Структурная единица скелетной мышцы. Гистологическое строение мышечных тканей. Строение и физиология мышцы

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Обсуждено на заседании кафедры

Протокол № 200 года

по общей гистологии

для студентов лечебного, медико-диагностического и

медико-профилактического факультетов

Тема: «Мышечные ткани»

Время – 90 минут


Учебные и воспитательные цели:

1. Изложить общие принципы морфологической организации и функционирования мышечных тканей.

2. Ознакомить с классификацией мышечных тканей и изложить их структурно-функциональные особенности и локализацию.

3. Дать представление о молекулярных и клеточных механизмах мышечного сокращения.

ЛИТЕРАТУРА

1. Гистология, цитология и эмбриология,

(под ред. Ю. И. Афанасьева). – М.: Медицина, 1999.

2. Быков В.Л. - Частная гистология человека. - С.-П.: Sotis, 2000.

3. Гистология (под ред. Э. Г. Улумбекова и Ю. А. Челышева) – М.: ГОЭТАР, 1997.

4. Гистология в вопросах и ответах (под ред. Слуки Б.А.) – Мозырь: Белый ветер, 2000.

5. Мяделец О. Д. – Курс лекций по частной гистологии – Витебск, 1996.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Перечень учебных вопросов Продолж
5 мин.
Организация мышечного волокна. 10 мин.
Механизм мышечного сокращения 5 мин.
Аппарат передачи возбуждения 5 мин.
Сердечная мышечная ткань. 10 мин.
Общая характеристика рабочих кардиомиоцитов. 5 мин.
Проводящая система сердца. 10 мин.
Секреторные кардиомиоциты. 5 мин
Гладкая мышечная ткань 10 мин.
Гистогенез и регенерация мышечных тканей. 5 мин.

Всего 90 минут


Вопрос 1 .Общие структурные особенности мышечных тканей.

Объединяет несколько разных видов, но основное свойство общее – сократимость. Поэтому все мышечные ткани имеют сходные структурные особенности:

1. Клетки вытянутой формы и объединены в тяжи, или даже в симпласты (мышечные волокна).

2. Цитоплазма заполнена миофиламентами – нитями из сократительных белков (миозин и актин), взаимное скольжение которых обеспечивает сокращение. Характер расположения миофиламентов зависит от вида мышечной ткани.

3. Высокие энергетические запросы требуют множества митохондрий, включений миоглобина, жира и гликогена.

4. Гладкая ЭПС специализирована на накоплении Сa 2+ , который иницииирует сокращение.

Согласно морфо-функциональной классификации выделяют:

1. Поперечно-полосатые мышечные ткани. В их цитоплазме главный компонент – миофибриллы (органеллы общего значения), который и создают эффект исчерченности. Этих тканей два вида:

Скелетная. Образуется из миотомов сомитов.

Сердечная. Образуется из висцерального листка спланхнотома.

2. Гладкая мышечная ткань. Ее клетки не содержат миофибрилл. Образуется из мезенхимы.

К этой же группе относят миоэпителиальные клетки, которые имеют эктодермальное происхождение и мышцы радужки глаза, которые имеют нейральное происхождение.

Скелетная мышечная ткань.

Вопрос 2 . Организация мышечного волокна.

Структурно-функциональной единицей этой ткани является мышечное волокно. Это длинный цитоплазматический тяж со множеством ядер, которые лежат сразу под плазмолеммой. Мышечное волокно в эмбриогенезе образуется при слиянии клеток – миобластов, т.е., представляет собой клеточное производное –симпласт.

Мышечное волокно сохраняет общий план клеточной организации. В нем есть все органеллы общего значения, много включений, а также органеллы специального значения. Все компоненты волокна адаптированы для выполнения главной функции – сокращения – и подразделяются на несколько аппаратов.

Сократительный аппарат состоит из миофибрилл. Это органеллы, которые тянутся вдоль всего волокна и занимают большую часть всего объема цитоплазмы. Они способны значительно изменять свою длину.

Аппарат белкового синтеза представлен, в основном, свободными рибосомами и специализирован на выработке белков для построения миофибрилл.

Аппарат передачи возбуждения образован саркотубулярной системой. Она включает гладкую ЭПС и Т-трубочки. Гладкая ЭПС (саркоплазматическая сеть) имеет вид плоских цистерн, которые оплетают все миофибриллы. Она служит для накопления Сa 2+ . Ее мембраны способны быстро выпускать кальций наружу, что необходимо для укорочения миофибрилл, а затем активно закачивает его внутрь. Наружная мембрана мышечного волокна (сарколемма) образует многочисленные трубчатые впячивания, пронизывающие все волокно в поперечных направлениях. Их совокупность называют Т-системой. Т-трубочки тесно контактируют с мембранами ЭПС, образуя единую саркотубулярную систему. К каждой Т-трубочке …..

Энергетический аппарат составлен митохондриями и включениями. Митохондрии крупные вытянутые и лежат, в основном цепочками, заполняя все пространство между миофибриллами. Субстратами для получения АТФ служит гликоген и липидные капли. Включения миоглобина – специфического мышечного пигмента, обеспечивают волокна кислородом в случае длительной и напряженной работы мышц.

Лизосомальный аппарат развит слабо. Служит, главным образом, для процессов внутриклеточной регенерации.

Вопрос 3 Механизм мышечного сокращения. Для его понимания необходимо ознакомиться с молекулярной организацией миофибрилл – органелл, специализированных на сокращении. Это длинные тяжи, образующие продольные пучки по тысяче и более миофибрилл, которые почти полностью заполняют цитоплазму волокна.

Каждая миофибрилла построена из огромного числа актиновых и миозиновых филаментов.

Тонкие актиновые нити построены из глобулярных молекул белка актина, которые объединяются в две спирально закрученные цепочки. Более толстая миозиновая нить построена из 300-400 молекул белка миозина. Каждая молекула включает длинный хвост, к которому с одного края прикреплена подвижная головка. Головки могут менять угол своего наклона. Хвосты множества молекул укладываются плотным пучком, формируя стержень филамента. Головки при этом остаются на поверхности. На двух краях нити головки лежат разнонаправленно.

Благодаря дополнительным белкам, миофиламенты имеют стабильный диаметр и стабильную длину около 1 мкм. Филаменты одного вида образуют аккуратно подогнанные пучки или стопки. Миофибриллы образованы из многократно чередующихся пучков актиновых и миозиновых нитей. Высокая упорядоченность в расположении миофиламентов достигается с помощью различных белков цитоскелета. Например, белок актинин формирует Z-линию (телофрагму), к которой с обеих сторон присоединяются края тонких актиновых нитей. Так образуется актиновая стопка. Другие белки организуют в стопку толстые миозиновые нити, прошнуровывая их в середине. Они образуют М-линию (мезофрагму). При чередовании стопок свободные концы тонких и толстых нитей заходят друг за друга, обеспечивая взаимное скольжение друг относительно друга в момент сокращения. В результате такой организации в миофибрилле многократно повторяются светлые участки, называемые I-дисками (изотропные), и темные участки, называемые А-дисками (анизотропные). Это и создает эффект поперечной исчерченности. Изотропные участки соответствуют центральной части актиновой стопки и содержат только тонкие нити. Анизотропные диски соответствуют целой миозиновой стопке, и в них входят чисто миозиновая часть (Н-полоска) и те участки, где концы тонких и толстых нитей перекрываются.

Участок между двумя Z-линиями называют саркомером. Саркомер является структурной единицей миофибриллы. (20 тысяч саркомеров на миофибриллу). Строгая организация миофибрилл обеспечивается широким набором различных белков цитоскелета.

При сокращении длина миофибриллы уменьшается за счет одновременного укорочения всех I-дисков. Длина каждого саркомера при этом уменьшается в 1,5-2 раза. Процесс сокращения объясняется теорией скольжения Хаксли, согласно которой в момент сокращения свободные, заходящие друг за друга концы актиновых и миозиновых нитей вступают в молекулярные взаимодействия и глубже задвигаются друг относительно друга. Скольжение начинается с того, что выступающие миозиновые головки образуют мостики с активными центрами актиновых филаментов. Затем угол наклона головки уменьшается, мостики совершают как бы гребковые движения, смещая и актиновую нить. После этого мостик размыкается, что сопровождается гидролизом 1 молекулы АТФ. Связывание миозиновых головок с актиновой нитью регулируется специальными белками. Это тропонин и тропомиозин, которые встроены в актиновую нить, и препятствуют контакту с миозиновыми головками. При повышении в гиалоплазме концентрации Са 2+ происходит изменение конформационного состояния этих регуляторных белков и их блокирующее действие снимается. Гребковые движения повторяются сотни раз за одно мышечное сокращение. Расслабление наступает только после того, как снизится концентрация Ca 2+ .

Вопрос 4. Аппарат передачи возбуждения.

Сокращение запускается нервным импульсом, который через моторную бляшку передается на мембрану мышечного волокна, вызывая волну деполяризации, которая мгновенно охватывает и Т-трубочки. Они тянутся от поверхности сквозь все волокно, по пути колечками окружая миофибриллы. Полости гладкой ЭПС, заполненные кальцием, чехлом оплетают миофибриллы, тесно контактируя с Т-трубочками. С двух сторон к каждой Т-трубочке прилежат обширные мембранные полости ЭПС (терминальные цистерны). Такой комплекс называют триадой. На каждый саркомер приходится две триады. Благодаря мембранным контактам деполяризация Т-трубочек изменяет состояние мембранных белков ЭПС, что приводит к открытию кальциевых каналов и выходу кальция в гиалоплазму. Происходит сокращение. Триады сопрягают процессы возбуждения и сокращения. После выброса специальные мембранные насосы активно закачивают Ca 2+ обратно в ЭПС, где он соединяется с Са-связывающим белком.

Вопрос 5. Сердечная мышечная ткань образует мышечную стенку сердца – миокард. Ее морфо-функциональная единица – отдельная клетка – кардиомиоцит. Клетки соединены друг с другом особыми структурами – вставочными дисками, и в результате образуется трехмерная сеть из клеточных тяжей (функциональный синцитий), что обеспечивает синхронность сокращения во время систолы.

Кардиомиоциты – вытянутые клетки с несколькими ответвлениями, покрытые поверх плазмолеммы базальной мембраной. Их ядра (1 или 2) лежат центрально.

В составе миокарда выделяют несколько популяций кардиомиоцитов:

А) сократительные или рабочие

Б) проводящие

В) секреторные

Вопрос 6. Рабочие кардиомиоциты составляют основную массу миокарда и обеспечивают сокращение. Их организация сходна с мышечными волокнами, но имеет ряд отличий.

Сократительный аппарат. Миофибриллы в целом имеют продольное направление, но многократно анастомозируют друг с другом.

Саркотубулярная сеть развита слабее. Т-трубочки более широкие, лежат реже и каждая контактирует только с одной цистерной ЭПС (диада). При возбуждении часть Ca 2+ поступает в гиалоплазму из межклеточного пространство через плазмолемму и мембраны Т-трубочек и лишь после этого происходит Са-индуцированный выброс Ca 2+ из ЭПС.

Энергетический аппарат. Митохондрии много, они крупные с плотно упакованными кристами, поскольку энергетические запросы миокарда очень высоки. Между собой они объединены особыми соединениями – межмитохондриальными контактами и образуют единую функциональную систему – митохондрион. Такая интеграция исключительно важна для быстрого и синхронного сокращения миокарда. Субстраты для получения АТФ поставляются липидными каплями, включениями гликогена и миоглобина. Сами мотохондрии способны накапливать кальций.

Концы соседних клеток или их стыкующиеся ответвления соединяются вставочными дисками. Диск имеет ступенчатую форму. Поперечные участки образованы десмосомами и придают соединению механическую прочность. Продольные участки содержат множество щелевых контактов – нексусов, которых особенно много в предсердиях. Благодаря ионным каналам нексусов возбуждение быстро распространяется вдоль всей мышцы.

Миокард обильно кровоснабжается. Все промежутки между кардиомиоцитами заполнены рыхлой соединительной тканью, в которой ветвятся капилляры. Здесь же заканчиваются ветвления нервных волокон вегетативной нервной системы. В отличие от скелетной мышечной ткани здесь образуются не нейро-мышечные синапсы (моторные бляшки), а лишь варикозные расширения. На сократительную активность кардиомиоцитов нервная система оказывает лишь регуляторной влияние. Вегетативная система лишь увеличивает (симпатический отдел) или уменьшает (парасимпатический отдел) частоту и силу сердечных сокращений.

Ритмичная генерация импульсов, которые заставляют сердце постоянно сокращаться, обеспечивается специальными клетками самого миокарда. Совокупность этих клеток называется проводящей системой сердца, а способность сердца сокращаться независимо от нервных стимулов – автоматией сердца.

Вопрос 7 . Проводящая система включает специализированные кардиоммиоциты, называемые также атипичными. К ним относят:

Пейсмекерные клетки или водители ритма. Их главное свойство – неустойчивые потенциал покоя наружной мембраны. Благодаря К/Na -насосу натрия всегда больше внутри клетки, а калия снаружи. Эта разность ионов и создает электрический потенциал по обе стороны плазмолеммы. При определенной стимуляции в мембране открываются натриевые каналы, натрий устремляется наружу и мембрана деполяризуется. У пейсмекерных клеток благодаря постоянной небольшой утечке ионов плазмолемма регулярно деполяризуется без всяких внешних сигналов. Это вызывает потенциал действия, распространяющийся и на соседние клетки, вызывая их сокращение. Главные водители ритма – это кардиомиоциты синусно-предсердного узла. Каждую минуту они генерируют 60-90 импульсов. Водители ритма второго порядка образуют предсердно-желудочковый узел. Они генерируют импульсы с частотой 40 импульсов в минуту, и в норме их активность подавляется главными пейсмекерами. Пейсмекерные кардиомиоциты – мелкие светлые клетки с крупным ядром. Их сократительный аппарат развит слабо.

Проводящие кардиомиоциты обеспечивают быструю передачу возбуждения от водителей ритма к рабочим кардиомиоцитам. Эти клетки объединены в длинные тяжи, формирующие пучок Гиса и волокна Пуркинье. Пучок Гиса составлен клетками среднего размера с редкими длинными извилистыми миофибриллами и мелкими митохондриями. Волокна Пуркинье содержат самые крупные кардиомиоциты, которые могут контактировать сразу с несколькими рабочими клетками. Миофибриллы здесь образуют редкую неупорядоченную сеть, Т-система не развита. Вставовных дисков нет, но клетки объединены множеством нексусов, что обеспечивает высокую скорость проведения импульсов.

Вопрос 8. Секреторные кардиомиоциты . В предсердиях встречаются отросчатые клетки, в которых хорошо развита грЭПС, комплекс Гольджи и содержатся секреторные гранулы. Миофибриллы развиты очень слабо, поскольку основной функцией является выработка гормона (натрийуретический фактор), регулирующего обмен электролитов и артериальное давление.

Вопрос 9 . Гладкая мышечная ткань.

Построена из гладких миоцитов. Сократительные филаменты в этих клетках не имеют жесткой упорядоченности и миофибриллы в них не образуются. Вследствие этого отсутствует и поперечная исчерченность. Гладкие миоциты довольно крупные клетки веретеновидной формы, покрытые сверху базальной мембраной, которая соединена с межклеточным веществом. В центре вытянутое ядро, у полюсов грЭПС, комплекс Гольджи и рибосомы. Клетки секретируют компоненты межклеточного вещества для своей наружной оболочки, а также некоторые ростовые факторы и цитокины. Много мелких митохондрий. Саркоплазматическая сеть (гладкая ЭПС) развита слабо, она выполняет роль кальциевого депо. Системы Т-трубочек нет, и их функцию выполняют кавеолы. Кавеолы – это мелкие впячивания плазмолеммы в виде пузырьков. Они содержат высокие концентрации кальция, который захватывают из межклеточного пространства. В момент возбуждения Ca 2+ из кавеол выходит наружу, что инициирует освобождение Ca 2+ из саркоплазматической сети.

Организация и функционирование сократительного аппарата своеобразны. Актиновые и миозиновые филамента очень многочисленны, но не образуют миофибрилл. Для их упорядочивания в миоците существует система плотных телец. Это округлые опорные образования из белка a-актинина и десмина. В них одним концом закреплено по 10-20 тонких актиновых филаментов. Одни тельца образуют прикрепительные пластинки в сарколемме, другие цепочками лежат прямо в гиалоплазме. Так в миоците формируется стабильная сеть из актиновых нитей. Толстые миозиновын нити имеют разную длину и очень лабильны.

Каждому сокращению предшествует выброс кальция, который связывается с особым белком – кальмодулином. Это активирует фермент, обеспечивающий быструю сборку миозиновых филаментов. Они встраиваются между актиновыми нитями, образуют с ними мостики, и их головки начинают совершать гребковые движения. При взаимном скольжении нитей плотные тельца сближаются, а клетка в целом укорачивается. Таким образом в гладких миоцитах кальций взаимодействует с миозиновыми нитями, а не с актиновыми, как в поперечно-полосатых. АТФ-азная активность миозина намного ниже. Вместе с постоянной сборкой и разборкой миозиновых филаментов это приводит к тому, что гладкомышечные клетки сокращаются медленнее, но могут длительно поддерживать этот состояние (тонические сокращения). Между собой клетки объединены рвст, которая вплетается в их базальные мембраны, а также различными межклеточными контактами, в том числе и нексусами. Сократительная активность миоцитов находится под контролем нервных и гуморальных факторов. В соединительно-тканных прослойках расположены варикозные расширения аксонов вегетативной нервной системы. Их медиаторы деполяризуют ближайшие миоциты, а к остальным возбуждение передается по щелевидным контактам.

Благодаря широкому набору мембранных рецепторов гладкие миоциты чувствительны ко многим биологически активным веществам (адреналин, гистамин и т.д.) и реагируют по разному, в зависимости от органной специфичности.

Вопрос 10. Гистогенез и регенерация.

Скелетная мышечная ткань. Из миотома сомитов дифференцируются одноядерные активно делящиеся клетки – миобласты. Они сливаются в цепочки - мышечные трубочки, многочисленные ядра которых уже не делятся. В трубочках начинается активный синтез сократительных белков и формирование миофибрилл, которые постепенно заполняют всю цитоплазму, оттесняя ядра на периферию. Образуется мышечное волокно, внутри которго миофибриллы постоянно обновляются. Между плазмолеммой и покрывающей ее базальной мембраной кое-где сохраняются одноядерные клетки – миосаттелиты – камбиальные клетки, которые могут делиться и включать свои ядра в состав волокон. Рост мышечной ткани у взрослого человека происходит, в основном за счет гипертрофии волокон, а их число остается постоянным. После повреждения миосаттелиты могут сливаться, образуя новые волокна.

Сердечная мышечная ткань образуется из миоэпикардиальной пластинки в составе висцерального листка спланхнотома. Деление кардиомиоцитов заканчивается вскоре после рождения, но в последующие 10 лет могут формироваться полиплоидные и двуядерные клетки. Поскольку камбиальных клеток нет, то возможна только внутриклеточная регенерация и гипертрофия кардиомиоцитов. Она происходит в результате длительных физических нагрузок, либо в патологических состояниях (гипертония, пороки сердца и т.д.). После гибели миоцитов (инфркт миокарда) формируется соединительно-тканный рубец. В последнее время установлено, что отдельные предсердные миоциты сохраняют способность к митозам.

Гладкомышечная ткань регенерирует как за счет гипертрофии, так и за счет гиперплазии.

Гомельский государственный медицинский институт

Кафедра гистологии, цитологии и эмбриологии

Обсуждена на заседании кафедры

Протокол №

по общей гистологии

для факультета по подготовке иностранных студентов

Тема:«Мышечные ткани»

Время – 90 минут

Все мышечные ткани имеют одинаковые структурные особенности:

1. Клетки вытянутой формы.

2. Цитоплазма заполнена миофиламентами – нитями из сократительных белков (миозин и актин).

3. Много митохондрий, включений миоглобина, жира и гликогена (источники энергии)

4. Гладкая ЭПС накапливает Сa 2+ , который нужен для сокращения.

5. Плазмолемма мышечных клеток обладает возбудимостью.

Морфо-функциональная классификация:

1. Поперечно-полосатые мышечные ткани .

Их клетки содержат миофибриллы (органеллы общего значения), Этих тканей два вида:

- скелетная . (образуется из миотомов сомитов).

- сердечная . (образуется из висцерального листка спланхнотома).

2. Гладкая мышечная ткань . Ее клетки не содержат миофибрилл. Образуется из мезенхимы.

Тема 15. МЫШЕЧНЫЕ ТКАНИ. СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5 – 7 нм), состоящих из сократительных белков актина, миозина, тропомиозина. За счет взаимодействия названных белков-микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго– и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов (а следовательно, и сократительные процессы) неодинаково выражены в различных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, а следовательно, мышечные ткани участвуют в терморегуляции организма.

Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, функциональным особенностям.

Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон), включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику и осуществляют передачу усилий сокращения мышечных элементов.

Мышечная ткань подразделяется по строению на гладкую (неисчерченную) и поперечно-полосатую (исчерченную). Каждая из двух групп, в свою очередь, подразделяется на виды по источникам происхождения, строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения – миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная – из миотомов сомитов, сердечная – из висцеральных листков спланхиотом.

Поперечно-полосатая скелетная мышечная ткань

Как уже отмечалось, структурно-функциональной единицей этой ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным – до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку).

Основным структурным компонентом мышечного волокна является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

1) миосимпласта;

2) клеток-миосателлитов;

3) базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы.

Клетки-миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специализированных органелл.

В миосимпласте до 10 тыс. продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабо выраженной зернистой эндоплазматической сети, пластинчатого комплекса Гольджи и небольшое количество митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме имеются включения гликогена и миоглобина.

Отличительной особенностью миосимпласта является также наличие в нем:

1) миофибрилл;

2) саркоплазматической сети;

3) канальцев Т-системы.

Миофибриллы – сократительные элементы миосимпласта локализуются в центральной части саркоплазмы миосимпласта.

Они объединяются в пучки, между которыми располагаются прослойки саркоплазмы. Между миофибриллами локализуется большое количество митохондрий (сакросом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2 – 0,5 мкм.

По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна. Диски в свою очередь, состоят из более тонких волоконцев – протофибрилл, или миофиламентов. Темные диски состоят из миозина, светлые – из актина.

Посередине I-диска поперечно актиновым микрофиламентам, проходит темная полоска – телофрагма (или Z-линия), посередине А-диска проходит менее выраженная мезофрагма, (или М-линия).

Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами.

При этом вокруг одного миозинового филамента располагаются шесть актиновых. При частичном сокращении миофибриллы актиновые филаменты как бы втягиваются в А-диск, и в нем образуется светлая зона (или Н-полоска), ограниченная свободными концами микрофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-полосками, носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляются процессы сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта при помощи актиновых миофиламентов.

Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:

Z + 1/2I = 1/2А + Ь + 1/2А + 1/2I + Z.

Процесс сокращения осуществляется при взаимодействии актиновых и миозиновых филаментов с образованием между ними актомиозиновых «мостиков», посредством которых происходит втягивание актиновых филаментов в А-диск и укорочение саркомера.

Для развития этого процесса необходимы три условия:

1) наличие энергии в форме АТФ;

2) наличие ионов кальция;

3) наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом количестве локализованных между миофибриллами. Выполнение второго и третьего условия осуществляется при помощи специальных органелл мышечной ткани – саркоплазматической сети (аналога эндоплазматической сети обычных клеток) и системы Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы.

При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-диска, а канальцы – в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми микрофиламентами, инициируя их взаимодействие.

После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальца.

Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые впячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на определенном уровне, обычно на уровне Z-полоски или несколько медиальнее – в области соединения актиновых и миозиновых филаментов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения.

Таким образом, функциональная роль Т-канальцев заключается в передаче возбуждения с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых филаментов и последующего сокращения, кроме ионов кальция, необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ с образованием АДФ и выделением энергии. Благодаря выделившейся энергии устанавливаются «мостики» между головками белка миозина и определенными точками на белке актине, и за счет укорочения этих «мостиков» происходит подтягивание актиновых филаментов между миозиновыми.

Затем эти связи распадаются, с использованием энергии АТФ и головки миозина образуются новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации свободных ионов кальция вблизи миофиламентов и от содержания АТФ.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоска и I-диски, а формула саркомера может быть выражена следующим образом:

Z + 1/2IA + M + 1/2AI + Z.

При частичном сокращении формула саркомера будет выглядеть так:

Z + 1/nI + 1/nIA + 1/2H + M + 1/2H + 1/nAI + 1/nI + Z.

Одновременное и содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в глубь складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров.

Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых отделов мышечных волокон вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы кожи в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

Не все мышечные волокна одинаковы по своему строению. Различают два основных типа мышечных волокон, между которыми имеется промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени – структурными особенностями.

Волокна I типа – красные мышечные волокна, характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что придает им красный цвет), большим количеством саркосом, высокой активностью в них фермента сукцинатдегидрогеназы, высокой активностью АТФ-азы медленного действия. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типа – белые мышечные волокна, характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально волокна данного типа характеризуются способностью более быстрого, сильного, но менее продолжительного сокращения.

Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различным сочетанием названных включений и разной активностью перечисленных ферментов.

Любая мышца содержит все типы мышечных волокон в различном их количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные мышечные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают красные и переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации.

Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое (и наоборот) приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

Строение и физиология мышцы

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца – это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия.

Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна.

Перимизий окружает несколько мышечных волокон, собранных в пучки.

Эпимизий (или фасция) окружает всю мышцу, способствует функционированию мышцы как органа.

Гистогенез скелетной поперечно-полосатой мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки – миобласты. В области контактов миобластов цитолемма исчезает, и образуется симпластическое образование – миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии из миофиламентов начинают дифференцироваться миофибриллы.

К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной иннервации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают центральную часть. Из складок эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые выпячивания – Т-канальца. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

При формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессе физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатой скелетной мускулатуры происходит только в эмбриональном периоде. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивных тренировок не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.

Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна. Радиоизотопными методами установлено, что увеличение содержания ядер в мышечных волокон достигается путем деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется с помощью синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних. Возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык уже существующим, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальца в гипертрофирующемся мышечном волокне образуются за счет разрастания предыдущих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров в легкой атлетике) или белый тип.

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1 – 2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возраст, а также в условиях незначительной мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их работоспособности.

Репаративная регенерация развивается после повреждения мышечных волокон.

При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.

Последующая дифференцировка микротрубочки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут друг навстречу другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться только при определенных условиях: если сохранилась двигательная иннервация мышечных волокон и если в область повреждения не попали элементы соединительной ткани (фибробласты). В противном случае на месте дефекта образуется соединительно-тканный рубец.

В настоящее время доказана возможность аутотрансплантации мышечной ткани, в том числе и целых мышц при соблюдении следующих условий:

1) механического измельчения мышечной ткани трансплантанта с целью растормаживания клеток-сателлитов для последующей их пролиферации;

2) помещения измельченной ткани в фасциальное ложе;

3) подшивания двигательного нервного волокна к измельченному трансплантанту;

4) наличия сократительных движений мышц-антагонистов и синергистов.

Иннервация скелетных мышц

Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

При этом к каждому мышечному волокну подходит либо сам аксон мотонейрона, либо его ответвление. В мышцах, обеспечивающих координированные движения (мышцы кистей, предплечья, шеи) каждое мышечное волокно иннервируется одним мотонейроном, чем достигается большая точность движений. В мышцах, которые преимущественно обеспечивают поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксономышечный синапс (или моторную бляшку).

Под влиянием нервного импульса волна деполяризации распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:

1) специфические рецепторные приборы, характерные только для скелетной мускулатуры – мышечные веретена и сухожильный комплекс Гольджи;

2) неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндо-, пери– и эпиневрия.

Мышечные веретена – это сложно устроенные инкапсулированные образования. В каждой мышце содержится от нескольких до сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10 – 12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузально) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении и тем самым регулируют степень сокращения и расслабления.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие в свою структуру несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движения, например, при ходьбе.

Трофическая иннервация скелетных мышц осуществляется вегетативной нервной системой – ее вегетативной частью и в основном осуществляется опосредованно через иннервацию сосудов.

Кровоснабжение

Скелетные мышцы богато кровоснабжаются. В рыхлой соединительной ткани (перимизии) в большом количестве содержатся артерии и вены, артериолы, венулы и артериоловенулярные анастомозы.

В эндомизии располагаются капилляры, преимущественно узкие (4,5 – 7 мкм), которые и обеспечивают трофику нервного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательными окончаниями составляют мион. В мышцах содержится большое количество артериовенулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

Структурно-функциональной единицей поперечнополосатой скелетной мышечной ткани является мышечное волокно. Волокно может достигать 12 см в длину, содержит большой объем саркоплазмы и сотни ядер. Каждое волокно покрыто сарколеммой, состоящей из двух слоев: внутреннего - плазмолеммы толщиной 8-10 нм и внешнего - базальной мембраны толщиной 30-40 нм. Между плазмолеммой и базальной мембраной имеется пространство шириной 15-25 нм. Кроме того, в базальную мембрану вплетаются ретикулярные волокна.

Значительный объем саркоплазмы занимают сократительные органеллы - миофибриллы. Каждая миофибрилла состоит из большого числа правильно чередующихся темных и светлых полос (дисков). В поляризованном свете темные диски обнаруживают двойное лучепреломление, поэтому называются анизотропными (А-дисками). Светлые диски таким свойством не обладают и называются изотропными (I-дисками). Каждая миофибрилла образована пучком параллельно идущих миофиламентов. А-диски состоят из толстых и тонких миофиламентов, а I-диски - только из тонких. Тонкие филаменты (5-8 нм) образованы белками актином, тропомиозином, тропонином, а толстые (10-12 нм) - миозином, белками М- и Н-полос и другими. Тонкие филаменты располагаются между толстыми, образуя гексагональное расположение.

Структурно-функциональной единицей миофибриллы является саркомер . Условная формула саркомера - 1/2 1-диска + А-диск + 1/2 I-диска. Линия сшивки соседних саркомеров соответствует Z-линии (телофрагме), которая состоит из белков альфа-актинина, десмина, вимен-тина. У позвоночных длина саркомера равна 2-3 мкм. Средняя часть миозинового диска, куда не доходят актиновые миофиламен-ты, более светлая и называется Н-полоской. Ее пересекает М-линия (мезофрагма), скрепляющая миозиновые нити посередине саркомера. В подмембранном слое сим-пласта обнаружены белки винкулин и спектрин, входящие в состав скелета симпласта.

Компоненты метаболической среды симпласта хорошо выражены. В гистогенезе с возрастанием степени зрелости симпластов наблюдается увеличение числа митохондрии, которые ориентируются по бокам Z-линии между миофибриллами и под сарколеммой. Гранулы гликогена, липидные капли формируют скопления между миофибриллами и под сарколеммой. Содержание миоглобина (связывающий кислород пигмент) варьирует в зависимости от образа жизни животного. Рибосомы представлены в виде полисом. Небольшое число лизосом принимают участие в процессах внутрисимпластической регенерации. Клеточный центр в симпласте отсутствует.

Саркоплазматическая сеть и Т-трубочки развиваются параллельно. Последние - это инвагинации плазмолеммы, которые опоясывают каждый саркомер. В продольном направлении вокруг каждой миофибриллы идут канальцы саркоплаз-матической сети. Так формируются продольная и поперечная системы, которые на срезах видны как триады. Триада - это комплекс, состоящий из поперечной трубочки и профилей двух цистерн саркоплазматической сети, расположенных симметрично по обе стороны от Т-трубочки. В цистернах саркоплазматической сети накапливаются ионы кальция, необходимые для сокращения миофибрилл.

В позднем онтогенезе происходит ряд ультраструктурных изменений в клетках и симпластах. Наиболее значимы - утолщение базальной мембраны, дезорганизация миофибрилл и Z-линии, возникновение скоплений митохондрий под сарколеммой, отделение миосателлитоцитов от симпласта и переход их в интерстициальное пространство. Иннервация мышечных волокон осуществляется двигательными нейронами передних рогов спинного мозга, которые формируют нервно-мышечные синапсы примерно в центральной части волокна.

Регенерация . Для успешной регенерации мышечной ткани необходимо сохранение напряжения мышцы, восстановление кровоснабжения и нервной связи. Основным источником регенерации являются миосателлитоциты. После активации последних происходит их митотическое деление, возникают миобласты, которые претерпевают дифференцировку, сливаются друг с другом и формируют симпласты. Развитие симпластов продолжается с участием размножающихся миосателлитоциов, часть которых сливается с растущими симпластами. Так формируются новые клеточно-симпластические системы - мышечные волокна.

Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Энциклопедичный YouTube

    1 / 3

    Строение мышечной клетки

    Строение скелетных поперечнополосатых мышц

    Сокращение мышечных волокон

    Субтитры

    Мы рассмотрели механизм сокращения мышц на молекулярном уровне. А теперь давайте поговорим о строении самой мышцы и о том, как она связана с окружающими тканями. Я нарисую бицепс. Вот так… Сокращающийся бицепс… Вот локоть, вот - кисть. Вот такой у человека бицепс при сокращении. Наверное, вы все видели рисунки с изображением мышц, по крайней мере схематические, мышца крепится к костям с обеих сторон. Обозначу кости. Схематично… Мышца с обеих сторон прикрепляется к кости с помощью сухожилий. Вот здесь у нас кость. И вот здесь тоже. А белым цветом я обозначу сухожилия. Они прикрепляют мышцы к костям. А это сухожилие. Мышца крепится к двум костям; при сокращении она перемещает часть скелетной системы. Сегодня мы говорим о скелетных мышцах. Скелетных… К другим типам относятся гладкие мышцы и сердечные мышцы. Сердечные мышцы, как вы понимаете, - в нашем сердце; а гладкие мышцы сокращаются непроизвольно и медленно, они образуют, например, пищеварительный тракт. Я подготовлю о них ролик. Но в большинстве случаев под словом «мышцы» подразумеваются скелетные мышцы, которые перемещают кости и дают возможность ходить, разговаривать, жевать и тому подобное. Давайте рассмотрим такие мышцы подробнее. Если посмотреть на мышцу бицепса в поперечном разрезе… поперечный разрез мышцы… Я сделаю рисунок побольше. Нарисуем бицепс… Нет, пусть это будет просто абстрактная мышца. Рассмотрим ее в поперечном разрезе. Сейчас узнаем, что у мышцы внутри. Мышца переходит в сухожилие. Вот здесь сухожилие. И у мышцы есть оболочка. Четкой границы между оболочкой и сухожилием нет; оболочка мышцы называется эпимизий. Это соединительная ткань. Она окружает мышцу, выполняет некоторые защитные функции, уменьшает трение мышцы о кость и другие ткани, в нашем примере - ткани руки. Внутри мышцы тоже есть соединительная ткань. Возьму другой цвет. Оранжевый. Это соединительнотканная оболочка; она окружает пучки мышечных волокон разной толщины. Она называется перимизий, это соединительная ткань внутри мышцы. Перимизий… А каждый из этих пучков окружен перимизием… Если рассматривать его подробней… Вот один такой пучок мышечных волокон, окруженный перимизием… Возьмем вот этот пучок. Он окружен оболочкой, называемой перимизием. Это такое «умное» слово, обозначающее соединительную ткань. Там, конечно, есть и другие ткани - нервные волокна, капилляры, ведь к мышце нужно подводить кровь, нервные импульсы. Так что там помимо соединительной есть и другие ткани, обеспечивающие жизнь мышечных клеток. Каждая из таких групп волокон - а это большие группы волокон мышцы - называется пучок. Это пучок… Пучок. Внутри такого пучка тоже есть соединительная ткань; ее называют эндомизий. Сейчас я его обозначу. Эндомизий. Повторяю: в составе соединительной ткани присутствуют нервные волокна, капилляры - все необходимое для обеспечения контакта с мышечными клетками. Мы рассматриваем строение мышцы. Вот это эндомизий. Зеленым цветом обозначена соединительная ткань, которую называют эндомизий. Эндомизий. А вот такое «волокно», окруженное эндомизием, и есть мышечная клетка. Мышечная клетка. Обозначу другим цветом. Вот такая вытянутая клетка. Я ее немного «вытащу». Мышечная клетка. Заглянем внутрь нее, и посмотрим, как там располагаются миозиновые и актиновые филаменты. Итак, вот мышечная клетка или мышечное волокно. Мышечное волокно… Вам часто будут встречаться два префикса; первый - «мио», произошедший от греческого слова «мышца»; И второй - «сарко», например, в словах «сарколемма», «саркоплазматическая сеть», произошедший от греческого слова «мясо», «плоть». Он сохранился в ряде слов, например, «саркофаг». «Сарко» - плоть, «мио» - мышца. Итак, вот это мышечное волокно. Или мышечная клетка. Давайте рассмотрим ее подробнее. Сейчас я ее нарисую покрупнее. Мышечная клетка, иначе называется мышечное волокно. «Волокно» - потому что в длину она намного больше, чем в ширину; она имеет вытянутую форму. Сейчас я нарисую. Вот такая у меня мышечная клетка… Рассмотрим ее в поперечном разрезе. Мышечное волокно… Они бывают относительно короткие - несколько сот микрометров - и очень длинные, по крайней мере по клеточным меркам. У нас пусть будет несколько сантиметров. Представьте себе такую клетку! Она очень длинная, поэтому в ней несколько ядер. И чтобы обозначить ядра, я подправлю свой рисунок. Добавлю вот такие бугорки на мембране клетки, - под ними как раз и будут ядра. Напомню, это всего одна мышечная клетка; такие клетки очень длинные, поэтому в них несколько ядер. Вот здесь будет поперечный разрез. Как я сказал, в клетке несколько ядер. Представим, что мембрана прозрачная; вот одно ядро, вот - другое, вот здесь - третье, и четвертое. Много ядер нужно для того, чтобы не тратить время на преодоление белка́ми больших расстояний; скажем, от этого ядра до вот этой части клетки. В многоядерной клетке информация ДНК всегда рядом. Если я не ошибаюсь, в одном миллиметре мышечной ткани в среднем тридцать ядер. Не знаю, сколько ядер в нашей клетке, но расположены они непосредственно под мембраной - а вы помните, как она называется, из прошлого занятия. Мембрана мышечной клетки называется сарколемма. Запишем. Сарколемма. Ударение на третий слог. Вот это - ядра. Ядро… А если посмотрим на поперечный разрез, увидим еще более тонкие структуры, их называют миофибриллы. Вот такие нитевидные структуры внутри клетки. Я вытяну одну из них на рисунке. Вот одна из таких «ниточек». Это миофибрилла. Миофибрилла… Если посмотреть на нее в микроскоп, то можно увидеть бороздки. Вот такие бороздки… Здесь, здесь и здесь… И еще пара тонких... Внутри миофибрилл и происходит взаимодействие филаментов миозина и актина. Давайте еще увеличим масштаб. Так и будем увеличивать, пока не дойдем до молекулярного уровня. Итак, миофибрилла; она находится внутри мышечной клетки или мышечного волокна. Мышечное волокно это мышечная клетка. Миофибрилла - это нитевидная структура внутри мышечной клетки. Именно миофибриллы обеспечивают сокращение мышц. Я нарисую миофибриллу в более крупном масштабе. Вот приблизительно так… На ней полоски… Это называется исчерченность. Узкие полоски. Ещё… Есть более широкие полоски. Постараюсь нарисовать как можно аккуратней. Вот здесь еще одна полоска… А затем все повторяется. Каждый из таких повторяющихся участков называется саркомер. Это саркомер. Саркомер… Такие участки находятся между так называемыми Z-линиями. Термины придумывались, когда исследователи впервые увидели эти линии под микроскопом. Мы поговорим о том, как они связаны с миозином и актином совсем скоро. Вот эту зону принято называть Диск А или А-диск. А вот эту зону здесь и здесь - диск I или I-диск. Через пару минут мы узнаем, как они связаны с механизмами, молекулами, о которых мы говорили на прошлом занятии. Если заглянуть внутрь миофибрилл, сделаем ее поперечный разрез, разделим на секции параллельно экрану, в который смотрим, вот что увидим. Так, вот одна Z-линия. Z-линия… Следующая Z-линия. Я рисую один саркомер в крупном масштабе. Соседняя Z-линия. И вот мы переходим на молекулярный уровень, как я и обещал. Вот актиновые филаменты Обозначу их волнистыми линиями. Пусть будет три… Подпишу их… Актиновые филаменты… А между актиновыми филаментами - миозиновые. Нарисую их другим цветом… Помните, на волокнах миозина две головки. На каждом из них по две головки, которые скользят или «ползут» по волокнам актина. Обозначу несколько… Вот здесь они прикреплены... Сейчас мы посмотрим, что происходит, когда мышца сокращается. Нарисуем еще волокна миозина. На самом деле, головок миозина несравнимо больше, но у нас схематический рисунок. Это филаменты белка миозина, они перекручены, как мы видели на прошлом занятии; вот здесь еще один. Я обозначу схематически… Сразу можно заметить, что нити миозина находятся в А-диске. Вот это область А-диска. А-диск… Участки нитей актина и миозина накладываются друг на друга, но I-диск - это область, где нет миозина, только актин. I-диск… Филаменты миозина удерживаются титином; это упругий, эластичный белок. Я его обозначу другим цветом. Вот такие спирали… Нити миозина удерживаются титином. Он соединяет миозин с Z-зоной. Итак, что же происходит? При возбуждении нейрона… Нарисуем концевую ветвь нейрона, точнее говоря, концевую ветвь аксона. Это моторный нейрон. Он отдает миофибрилле команду на сокращение. Потенциал действия распространяется по мембране во всех направлениях. А в мембране, мы помним, есть Т-трубочки. Потенциал действия проходит по ним внутрь клетки и продолжает распространяться. Саркоплазматическая сеть выпускает ионы кальция. Ионы кальция связываются с тропонином, который прикрепляется к актиновым филаментам, тропомиозин сдвигается, и миозин может взаимодействовать с актином. Миозиновые головки могут использовать энергию АТФ и скользить по нитям актина. Помните этот «рабочий ход»? Это можно рассматривать как движение актиновых филаментов вправо (от нас) или как движение головки миозина влево (от нас); это ведь зеркальное движение, верно? Смотрите, миозин останется на месте, а актиновые филаменты притянутся друг к другу. Друг к другу. Вот так сокращается мышца. Итак, мы прошли путь от общего вида мышцы к процессам, происходящим на молекулярном уровне, о которых мы говорили на прошлых занятиях. Эти процессы происходят во всех миофибриллах внутри клетки, - ведь саркоплазматическая сеть выпускает кальций в цитоплазму, другое название которой - миоплазма, ведь речь идет о мышечной клетке, всей клетки. Кальций попадает во все миофибриллы. Ионов кальция достаточно, чтобы связаться со всеми - ну или с большей частью - белков тропонина на актиновых филаментах, и вся мышца сокращается. У отдельных мышечных волокон, мышечных клеток, наверное, небольшая сократительная сила. Кстати, когда сокращается одно или несколько волокон, вы ощущаете подергивания. Но когда они работают все, их силы достаточно, чтобы выполнять работу, двигать наши кости, поднимать вес. Надеюсь, занятие было полезным.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-сателлитов), покрытых общей базальной мембраной . Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Скелетные мышцы прикреплены к костям или друг к другу крепкими, гибкими сухожилиями .

Строение миосимпласта

Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки - эндоплазматическая сеть (саркоплазматический ретикулюм), митохондрии и др. Центральную часть симпласта занимают миофибриллы . Структурная единица миофибриллы - саркомер . Он состоит из молекул актина и миозина , именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие сокращение мышцы . В состав саркомера входят также многие вспомогательные белки - титин , тропонин , тропомиозин и др. мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путём окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

В теле человека различают три вида мышечной ткани: скелетная (поперечнополосатая), гладкая и мышца сердца. Здесь будут разобраны скелетные мышцы, которые формируют мускулатуру опорно-двигательного аппарата, составляют стенки нашего тела и некоторых внутренних органов (пищевода, глотки, гортани). Если всю мышечную ткань принять за 100%, то на долю скелетных мышц приходится более половины (52%), гладкая мышечная ткань составляет 40%, сердечная мышца – 8%. Масса скелетных мышц с возрастом нарастает (до зрелого возраста), а у пожилых людей мышцы атрофируются, так как имеет место функциональная зависимость массы мышц от их функции. У взрослого человека скелетные мышцы составляют 40-45% от общей массы тела, у новорожденного – 20-24%, у стариков – 20-30%, а у спортсменов (особенно представителей скоростно-силовых видов спорта) – 50% и более. Степень развития мускулатуры зависит от особенностей конституции, пола, профессии и других факторов. У спортсменов степень развития мускулатуры определяется характером двигательной деятельности. Систематические физические нагрузки приводят к структурной перестройке мышц, увеличению их массы и объема. Этот процесс перестройки мышц под влиянием физической нагрузки называют функциональной (рабочей) гипертрофией. Физические упражнения, связанные с различными видами спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Правильно дозированные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Активная деятельность мышечной системы оказывает влияние не только на мышцы, она приводит также к перестройке костной ткани и соединений костей, влияет на внешние формы человеческого организма и его внутреннюю структуру.

Вместе с костями мышцы составляют опорно-двигательный аппарат. Если кости его пассивная часть, то мышцы являются активной частью аппарата движения.

Функции и свойства скелетных мышц. Благодаря мышцам возможно все многообразие движений между звеньями скелета (туловищем, головой, конечностями), перемещение тела человека в пространстве (ходьба, бег, прыжки, вращения и т. п.), фиксация частей тела в определенных положениях, в частности сохранение вертикального положения тела.

С помощью мышц осуществляются механизмы дыхания, жевания, глотания, речи, мышцы влияют на положение и функцию внутренних органов, способствуют току крови и лимфы, участвуют в обмене веществ, в частности теплообмене. Кроме того, мышцы – один из важнейших анализаторов, воспринимающих положение тела человека в пространстве и взаиморасположение его частей.

Скелетная мышца обладает следующими свойствами:

1) возбудимостью – способностью отвечать на действие раздражителя;

2) сократимостью – способностью укорачиваться или развивать напряжение при возбуждении;

3) эластичностью – способностью развивать напряжение при растягивании;

4) тонусом – в естественных условиях скелетные мышцы постоянно находятся в состоянии некоторого сокращения, называемого мышечным тонусом, который имеет рефлекторное происхождение.

Роль нервной системы в регуляции деятельности мышц. Основным свойством мышечной ткани является сократимость. Сокращение и расслабление скелетных мышц подчиняется воле человека. Сокращение мышцы вызывается импульсом, идущим из центральной нервной системы, с которой каждая мышца связана нервами, содержащими чувствительные и двигательные нейроны. По чувствительным нейронам, являющимся проводниками “мышечного чувства”, передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему. По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается, т.е. сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы. К мышцам также подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом. При выполнении спортивных движений в кору головного мозга поступает поток импульсов о месте и степени напряжения тех или иных групп мышц. Возникающее при этом ощущение частей своего тела, так называемое “мышечно-суставное чувство”, является очень важным для спортсменов.

Мышцы тела следует рассматривать с точки зрения их функции, а также топографии групп, в которые они складываются.

Мышца как орган. Строение скелетной мышцы. Каждая мышца является отдельным органом, т.е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме. В состав мышцы как органа входят поперечнополосатая мышечная ткань, составляющая ее основу, рыхлая и плотная соединительная ткань, сосуды, нервы. Однако преобладающей в ней является мышечная ткань, основное свойство которой – сократимость.

Рис. 69. Строение мышцы :

1- мышечное брюшко; 2,3-сухожильные концы;

4-поперечно полосатое мышечное волокно.

Каждая мышца имеет среднюю часть, способную сокращаться и называемую брюшком , и сухожильные концы (сухожилия), не обладающие сократимостью и служащие для прикрепления мышц (рис. 69).

Брюшко мышцы (рис. 69-71) содержит различной толщины пучки мышечных волокон. Мышечное волокно (рис. 70, 71) представляет собой пласт цитоплазмы, содержащий ядра и покрытый оболочкой.

Рис. 70. Строение мышечного волокна.

Наряду с обычными составляющими клетки в цитоплазме мышечных волокон содержатся миоглобин , обусловливающий цвет мышц (белые или красные) и органеллы специального значения – миофибриллы (рис. 70), составляющие сократительный аппарат мышечных волокон. Миофибриллы состоят из двух видов белков – актина и миозина. Реагируя на нервный сигнал, молекулы актина и миозина вступают в реакцию, вызывая сокращение миофибрилл, а, следовательно, и мышцы. Отдельные участки миофибрилл неодинаково преломляют свет: одни из них в двух направлениях – темные диски, другие только в одном – светлые диски. Такое чередование темных и светлых участков в мышечном волокне и обусловливает поперечную исчерченность, откуда мышца и получила название – поперечнополосатая . В зависимости от преобладания в мышце волокон с высоким или низким содержанием миоглобина (красный мышечный пигмент) различают мышцы красные и белые (соответственно). Белые мышцы обладают высокой сократительной скоростью и возможностью развивать большую силу. Красные волокна сокращаются медленно и отличаются хорошей выносливостью.

Рис. 71. Строение скелетной мышцы.

Каждое мышечное волокно окутано соединительнотканной оболочкой – эндомизием , содержащей сосуды и нервы. Группы мышечных волокон, объединяясь между собой, образуют мышечные пучки, окруженные уже более толстой соединительнотканной оболочкой, называемой перимизием . Снаружи брюшко мышцы одето еще более плотным и прочным покровом, который называется фасцией , образованной плотной соединительной тканью и имеющей довольно сложное строение (рис.71). Фасции делятся на поверхностные и глубокие. Поверхностные фасции лежат непосредственно под подкожным жировым слоем, образуя для него своеобразный футляр. Глубокие (собственные) фасции покрывают отдельные мышцы или группы мышц, а также образуют влагалища для сосудов и нервов. Благодаря наличию соединительнотканных прослоек между пучками мышечных волокон, мышца может сокращаться не только целиком, но и отдельной частью.

Все соединительнотканные образования мышцы с мышечного брюшка переходят на сухожильные концы (рис. 69, 71), которые состоят из плотной волокнистой соединительной ткани.

Сухожилия в организме человека формируются под влиянием величины мышечной силы и направления ее действия. Чем больше эта сила, тем сильнее разрастается сухожилие. Таким образом, у каждой мышцы характерное для нее (как по величине, так и по форме) сухожилие.

Сухожилия по цвету резко отличаются от мышц. Мышцы имеют красно-бурый цвет, а сухожилия белые, блестящие. Форма сухожилий мышц весьма разнообразна, но чаще встречаются сухожилия длинные узкие или плоские широкие (рис. 71, 72, 80). Плоские, широкие сухожилия носят названия апоневрозов (мышцы живота и др.), их, в основном, имеют мышцы, участвующие в образовании стенок брюшной полости. Сухожилия очень прочны и крепки. Например, пяточное сухожилие выдерживает нагрузку около 400 кг, а сухожилие четырехглавой мышцы бедра – 600 кг.

Сухожилия мышцы фиксируются или прикрепляются. В большинстве случаев они прикрепляются к костным звеньям скелета, подвижным по отношению друг к другу, иногда к фасциям (предплечья, голени), к коже (в области лица) или к органам (мышцы глазного яблока). Один конец сухожилия является началом мышцы и называется головкой , другой – местом прикрепления и называется хвостом . За начало мышцы обычно принимается ее проксимальный конец (проксимальная опора), расположенный ближе к срединной линии тела или к туловищу, за место прикрепления – дистальная часть (дистальная опора), расположенная дальше от указанных образований. Место начала мышцы считают неподвижной (фиксированной) точкой, место прикрепления мышцы подвижной точкой. При этом имеют в виду наиболее часто наблюдаемые движения, при которых дистальные звенья тела, находящиеся дальше от тела, более подвижны, чем проксимальные, лежащие ближе к нему. Но встречаются движения, при которых бывают закреплены дистальные звенья тела (например, при выполнении движений на спортивных снарядах), в этом случае проксимальные звенья приближаются к дистальным. Поэтому мышца может совершать работу или при проксимальной, или при дистальной опоре.

Мышцы, будучи органом активным, характеризуются интенсивным обменом веществ, хорошо снабжены кровеносными сосудами, которые доставляют кислород, питательные вещества, гормоны и уносят продукты мышечного обмена и углекислый газ. В каждую мышцу кровь поступает по артериям, протекает в органе по многочисленным капиллярам, а оттекает из мышцы по венам и лимфатическим сосудам. Ток крови через мышцу непрерывен. Однако количество крови и число капилляров, пропускающих ее, зависят от характера и интенсивности работы мышцы. В состоянии относительного покоя функционирует примерно 1 / 3 капилляров.

Классификация мышц. В основу классификации мышц положен функциональный принцип, так как величина, форма, направление мышечных волокон, положение мышцы зависят от выполняемой ею функции и совершаемой работы (табл. 4).

Таблица 4

Классификация мышц

1. В зависимости от места расположения мышц их подразделяют на соответствующие топографические группы : мышцы головы, шеи, спины, груди, живота, мышцы верхних и нижних конечностей.

2. По форме мышцы очень разнообразны: длинные, короткие и широкие, плоские и веретенообразные, ромбовидные, квадратные и т.п. Эти различия связаны с функциональным значением мышц (рис. 72).

Рис 72. Форма скелетных мышц:

а-веретенообразная, б-двуглавая, в-двубрюшная, г-лентовидная, д-двуперистая, е-одноперистая: 1-брюшко мышцы, 2-сухожилие, 3-промежуточное сухожилие, 4-сухожильные перемычки.

В длинных мышцах продольный размер превалирует над поперечным. Они имеют незначительную площадь прикрепления к костям, расположены в основном на конечностях и обеспечивают значительную амплитуду их движений (рис. 72а).

У коротких мышц продольный размер лишь немного больше поперечного. Они встречаются на тех участках тела, где размах движений невелик (например, между отдельными позвонками, между затылочной костью, атлантом и осевым позвонком).

Широкие мышцы находятся преимущественно в области туловища и поясов конечностей. Эти мышцы имеют пучки мышечных волокон, идущих в разных направлениях, сокращаются как целиком, так и своими отдельными частями; у них значительная площадь прикрепления к костям. В отличие от других мышц они обладают не только двигательной функцией, но также опорной и защитной. Так, мышцы живота помимо участия в движениях туловища, акте дыхания, при натуживании, укрепляют стенку живота, способствуя удержанию внутренних органов. Встречаются мышцы, имеющие индивидуальную форму, трапециевидная, квадратная мышца поясницы, пирамидальная.

Большинство мышц имеет одно брюшко и два сухожилия (головку и хвост, рис. 72а). Некоторые длинные мышцы имеют не одно, а два, три или четыре брюшка и соответствующее им количество сухожилий, начинающихся или заканчивающихся на различных костях. В одних случаях такие мышцы начинаются проксимальными сухожилиями (головками) от разных костных точек, а затем сливаются в одно брюшко, которое прикрепляется одним дистальным сухожилием – хвостом (рис. 72б). Например, двуглавая и трехглавая мышцы плеча, четырехглавая мышца бедра, икроножная мышца. В других случаях мышцы начинаются одним проксимальным сухожилием, а брюшко заканчивается несколькими дистальными сухожилиями, прикрепляющимися к разным костям (сгибатели и разгибатели пальцев кисти и стопы). Встречаются мышцы, где брюшко разделено одним промежуточным сухожилием (двубрюшная мышца шеи, рис. 72в) или несколькими сухожильными перемычками (прямая мышца живота, рис. 72г).

3. Существенное значение для работы мышц имеет направление их волокон. По направлению волокон , обусловленному функционально, различают мышцы с прямыми, косыми, поперечными и круговыми волокнами. В прямых мышцах мышечные волокна расположены параллельно длиннику мышцы (рис. 65 а, б, в, г). Эти мышцы обычно длинные и не обладают большой силой.

Мышцы с косым направлением волокон могут прикрепляться к сухожилию с одной стороны (одноперистые, рис. 65е) либо с двух сторон (двуперистые, рис. 65д). При своем сокращении эти мышцы могут развивать значительную силу.

Мышцы, имеющие круговые волокна , располагаются вокруг отверстий и при своем сокращении суживают их (например, круговая мышца глаза, круговая мышца рта). Эти мышцы называются сжимателями или сфинктерами (рис. 83). Иногда мышцы имеют веерообразный ход волокон. Чаще это широкие мышцы, располагающиеся в области шаровидных суставов и обеспечивающие разнообразие движений (рис. 87).

4. По положению в теле человека мышцы делятся на поверхностные и глубокие , наружные и внутренние , медиальные и латеральные .

5. По отношению к суставам , через которые (один, два или несколько) перекидываются мышцы, различают мышцы одно-, двух- и многосуставные. Односуставные мышцы фиксируются к соседним костям скелета и переходят через один сустав, а многосуставные мышцы переходят через два и более суставов, производя движения в них. Многосуставные мышцы как более длинные располагаются поверхностнее односуставных. Перекидываясь через сустав, мышцы имеют определенное отношение к осям его движения.

6. По выполняемой функции мышцы делятся на сгибатели и разгибатели, отводящие и приводящие, супинаторы и пронаторы, поднимающие и опускающие, жевательные и др.

Закономерности положения и функции мышц . Мышцы перебрасываются через сустав, они имеют определенное отношение к оси данного сустава, чем и обусловливается функция мышцы. Обычно мышца перекрывает ту или другую ось под прямым углом. Если мышца лежит впереди сустава, то она вызывает сгибание, сзади – разгибание, медиально – приведение, латерально – отведение. Если мышца лежит вокруг вертикальной оси вращения сустава, то она вызывает вращение вовнутрь или наружу. Поэтому, зная сколько и какие движения возможны в данном суставе, всегда можно предугадать, какие по функции залегают мышцы и где они расположены.

Мышцы обладают энергичным обменом веществ, который еще более повышается при увеличении работы мышцы. При этом к мышце увеличивается приток крови по сосудам. Усиленная функция мускулатуры вызывает улучшение питания и увеличение массы мышцы (рабочая гипертрофия). При этом увеличивается абсолютная масса и размер мышцы за счет увеличения мышечных волокон. Физические упражнения, связанные с различными видами труда и спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Нередко по фигуре спортсмена можно сказать, каким видом спорта он занимается – плаванием, легкой или тяжелой атлетикой. Гигиена труда и спорта требует универсальной гимнастики, которая способствует гармоничному развитию тела человека. Правильные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Так как усиленная работа мышц оказывает влияние на обмен веществ всего организма, то физическая культура является одним из мощных факторов благоприятного влияния на него.

Вспомогательный аппарат мышц. Мышцы, сокращаясь, выполняют свою функцию при участии и при помощи ряда анатомических образований, которые следует рассматривать как вспомогательные. К вспомогательному аппарату скелетных мышц относятся сухожилия, фасции, межмышечные перегородки, синовиальные сумки и влагалища, мышечные блоки, сесамовидные кости.

Фасции покрывают как отдельные мышцы, так и группы мышц. Различают поверхностные (подкожные) и глубокие фасции. Поверхностные фасции лежат под кожей, окружая всю мускулатуру данной области. Глубокие фасции покрывают группу мышц-синергистов (т.е. выполняющих однородную функцию) или каждую отдельную мышцу (собственная фасция). От фасций вглубь отходят отростки – межмышечные перегородки. Они отделяют друг от друга группы мышц и прикрепляются к костям.

Удерживатели сухожилий располагаются в области некоторых суставов конечностей. Они представляют собой лентообразные утолщения фасций и располагаются поперечно над сухожилиями мышц подобно ремням, фиксируя их к костям.

Синовиальные сумки – тонкостенные соединительнотканные мешочки, заполненные жидкостью похожей на синовию и расположенные под мышцами, между мышцами и сухожилиями или костью. Они уменьшают трение.

Синовиальные влагалища развиваются в тех местах, где сухожилия прилегают к кости (т. е. в костно-фиброзных каналах). Это замкнутые образования, в виде муфты или цилиндра охватывающие сухожилие. Каждое синовиальное влагалище состоит из двух листков. Один листок, внутренний, охватывает сухожилие, а второй, наружный, выстилает стенку фиброзного канала. Между листками находится небольшая щель, заполненная синовиальной жидкостью, облегчающей скольжение сухожилия.

Сесамовидные кости располагаются в толще сухожилий, ближе к месту их прикрепления. Они изменяют угол подхода мышцы к кости и увеличивают плечо силы мышцы. Самой крупной сесамовидной костью является надколенник.

Вспомогательный аппарат мышц образует дополнительную опору для них – мягкий скелет, обусловливает направление тяги мышц, способствует их изолированному сокращению, не дает смещаться при сокращении, увеличивает силу мышц и способствует кровообращению и лимфооттоку.

Выполняя многочисленные функции, мышцы работают согласованно, образуя функциональные рабочие группы . Мышцы включаются в функциональные группы по направлению движения в суставе, по направлению движения части тела, по изменению объема полости и по изменению размера отверстия.

При движениях конечностей и их звеньев выделяют функциональные группы мышц – сгибающие, разгибающие, отводящие и приводящие, пронирующие и супинирующие.

При движении туловища различают функциональные группы мышц – сгибающие и разгибающие (наклоняющие вперед и назад), наклоняющие вправо или влево, поворачивающие вправо или влево. По отношению к движению отдельных частей тела выделяют функциональные группы мышц, поднимающие и опускающие, осуществляющие движение вперед и назад; по изменению размера отверстия – суживающие и расширяющие его.

В процессе эволюции функциональные группы мышц развивались парами: сгибающая группа формировалась совместно с разгибающей, пронирующая – совместно с супинирующей и т. п. Это наглядно выявляется на примерах развития суставов: каждая ось вращения в суставе, выражая его форму, имеет свою функциональную пару мышц. Такие пары состоят, как правило, из противоположных по функции групп мышц. Так, одноосные суставы имеют одну пару мышц, двухосные – две пары, а трехосные – три пары или соответственно две, четыре, шесть функциональных групп мышц.

Синергизм и антагонизм в действиях мышц . Мышцы, входящие в функциональную группу, характеризуются тем, что проявляют одинаковую двигательную функцию. В частности, все они или притягивают кости – укорачиваются, или отпускают – удлиняются, или же проявляют относительную стабильность напряжения, размеров и формы. Мышцы, совместно действующие в одной функциональной группе, называются синергистами . Синергизм проявляется не только при движениях, но и при фиксации частей тела.

Мышцы противоположных по действию функциональных групп мышц называются антагонистами . Так, мышцы-сгибатели будут антагонистами мышц-разгибателей, пронаторы – антагонистами супинаторов и т. п. Однако истинного антагонизма между ними нет. Он проявляется лишь в отношении определенного движения или определенной оси вращения.

Следует отметить, что при движениях, в которых участвует одна мышца, синергизма быть не может. Вместе с тем антагонизм имеет место всегда, и только согласованная работа мышц-синергистов и мышц-антагонистов обеспечивает плавность движений и пре­дотвращает травмы. Так, например, при каждом сгибании действует не только сгибатель, но обязательно и разгибатель, который постепенно уступает сгибателю и удерживает его от чрезмерного сокращения. Поэтому антагонизм обеспечивает плавность и соразмерность движений. Каждое движение, таким образом, есть результат действия антагонистов.

Двигательная функция мышц. Поскольку каждая мышца фиксируется преимущественно к костям, то внешне двигательная функция ее выражается в том, что она либо притягивает кости, либо удерживает, либо отпускает их.

Мышца притягивает кости, когда она активно сокращается, брюшко ее укорачивается, места прикреплений сближаются, расстояние между костями и угол в суставе уменьшаются в сторону тяги мышцы.

Удержание костей происходит при относительно постоянном напряжении мышцы, почти незаметном изменении ее длины.

Если движение осуществляется при эффективном действии внешних сил, например силы тяжести, то мышца удлиняется до определенного предела и отпускает кости; они отдаляются друг от друга, причем движение их происходит в обратном направлении по сравнению с тем, которое имело место при притягивании костей.

Для понимания функции скелетной мышцы необходимо знать, с какими костями связана мышца, через какие суставы она проходит, какие оси вращения она пересекает, с какой стороны пересекает ось вращения, при какой опоре действует мышца.

Тонус мышц. В организме каждая скелетная мышца всегда находится в состоянии определенного напряжения, готовности к действию. Минимальное непроизвольное рефлекторное напряжение мышцы называется тонусом мышцы . Физические упражнения повышают тонус мышц, влияют на тот своеобразный фон, с которого начинается действие скелетной мышцы. У детей тонус мышц меньше, чем у взрослых, у женщин меньше, чем у мужчин, у не занимающихся спортом меньше, чем у спортсменов.

Для функциональной характеристики мышц используются такие показатели как их анатомический и физиологический поперечник. Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, её толщину (фактически определяет объём мышцы). Физиологический поперечник представляет собой суммарную площадь поперечного сечения всех мышечных волокон, входящих в состав мышцы. А поскольку сила сокращающейся мышцы зависит от величины поперечного сечения мышечных волокон, то физиологический поперечник мышцы характеризует её силу. У мышц веретенообразной и лентовидной формы с параллельным расположением волокон анатомический и физиологический поперечник совпадают. Иначе у перистых мышц. Из двух равновеликих мышц, имеющих одинаковый анатомический поперечник, у перистой мышцы физиологический поперечник будет больше, чем у веретенообразной. В связи с этим перистая мышца обладает большей силой, однако размах сокращения её коротких мышечных волокон будет меньше, чем у веретенообразной мышцы. Поэтому перистые мышцы имеются там, где необходима значительная сила мышечных сокращений при сравнительно небольшом размахе движений (мышцы стопы, голени, некоторые мышцы предплечья). Веретенообразные, лентовидные мышцы, построенные из длинных мышечных волокон, при сокращении укорачиваются на большую величину. В то же время силу они развивают меньшую, чем перистые мышцы, имеющие одинаковый с ними анатомический поперечник.

Виды работы мышц. Тело человека и его части при сокращении соответствующих мышц изменяют своё положение, приходят в движение, преодолевают сопротивление силы тяжести или, наоборот, уступают этой силе. В других случаях при сокращении мышц тело удерживается в определённом положении без выполнения движения. Исходя из этого, различают преодолевающую, уступающую и удерживающую работу мышц.

Преодолевающая работа выполняется в том случае, когда сила сокращения мышцы изменяет положение части тела, конечности или её звена с грузом или без него, преодолевая силу сопротивления. Например, двуглавая мышца плеча, сгибая предплечье, выполняет преодолевающую работу, дельтовидная мышца (главным образом ее средние пучки) при отведении руки также выполняет преодолевающую работу.

Уступающей называется работа, при которой мышца, оставаясь напряженной, постепенно расслабляется, уступая действию силы тяжести части (конечности) тела и удерживаемого ею груза. Например, при приведении отведенной руки дельтовидная мышца выполняет уступающую работу, она постепенно расслабляется и рука опускается.

Удерживающей называется работа, при которой сила тяжести уравновешивается напряжением мышц и тело или груз удерживается в определённом положении без перемещения в пространстве. Например, при удержании руки в отведенном положении дельтовидная мышца выполняет удерживающую работу.

Преодолевающая и уступающая работа, когда сила мышечных сокращений обусловлена перемещением тела или его частей в пространстве, можно рассматривать как динамическую работу . Удерживающая работа, при которой движения всего тела или части тела не происходит, является статической . Используя тот или иной вид работы, можно значительно разнообразить свою тренировку и сделать её более эффективной.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...