете рассказать о них?

В проекте заложены принципиально новые параметры, используются принципиально новые решения.

Впервые в мире разработана технология создания монокристаллических длинномерных трубок из высокотемпературных сплавов. Знаете, когда я в первый раз увидел эту трубку во всю длину, испытал такое волнение! Я-то понимаю, чего стоило её изготовление...

Создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения. Конструкция настолько продумана, в ней так хорошо решены, к примеру, вопросы отвода продуктов деления, что есть уверенность в работоспособности изделия. Первые испытания, которые закончились ещё в 2012 г., подтвердили это.

Ну и, конечно, приходится много заниматься восстановлением технологий производства уникальных материалов для высокотемпературной энергетики. По всем нашим компонентам и комплектующим задачу ставим так: должны быть ТУ на их промышленную поставку. Для опытных образцов можно, конечно, обойтись и без них, однако мы думаем о перспективе.

Безопасность

- А в других странах подобные разработки ведутся?

В Европе начинают делать первые шаги в этом направлении: формируют "дорожную" карту, сообщество, определяют цели и задачи. Мы их значительно опережаем.

В США, я уверен, это направление развивают, потому что нет другойвозможности осваивать космическое пространство. Мы знаем, что там начинали такую работу. Правда, параметры у них были пониже наших. Но сейчас достаточной информации нет.

Юрий Григорьевич, у людей после крупных аварий на АЭС сложилось настороженное отношение ко всему, что связано с атомом. Насколько безопасным будет создаваемый модуль?

Хороший вопрос и, наверное, самый важный. Мы имитируем разные ситуации - с транспортированием нашей реакторной установки, различные аварийные ситуации, включая аварию на старте и падение с различных высот. Мало того что мы моделируем их математически - вместе с Саровским ядерным центром запланировано провести испытание на разгонном треке. Это разгон с большой скоростью, удар о бетонную стену, с тем чтобы сымитировать то, что наш реактор может испытать в процессе нештатных ситуаций.

Я считаю, что главное внимание должно быть обращено не на работу в номинальном режиме, а на работу именно в нештатных ситуациях. Давайте порассуждаем. Все наши проекты основываются на номинальном состоянии плюс запасы (100% мощности или 105%). А посмотрите, когда происходили серьёзные аварии. Три-Майл-Айленд - это практически был период остановки. Чернобыль - на низком уровне мощности. Фукусима - реакторы были заглушены. Поэтому основное внимание нужно уделять работе не на номинале, а в переходных и стояночных режимах, а также тех, которые связаны с нештатной ситуацией на ракете-носителе. Мы это прекрасно понимаем, и ведущие институты отрасли подключены к решению задачи безопасности транспортно-энергетического модуля.

Огонь и звёзды

- Над проектом работают конкретные люди. Кто они? Говорят, в науке катастрофически не хватает молодёжи...

Это не про нас. У нас много молодых. Вообще везде должно быть удачное сочетание людей, которые являются носителями критических знаний, опыта, и молодёжи. В этом плане у нас коллектив очень интересный. Большая часть окончила нашу кафедру - Э7 МГТУ им. Баумана.

За последние годы мы перестроили всю программу обучения, сориентировав её под наши реальные задачи. Оборудовали современный компьютерный класс, потому что на устаревшей технике невозможно выполнять современные работы. На кафедре преподают наши же специалисты. Сегодня студенты осваивают все ключевые компьютерные программы для расчётов, трёхмерное проектирование - и, когда после окончания учёбы приходят к нам, через полгода они уже полноценные специалисты. Такая вот обратная связь получается.

Идёт мощное развитие атомной отрасли, работа в ней стала престижной. И молодёжь с удовольствием идёт сюда.

Как этот большой разновозрастный коллектив относится к конечной цели проекта? Люди верят в то, что можно будет долететь до Марса?

Мы в институте уже записываемся на первое путешествие.

Хотите, и вас запишем?.. Хотя успех этого проекта открывает возможности не только для космических путешествий. Атомная энергетика в космосе позволяет решить много проблем. В том числе и выведение спутников, которые уже стали космическим мусором, и устранение астероидной и кометной опасности - такие установки позволят увести астероид на безопасную орбиту, пропустив его мимо Земли.

- Юрий Григорьевич, а вы часто смотрите в звёздное небо?

Люблю смотреть. Люблю две вещи: смотреть на костёр и в звёздное небо. И то и другое очень сильно впечатляет, завораживает, наводит на размышления...

Марина НАБАТНИКОВА

Введение

гидравлический реакторный схема нейтронный

Будущее космонавтики неразрывно связано с ростом энергообеспечения космических аппаратов и расширением их функциональных возможностей. Повышение энергообеспечения на существующих технических средствах получения электроэнергии не позволяет кардинально увеличить единичную мощность системы, что приводит к необходимости реализации проектов с использованием ядерной энергии, которая способна обеспечить качественный скачок в увеличении мощности и, следовательно, в развитии космонавтики. Создание принципиально новых энергосистем в космосе - это развитие высоких технологий, которые опосредованно будут определять и развитие сопредельных отраслей промышленности, а не только атомной и космической отраслей.

В силу этих обстоятельств Комиссией при Президенте РФ по модернизации экономики и технологическому развитию принят к реализации Проект №26 «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса», который ориентирован на формирование энергодвигательной основы для осуществления крупномасштабных программ по изучению и освоению космического пространства, на создание качественно новых средств высокой энерговооруженности, в том числе специального назначения.

Необходимость реализации Проекта определяется государственными интересами в области изучения, освоения и использования космического пространства, сформулированными в «Основах политики Российской Федерации в области космической деятельности на период до 2020 года и дальнейшую перспективу», утвержденных Президентом Российской Федерации 24 апреля 2009г.

Принципиальная особенность проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса» заключается в кардинальном увеличении энерговооруженности космического аппарата, что позволит обеспечить возможность реализации новых задач в космосе, а именно:

·повышения эффективности транспортных средств посредством существенного увеличения удельной тяги (в 20 и более раз по сравнению с химическими двигателями);

·возможности развития промышленных технологий в условиях невесомости;

·борьбы с астероидной опасностью;

·отработки модулей энергодвигательных установок для будущих экспедиций на Луну и Марс;

·реализации принципиально нового качества космических аппаратов, обладающих возможностью изменения орбиты нахождения с высокой скоростью.

Назначение и область применения

Реакторная установка предназначена для выработки тепловой мощности, преобразуемой в энергопреобразовательном контуре ЯЭДУ в электрическую мощность, используемую для энергоснабжения электрореактивных двигателей ТЭМ. Разрабатываемая РУ является базовым изделием, обеспечивающим последующее создание реакторных установок, как составных частей ЯЭДУ для генерации электроэнергии мегаваттного уровня с целью обеспечения космических средств нового поколения.

РУ является одноконтурной установкой и входит в состав энергоблока, состоящего из реакторной установки, газотурбинной системы преобразования энергии и системы отвода тепла на основе холодильника-излучателя.

Основные параметры энергоблока приведены в таблице

Основные параметры РУ

Параметр Значение Температура теплоносителя на входе в реактор (ВТТ), К892Температура теплоносителя на выходе из реактора (ВТТ), К1240Давление теплоносителя, МПа 4,0 Высота активной зоны, мм500 Диаметр активной зоны, мм470 Топливная композиция UО2 Плотность топлива, г/см3 8,8 Обогащение урана по 235U,% 90

Техническая характеристика

В состав реакторной установки входит:

·реактор в сборе;

·радиационная защита в сборе;

·комплексная система автоматического управления и защиты (КСУЗ);

·комплект контрольно измерительной аппаратуры;

·коллекторы и трубопроводы;

·привода РО СУЗ;

·стыковочная ферма.

Реактор в сборе включает в себя:

·активную зону в сборе;

·отражатель в сборе;

·корпус реактора;

·блок теплоизоляционной защиты.

Основным элементом РУ является высокотемпературный газоохлаждаемый реактор с быстрым спектром нейтронов.

В качестве теплоносителя РУ и рабочего тела энергоблока используется смесь инертных газов (в качестве базового варианта - гелиево-ксеноновая смесь с содержанием гелия 7,17% масс.).

Течение теплоносителя в реакторе организовано по двум независимым трактам: высокотемпературному (ВТТ), обеспечивающему теплосъем с активной зоны, и низкотемпературному (НТТ), предназначенному для охлаждения приводов РО КСУЗ, радиационной защиты, бериллиевого отражателя, низкотемпературных конструкционных элементов РУ.

Основные характеристики РУ:

·тепловая мощность РУ на основном режиме до 3500 кВт;

·тепловая мощность активной зоны на основном режиме до 3400 кВт;

·тепловая мощность РУ на дежурном режиме около 200 кВт;

·суммарное время работы на дежурном режиме - не менее 40000 ч;

·диапазон рабочего давления в активной зоне 2,8 - 4 МПа;

·диапазон расхода теплоносителя 11 - 19 кг/с;

·допустимые относительные гидравлические потери 4 - 6,8%;

·температура на выходе из реактора - до 1500 К;

·температура на входе в НТТ - 353 К;

Допустимые дозы излучений в плоскости радиационной безопасности:

·по поглощенной дозе гамма-излучения - не более 106 рад (1·104 Гр);

1. Описание конструкций

.1 Конструкция реакторной установки

Реакторная установка

Поперечное сечение РУ

Продольное сечение РУ

Описание конструкции РУ.

РУ конструктивно выполнена в виде двух отдельных изделий: реактора и радиационной защиты. Такая компоновка корпуса реактора в форме цилиндра с двумя эллиптическими крышками делает его устойчивыми к внешним и внутренним нагрузкам, а для радзащиты позволяет использовать тонкостенный корпус и применить разные материалы для корпуса реактора и корпуса РЗ и, как результат, снизить массу РЗ.

Реактор и РЗ соединяются между собой через ферму и имеют общие интерфейсы по РО СУЗ, входящих и выходящих труб dу=65 мм и 85 мм для теплоносителя (ВТТ), импульсных трубок, термопар, системы трубопроводов НТТ.

Корпус реактора представляет собой цилиндрическую обечайку длиной 1525 мм, максимальным диаметром 700 мм, с эллиптическими днищем и крышкой. Крышка сваривается с корпусом аргонодуговой сваркой.. Корпусные детали выполнены из сплава марки ХН56МБЮД из трубных заготовок и поковок.

Корзина АЗ изображена на рисунке 2.2.4.. Корзина конструктивно состоит из «холодной» дистанционирующей несущей решётки, «горячей» дистанционирующей решетки, обечайки, 19-ти чехлов РО СУЗ, системы дистанционирования, крепёжных элементов. «Холодная» решётка соединяется с обечайкой АЗ электронно-лучевой сваркой, а горячая свободно перемещается внутри обечайки АЗ. «Холодная» и «горячая» решётки соединяются между собой посредством трубчатых кожухов РО СУЗ. Часть кожухов, имеющих крайние значения температуры, не заделаны в горячей решётке для компенсации их минимальных и максимальных температурных расширений.

Корзина АЗ

На периферии АЗ находятся вытеснители для профилирования АЗ. Они должны быть сделаны объёмными, чтобы при заливе водой уменьшить объём воды междуАЗ и отражателем. Предполагается сделать их в виде оболочки с рёбрами жесткости внутри и закрепить на заклёпках к обечайке АЗ.

МеждуАЗ и корпусом располагается отражатель высотой 639 мм из бериллия, выполненный охлаждаемым посредством 36 труб.

РЗ (рис.2.2.5) имеет форму усечённого конуса высотой 650 мм с полным углом 24° и основаниями Ø1300 мм и Ø1578 мм.

В центральной части РЗ имеется 19 проходок для тяг приводов РО СУЗ с охлаждающими кожухами.На периферии РЗ на конической поверхности выполнено 12 открытых каналов под углом 20° к оси РУ. Боковой канал предназначен для проводки трубопровода с рабочим телом реактора и имеет теплоизолирующий экран, охлаждаемый газом НТТ.

В периферийной части имеются 12 труб для охлаждения фронтальной части РЗ, аналогичные тем, что находятся в центральной части РЗ.

Вся металлоконструкция РЗ выполнена из стали марки 12Х18Н10Т с толщинами 2 мм и 5 мм. Внутренние полости РЗ заполнены LiH.

Радиационная защита

.2 Конструкция твэлов

Тепловыделяющие элементы активной зоны РУ ЯЭДУ предназначены для размещения ядерного топлива в активной зоне, генерации тепла и передачи тепла теплоносителю.

Конструкция твэла на основе диоксидного топлива и его геометрические размеры приведены на рисунке 2.1.

В качестве топлива используются таблетки из диоксида урана с равноосной структурой и заданной пористостью. Использование диоксида со стабилизированной открытой пористостью приводит к снижению скорости распухания топливной композиции, что имеет принципиальное значение с точки зрения обеспечения геометрической стабильности твэла.

Массовая доля изотопа урана-235 в уране 90%, плотность по урану 8,8 г/см3. Таблетки имеют центральное отверстие диаметром 4 мм и в составе твэла образуют центральный канал для отвода газообразных продуктов деления. Данный твэл имеет большие размеры длины активной части (500 мм) и компенсационных объемов для сбора ГПД.

Сборка и герметизация твэлов

Сборка и герметизация твэлов производится в следующей последовательности.

Подсборкатвэла, состоящая из оболочки, внутри которой установлены топливные таблетки, отражатели, компенсирующие пружины и другие элементы конструкции с приваренными герметично к оболочке нижней глухой и верхней с откачным отверстием заглушками, поступает на участок сборки твэлов.

Заполнение твэла гелием осуществляется в специальной установке, оснащённой системами откачки до остаточного давления в камере 5 ×10-3 мм рт.ст., напуска гелия, гелиодуговой сварки, рукавами для перемещения изделий внутри камеры оператором вручную, герметичными прозрачными окнами и освещения камеры.

Для проведения герметизации сборка помещается в камеру установки.

После этого камера установки герметизируется, откачивается до остаточного давления 5 ×10-3 мм рт.ст. и заполняется чистым гелием до одной атмосферы. При этом гелий через отверстие в верхней заглушке заполняет твэл. После выдержки некоторого времени пробка устанавливается в отверстие верхней заглушки и приваривается гелио-дуговой сваркой к заглушке герметично. Таким образом, твэл оказывается заполненным гелием в одну атмосферу.

.3 Модернизированная гидравлическая схема реакторной установки

Техническим заданием предусматривалось объединение высокотемпературного и низкотемпературного трактов охлаждения с целью избавления от холодильников-излучателей НТТ. Отбор теплоносителя производится после турбины, и, проходя через рекуператор, охлаждается до требуемой температуры. Охлаждая элементы конструкции, возвращается в основной контур и поступает на вход в активную зону.

Модернизированная гидравлическая схема реакторной установки

2. Нейтронно-физический расчет

Целью нейтронно-физического расчета является обоснование кампании реакторной установки, определение неравномерностей энерговыделения.

.1 Расчет в MCU-5 FREE

Исходные данные для расчета

В таблице приведены основные параметры рассматриваемой реакторной установки:

Основные параметры РУ

Число твэлов714Число РО СУЗ19Обогащение топлива90%Диаметр РО СУЗ36ммДиаметр топливной таблетки10,9ммНаружный диаметр твэла13ммВеличина зазора в твэле0,05ммШаг размещения твэлов15ммЯдерные концентрации элементов в составе топлива, 1/ барн*смU2352,027*10-2U2382,253*10-3O4,5044*10-2

Исходные данные для расчета в программном комплексе MCU-5 FREEпредставляют собой описание материалов топлива, оболочек твэлов, конструкционных материалов, отражателя и др., входящих в состав РУ, и геометрии РУ.

Схема расчетной области для программы MCU-5 FREE представлена на рисунках 3.1.1 и 3.1.2. На рисунке 1 изображен поперечный разрез схематичной АЗ, на рисунке 2 продольный.

В файле результатов получаем:

-Значения эффективного коэффициента размножения нейтронов

-Значение высотной неравномерности энерговыделения

-Значение радиальной неравномерности энерговыделения

Поперечный разрез активной зоны

Продольный разрез активной зоны

Вычисление неравномерностей энерговыделения по радиусу и высоте АЗ:

Значения плотностей потоков по радиусу АЗ

Координата, м0,025980,051960,077940,103920,12990,18190,207851,0771,0971,0691,0421,0190,9590,929

Неравномерность энерговыделения по радиусу АЗ

Значения плотностей потоков по высоте АЗ

Координата, м00,5550,0290,6930,0590,8130,0880,9270,1181,0290,1471,1110,1761,1680,2061,1970,2351,2030,2651,1850,2941,1630,3241,1260,3531,0770,3820,9920,4120,8810,4410,7500,4710,6300,50,501

Неравномерность энерговыделения по высоте АЗ

Максимальные неравномерности по радиусу и высоте АЗ соответственно:

Krmax=1,097

Kzmax=1,242

2.2 Расчет по методике расчета реактора с жидкометаллическим теплоносителем на быстрых нейтронах

Активная зона реактора набирается из цилиндрических твэлов. Твэлы имеют оболочку из вольфрама, препятствующую выходу осколков деления. Теплоносителем является геле-ксеноновая смесь. Радиальный и торцевые отражатели выполнены из берилия.

Для конкретизации расчетов были выбраны следующие геометрические параметры активной зоны:

Расчет массового состава реактора

Объем активной зоны:

Объем теплоносителя в пределах активной зоны:

Объем твэлов:

Масса двуокиси урана:

Молекулярная масса кислорода:

Молекулярная масса UO2:

Молекулярная масса обогащенного урана:

Масса кислорода в твэлах:

Масса топлива при 90% обогащении:

Масса изотопа урана-235 в смеси урана:

Масса изотопа урана-238 в смеси урана:

Объем занимаемый двуокисью урана в твэле:

Объем, приходящийся на долю W в твэле:

Масса теплоносителя в активной зоне:

Масса бериллия в радиальном отражателе

Масса бериллия в торцевых отражателях:

Суммарная масса бериллия в отражателях:

Расчет ядерного состава реактора

Ядерная плотность k-ого изотопа определяется по формуле:

Полученные значения в активной зоне соответствующие холодному состоянию приведены в таблиц.

Размерность

При определении ядерной плотности в горячем состоянии будем приближенно считать, что линейные размеры активной зоны изотропно возрастают с температурой по линейному закону:

Где - среднее значение коэффициента температурного расширения смеси веществ, входящих в состав твэла

Коэффициенты расширения:

Среднее значение коэффициента расширения смеси веществ, входящих в состав твэла:

Отсюда:

Полученные значения в активной зоне соответствующие горячему состоянию приведены в таблице.

Размерность

Расчет макроскопических сечений.

Расчет макроскопических сечений входящих в активную зону, введется по формуле:

где индекс i соответствует виду взаимодействия, а k обозначает соответствующий изотоп.

Расчет макроскопических сечений ,,ведется по формулам:

Микроскопические сечения

U-235U-238OWHeXe8,38,3480,664,31,810,390,00360,020,0072,654,040,38----

Рассчитанные значения макроскопических сечений для холодного и горячего состояния:

Холодное состояниеГорячее состояние0,2190,2240,0120,0070,0250,029

Расчет эффективных размеров реактора с отражателем

В реакторе без отражателя распределение плотности потока нейтронов по радиусу и длине описываются функцией:

где Lи Rэф характеризуют эффективные размеры реактора

Здесь

Возраст нейтронов, квадрат длины диффузии, квадрат длины миграции нейтронов в отражателе определяются по формулам:

Микроскопические сечения для бериллия имеют следующие значения:

Здесь индекс «1» относится к надтепловым нейтронам, а индекс «m» относится к тепловым.

Макроскопические сечения рассчитываются по формулам:

Результаты расчетов представлены в таблице:

Отражатель, , Торцевой0,1620,0030,2250,00036797,641264924Радиальный0,6210,010,8630,00154,04279,5333,6

Т.к. размеры отражателей соизмеримы с размерами активной зоны, величины эффективных добавок вычисляются по формулам:

где - материальный параметр активной зоны и отражателей

Отсюда:

Эффективные размеры реактора:

Определение эффективного коэффициента размножения нейтронов

Эффективный коэффициент размножения:

Отсюда в холодном состоянии:

В горячем:

В ходе расчёта в программном комплексе MCU5-FREE и расчета по методике для реакторов с жидкометаллическим теплоносителем, мы получили значительное отличие в эффективном коэффициенте размножения нейтронов.

Это связано с тем, что программа MCU5-FREEоснована на решении газокинетического уравненияпереноса нейтронов методом Монте-Карло, и она использует многогрупповую библиотеку оцененных ядерных данных по нейтронно-физическим свойствам материалов на основе детальных ядерных данных (ENDF/B-VI).

Следовательно, можно сделать вывод о том, что расчет по методике для реакторов с жидкометаллическим теплоносителем имеет приличную погрешность.

В дальнейших расчетах будем использовать результаты расчета в программном комплексе MCU5-FREE.

3. Тепловой расчет

.1 Теплофизические свойства материалов

Топливо

В качестве материала топлива используется диоксид урана (UO2), теплопроводность которого зависит от температуры :

Где ;

Теплопроводность топлива при различных температурах

Газовый зазор

Зазор между оболочкой и топливом заполнен гелием при давлении 0.1 МПа. График теплопроводности представлен на рис. .

Теплопроводность гелия при различных температурах

Оболочка

Материал оболочки - жаропрочный сплав на основе вольфрама. Теплопроводность вольфрама представлена на рис. .

Теплопроводность вольфрама при разных температурах

Теплоноситель

Теплоноситель - газовая смесь гелия (7.17%) и ксенона (92.82%).

Теплофизические свойства смеси рассчитываются по следующим формулам :

Теплопроводность:

Теплоёмкость:

Динамическая вязкость:

Плотность He-Xe смеси высчитывается по формуле :

Газовая постоянная для данного газа.

Число Праднтля:.

Теплофизические свойства теплоносителя представлены на рис. 4.1.4.1 - 4.1.4.3

Теплопроводность теплоносителя при различных температурах

Плотность теплоносителя при различных температурах

Динамическая вязкость теплоносителя при разных температурах.

.2 Определение температуры элементов в наиболее нагруженном канале

Теплоноситель

Расход теплоносителя:

Мощность, приходящаяся на 1 твэл:

Максимальный коэффициент неравномерности энерговыделения по радиусу, полученный ранее:

Среднее линейное энерговыделение:

Объёмное энерговыделение:

Средний тепловой поток:

Распределение температуры по длине наиболее нагруженного канала:

Распределение температуры теплоносителя по высоте в наиболее нагруженном канале

Оболочка

Внешняя стенка

Поскольку вытеснители сделаны таким образом, что все ячейки идентичны (рис. 4.2.2.1), гидравлический диаметр можно рассчитать по одной ячейке (рис 4.2.2.2):

Сечение активной зоны

Элементарная ячейка

Значение гидравлического диаметра:

Изменение значения числа Рейнольдса по высоте активной зоны:

Значение числа Рейнольдса по длине канала

Число Нуссельта (в диапозоне, Pr< 20):

Значение числа Нуссельта по длине канала

Коэффициент теплоотдачи:

Значение коэффициента теплоотдачи по длине канала

Температура наружной стенки твэла:

Распределение температуры теплоносителя и наружной стенки твэла по высоте активной зоны

Внутренняя стенка

Температура внутренней стенки оболочки определяется по формуле:

Ввиду небольшой толщины оболочки и высоких значений теплопроводности, разность температур на внешней и внутренней стороне оболочки незначительная и не видна на графике.

Топливо

Стенка таблетки

Температура стенки таблетки определяется по формуле:

Распределение температуры теплоносителя, наружной стенки оболочки и стенки таблетки по высоте активной зоны

Отверстие

Среднее объёмное энерговыделение в топливе:

Максимальная температура в цилиндрической таблетке с отверстием и внутренним энерговыделением:

График распределения температуры теплоносителя (К), оболочки, стенки таблетки и отверстия по высоте активной зоны

Вывод

Как видно из графика, максимальная температура топлива не превысила максимально допустимую 1800°С.

4. Гидравлический расчет

Схема течения теплоносителя:

Схема течения теплоносителя

.1 Подвод теплоносителя к активной зоне

Теплоноситель подводится по 4 подводящим трубам диаметром 75 мм и длиной 2600 мм.Потери напора будут при прохождении подводящей трубы, на повороте потока и выходе в сборный коллектор.

Подводящая труба

Проходное сечение подводящей трубы:

Скорость теплоносителя в трубе:

Число Рейнольдса:

Коэффициент гидравлического сопротивления для широкого диапозона чисел Рейнольдса (:

Гидравлические потери на прохождение проходящей трубы:

Поворот

Коэффициент гидравлического сопротивления при повороте потока на 60° :

Гидравлические потери на повороте:

Выход в сборный коллектор

Коэффициент гидравлического сопротивления при выходе в условно-бесконечное пространство :

Гидравлические потери на выходе из подводящей трубы в сборный коллектор:

Сумма

Суммарные потери на подвод теплоносителя к активной зоне:

.2 Активная зона

В активной зоне гидравлические потери складываются из входа в активную хону через верхнюю опорную решетку, прохождения активной зоны, выхода из активной зоны через нижнюю решетку.

Верхняя опорная решетка

Сперва теплоноситель должен пройти верхнюю решетку, после которой попадает в активную зону. Коэффициент гидравлического сопротивления решетки высчитывается по формуле «вход в трубу через решетку или диафрагму»:

Проходная площадь решетки:

Проходная площадь активной зоны:

Коэффициент гидравлического сопротивления решетки:

Верхняя опорная решетка

Положение верхней опорной решетки на чертеже

Гидравлические потери на верхней решетке:

Потери на трение в активной зоне

Коэффициент гидравлического сопротивления при течении в межтвэльном пространстве (без навитой проволоки) :

Относительный шаг расположения твэлов:

Шаг навивки проволоки принимается:

Коэффициент гидравлического сопротивления при течении в пространстве твэлов, дистанционированных проволокой «ребро по ребру» :

Значение коэффициента трения по длине аз

Гидравлические потери на трение в активной зоне:

Нижняя опорная решетка

Коэффициент гидравлического сопротивления определяется по формуле «решетка или диафрагма внутри трубы» :

Проходное сечение псле выхода из аз:

Проходное сечение нижней опорной решетки:

Нижняя опорная решетка

Положение нижней опорной решетки

Гидравлические потери на нижней опорной решетке:

Потери на ускорение

Плотность расхода по активной зоне:

Гидравлические потери на ускорение:

Общие потери по активной зоне.

Потери по активной зоне составили:

4.3 Отвод теплоносителя от активной зоны

Гидравлические потери на отвод теплоносителя складываются из входа в отводящую трубу, поворота теплоносителя и прохождения теплоносителем отводящей трубы.

Вход в отводящую трубу

Коэффициент гидравлического сопротивления при входе в трубу из условно бесконечного пространства :

Диаметр проходного сечения отводящей трубы: . Количество отводящих труб: . Скорость теплоносителя в отводящей трубе:

Гидравлические потери на вход теплоносителя в отводящую трубу из условно бесконечного пространства:

Поворот теплоносителя

Коэффициент местного гидравлического сопротивления при повороте потока на 60°:

Гидравлические потери на поворот потока:

Прохождение через отводящую трубу

Число Рейнольдса при течении в отводящей трубе:

Коэффициент трения в больших диапозонах чисел Рейнольдса

(:

Длина отводящего трубопровода:

Потери в отводящей трубе:

Сумма

Общие гидравлические потери на отвод теплоносителя от активной зоны составили:

4.4 Сумма

Суммарные гидравлические потери на прохождение теплоносителем РУ:

Вывод

Отношение потерь к номинальному давлению в реакторной установке:

Гидравлические потери лежат в допустимом диапазоне.

5. Расчет радиационной защиты

Составной частью реакторной установки является радиационная защита РУ, предназначенная для обеспечения допустимых уровней реакторного излучения на модуле полезной нагрузки и приборно-агрегатном отсеке, а также на радиационно-чувствительных узлах и элементах подсистем ТЭМ.

На космических аппаратах с ядерным реактором применяется теневая радиационная защита. Радиационная защита РУ образует зону затенения, в которой размещается оборудование и агрегаты ТЭМ.

Основным требованием, предъявляемым к радиационной защите РУ, является обеспечение установленных допустимых уровней реакторного излучения в плоскости радиационных требований, расстояние от реактора до которой устанавливается компоновочными решениями по ТЭМ. ПАО и другие чувствительные к радиации элементы размещаются на максимальном расстоянии от РУ за холодильниками-излучателями в зоне за плоскостью радиационных требований.

Теневая радиационная защита реактора должна обеспечить в контрольной плоскости (плоскости радиационных требований) следующие требования:

по поглощенной дозе гамма-излучения - не более 10E6 рад (10Е4 Гр);

по флюенсу быстрых нейтронов (с энергией больше 0‚1 МэВ) - не более 10Е12 1/см2.

Важной характеристикой ТЭМ является расстояние от реактора до контрольной плоскости и полуугол тени.

Согласно «Основным положениям по ТЭМ» и предварительным данным ГНЦ ФГУП «Центр Келдыша» в настоящее время контрольная плоскость размещается на расстоянии ~52 м от реактора. Радиационная защита установки выполнена из гидрида лития.

Схематичное изображение РУГК

Расчетная схема защитной композиции

Параметры защиты в Anisn-BMSTU

Плотность потока нейтронов с энергией больше 0,1 МэВ

Получаем плотность потока нейтронов с энергией больше 0,1 МэВ на контрольной плоскости.

Рассчитаем флюенс быстрых нейтронов за время 10000ч.

Данное значение флюенса нейтронов удовлетворяет требованиям к защите.

График мощности дозы за защитой РУ.

Значение мощности дозы на удалении 52 м от защиты получаем.

Определим дозу гамма излучения за время 10000 ч.

Данное значение мощности дозы меньше предельного (104 Гр), что удовлетворяет требованиям, предъявляемым к защитной композиции РУ.

6 Прочностной расчет

.1 Стенка корпуса

Толщина стенки корпуса реактора определяется по модели цилиндрического сосуда, нагруженного внутреннимдавленеием. В качестве материала корпуса используется сплав20Х23Н18

Прочностные характеристики данного сплава при температуре 900°С:

Коэффициенты запаса:

Допустимые напряжения в конструкции:

Корпус считается на внутреннее давление, превосходящее номинальное на 25%:

Коэффициент ослабления оболочки:

Внутренний диаметр корпуса:

Толщина корпуса определяется по формуле :

Принимается:

Внешний диаметр корпуса:

.2 Коническая обечайка

Материал обечайки тот же, что и у корпуса, давление то же. Обечайка не ослаблена отверстиями:

Угол наклона конуса к оси:

Толщина обечайки:

Принимается:

.3 Вибропрочность твэлов

Шаг навивки проволоки:

За один шаг твэл должен быть продистанционирован как минимум с тремя твэлами. Тогда шаг закрепления твэла:

Схема закрепления твэла представлена на рис. 7.3.1. Первый и шестойкорни частотного уравнения для такой формы закрепления равны:

Плотность материала оболочки :

Модуль упругости вольфрама:

Средний диаметр оболочки:

Толщина оболочки:

Момент инерции для оболочки:

Погонная масса оболочки:

Собственная частота, соответствующая 1-й и 6-й формам колебаний твэла:

Частота колебаний твэла лежит в пределах ;

Число Струхаля для турбулентного потока с :

Максимальная скорость теплоносителя в активной зоне:

Частота образования вихрей в турбулентном потоке:

Циклическая частота образования вихрей:

Получено, что циклическая частота образования вихрей в потоке теплоносителя на порядок ниже собственной частоты колебания твэла.

Список использованной литературы

1. В.С. Чиркин. Теплофизические свойства материалов. Атомиздат Москва, 1968.

П.В. Марков, В.И. Солонин. Курс лекций по дисциплине «Расчет и проектирование ядерных реакторов»

П.Л. Кириллов. Справочник по теплогидравлическим расчетам. Энергоатомиздат, 1990.

Программа «Справочник сталей».

Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. Энергоатомиздат, 1989.

Ганев И.Х. Физика и расчет реактора: Учеб. пособие для вузов / Под общ. ред. Н.А. Доллежаля. - М.: Энергоатомиздат. 1992.

7:23 29/03/2018

👁 612

Что же за транспортно-энергетический модуль (ТЭМ), курсирующий между планетами и спутниками, готовят российские предприятия? Ранее мы обсуждали политику внутри космической отрасли России, но перейдём к технической составляющей этого неоднозначного проекта. Вокруг которого теперь обращается вся отрасль.

Когда за проект взялись, масштабы обещаний были не меньше, чем у Маска с его полётом пилотируемой экспедиции к в 2025-ом году. К 2018-ому, «Роскосмос» пообещал окончить разработку ТЭМ с капельными холодильниками-излучателями (КХИ) и 16-ью ионными двигателями рекордной мощности около 60 кВт.

Справка: до этого капельное охлаждение в космосе считалось невозможным из-за солнечного излучения и испарения жидкости. Поэтому во всех разработках присутствовали панельные холодильники. Их главный минус – это масса, которая возрастала в разы при увеличении электрической мощности. Ионные двигатели же к объявлению о начале проекта имели мощности в десятеро меньшие.
Сам ТЭМ должен был раскладываться из состояния для обтекателя ракеты, как на изображении выше, в функционирующую форму на том же рисунке. А для того, чтобы полностью покорить сердца всех мечтателей, объявили о том, что буксир будет иметь ядерный реактор мощностью до 3,5 МВт с инновационным карбонитридом урана в качестве топлива.

В 2009-ом году вся эта конструкция выглядела фантастичной. К тому же вместо разрабатываемых предприятиями «Роскосмоса» реакторов с термоэмиссионными преобразователям, которые имели большое будущее, благодаря идее КХИ взялись за турбомашинное преобразование энергии. Что означало разработку с нуля. И президент России, Дмитрий Медведев, подписал все документы на начало разработки ядерного космического модуля.

Дело доверили трём основным ведущим предприятиям. «НИКИЭТ им. Н. Доллежаля» - предприятие «Росатома», взялось за создание реактора. РКК «Энергия» обязалась создать сам космический аппарат, на который будет это установлено. Система преобразования энергии и ионные двигатели легли на плечи ИЦ им. Келдыша.

Ионные двигатели
В XXI веке назрела огромная необходимость в полётах к . Но делать это на химических двигателях абсурдно. Огромное количество дорогостоящего топлива тратится при каждом полёте. Чтобы уменьшить количество трат топлива, необходимо пропорционально увеличить скорость истечения вещества из двигателя. И единственным существующим решением на данный момент являются ионные двигатели.

Справка: ионные двигатели работают благодаря созданию реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Современные химические двигатели достигают возможностей истечения газа из сопла около 2-4 км/с. Но это практически предел. Электродвигатели на ионизированном газе расширяют данные возможности до 50-70 км/с. Что позволяет в 20-25 раз сократить траты топлива.

И тут возникает ещё одна проблема. Для большой скорости струи в электродвигателях необходимо много электроэнергии. Поэтому до сих пор ионные двигатели ставились только на небольшие аппараты и спутники, а солнечные панели покрывали нужные расходы энергии для корректировки орбиты. Но ТЭМ будет весить около 20-25 тонн, а такое “солнечники” не потянут. Тогда и было решено для работы целой группы двигателей на буксире разработать компактный ядерный реактор.

В изначальные планы входили 16 двигателей с мощностью около 60кВт каждый. Таким образом вместе они давали бы рекордные 900-1000 кВт на весь модуль. Но совершить революцию не получилось и ресурс двигателей оказался вдвое ниже. Сейчас заявляется о мощности в 32-35 кВт на двигатель, а их количество на буксире выросло до 24. Но общие возможности падают до 800 кВт всё равно.

Разработанный ИД-ВМ не оказался устроен на принципиально новых принципах, однако даже такой уровень, превышающий современные аналоги в 4-5 раз – выдающаяся заслуга.

Реактор
Несмотря на огромное количество новых разработок для ТЭМ именно ядерный реактор удостоен наибольшего внимания к своей персоне. Отчасти незаслуженно, ведь он оказался одной из самых лёгких частей во всём проекте.

Создатели наземных реакторов на быстрых нейтронах для Белоярской АЭС взялись за этот проект с воодушевлением. Но обещание использовать в качестве топлива карбонитрид урана быстро испарилось. Причины – малоизученность, которая может привести к непредсказуемым последствиям и разрушению ТЭМ в космосе. Взяться решили за оксид урана UO2.

Это не стало огромным разочарованием. Замена произошла на всё ещё эффективное топливо, а множество изначальных идей так или иначе должно было ужаться до реальных возможностей. И карбонитрид урана списывать со счетов не стоит – после всех испытаний и подтверждения эффективности наверняка его используют в будущих версиях реактора.

Год от года НИКИЭТ имени Доллежаля начала рапортовать об успехах. В 2013-ом началось рабочее проектирование ядерной энергоустановки. В 2014-ом были испытаны системы управления реактором, а также первый ТВЭЛ. В 2015-ом закончены технические испытания корпуса ядерной установки. Было заявлено, что “уникальный конструкционный материал корпуса способен обеспечить работу реактора на протяжении более чем 100 тысяч часов” – около 11-12 лет. К 2016-ому году начались испытания полномасштабного имитатора ядра реактора. И к августу 2017-го было объявлено, что проект готов. В 18-ом году разработчики собираются провести испытания наземного образца ядерной энергоустановки, а через год полноценный образец будет сдан.

Капельные холодильники
Не менее важной частью буксира должны стать капельные холодильники-излучатели нового типа. Долгое время даже сами разработчики не верили в то, что смогут разработать такую технологию. Поэтому параллельно шли работы над панельными холодильниками для ТЭМ. На макетах даже показывали рисунки двух разных буксиров, с обоими типами охлаждения.

Здесь и кроется главная проблема всего проекта. В ограничениях и слишком завышенных ожиданиях. Чтобы создать такой аппарат, необходимы долгие испытания, отработка систем, крупные финансовые вливания и отказ от “Ангары”. Как я рассказывал в прошлой статье «Хроники “космических транспортных систем” России», S7 Space взяла на себя обязательства к осени этого года подготовить план по ускорению создания ТЭМ. Скорее всего компания и профинансирует часть работ РКК “Энергии”, а запуск буксира осуществится только к 2030-ому году, когда будет создана новая сверхтяжёлая ракета. Велика вероятность, что к тому моменту в центре Келдыша модифицируют свои ионные двигатели, а “Росатом” уже перейдёт к новому топливу. И в космос будет запущен полноценный ТЭМ, о котором и заявляли изначально, а не урезанная во многих аспектах версия, которую могли бы запустить в теории и в ближайшие 5 лет.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...