Как изменяется магнитный поток. Поток индукции магнитного поля. Что такое магнитный поток

Среди физических величин важное место занимает магнитный поток. В этой статье рассказывается о том, что это такое, и как определить его величину.

Что такое магнитный поток

Это величина, определяющая уровень магнитного поля, проходящего через поверхность. Обозначается “ФФ” и зависит от силы поля и угла прохождения поля через эту поверхность.

Рассчитывается она по формуле:

ФФ=B⋅S⋅cosα, где:

  • ФФ – магнитный поток;
  • В – величина магнитной индукции;
  • S – площадь поверхности, через которую проходит это поле;
  • cosα – косинус угла между перпендикуляром к поверхности и потоком.

Единицей измерения в системе СИ является “вебер” (Вб). 1 вебер создаётся полем величиной 1 Тл, проходящим перпендикулярно поверхности площадью 1 м².

Таким образом, поток максимален при совпадении его направления с вертикалью и равен “0”, если он параллелен с поверхностью.

Интересно. Формула магнитного потока аналогична формуле, по которой рассчитывается освещённость.

Постоянные магниты

Одним из источников поля являются постоянные магниты. Они известны много веков. Из намагниченного железа изготавливалась стрелка компаса, а в Древней Греции существовала легенда об острове, притягивающем к себе металлические части кораблей.

Постоянные магниты есть различной формы и изготавливаются из разных материалов:

  • железные – самые дешёвые, но обладают меньшей притягивающей силой;
  • неодимовые – из сплава неодима, железа и бора;
  • альнико – сплав железа, алюминия, никеля и кобальта.

Все магниты являются двухполюсными. Это заметнее всего в стержневых и подковообразных устройствах.

Если стержень подвесить за середину или положить на плавающий кусочек дерева или пенопласта, то он развернётся по направлению “север-юг”. Полюс, показывающий на север, называют северным и на лабораторных приборах красят в синий цвет и обозначают “N”. Противоположный, показывающий на юг, – красный и обозначен ” S”. Одноимёнными полюсами магниты притягиваются, а противоположными – отталкиваются.

В 1851 году Майкл Фарадей предложил понятие о замкнутых линиях индукции. Эти линии выходят из северного полюса магнита, проходят по окружающему пространству, входят в южный и внутри устройства возвращаются к северному. Ближе всего линии и напряжённость поля у полюсов. Здесь также выше притягивающая сила.

Если на устройство положить кусок стекла, а сверху тонким слоем насыпать железные опилки, то они расположатся вдоль линий магнитного поля. При расположении рядом нескольких приборов опилки покажут взаимодействие между ними: притяжение или отталкивание.

Магнитное поле Земли

Нашу планету можно представить в виде магнита, ось которого наклонена на 12 градусов. Пересечения этой оси с поверхностью называют магнитными полюсами. Как и у любого магнита, силовые линии Земли идут от северного полюса к южному. Возле полюсов они проходят перпендикулярно поверхности, поэтому там стрелка компаса ненадёжна, и приходится использовать другие способы.

Частицы «солнечного ветра» имеют электрический заряд, поэтому при движении вокруг них появляется магнитное поле, взаимодействующее с полем Земли и направляющее эти частицы вдоль силовых линий. Тем самым это поле защищает земную поверхность от космической радиации. Однако возле полюсов эти линии направлены перпендикулярно поверхности, и заряженные частицы попадают в атмосферу, вызывая северное сияние.

В 1820 году Ганс Эрстед, проводя эксперименты, увидел воздействие проводника, по которому протекает электрический ток, на стрелку компаса. Через несколько дней Андре-Мари Ампер обнаружил взаимное притяжение двух проводов, по которым протекал ток одного направления.

Интересно. Во время электросварочных работ рядом расположенные кабеля двигаются при изменении силы тока.

Позже Ампер предположил, что это связано с магнитной индукцией тока, протекающего по проводам.

В катушке, намотанной изолированным проводом, по которому протекает электрический ток, поля отдельных проводников усиливают друг друга. Для увеличения силы притяжения катушку наматывают на незамкнутом стальном сердечнике. Этот сердечник намагничивается и притягивает железные детали или вторую половину сердечника в реле и контакторах.

Электромагнитная индукция

При изменении магнитного потока в проводе наводится электрический ток. Этот факт не зависит от того, какими причинами было вызвано это изменение: перемещением постоянного магнита, движением провода или изменением силы тока в рядом расположенном проводнике.

Это явление было открыто Майклом Фарадеем 29 августа 1831 года. Его эксперименты показали, что ЭДС (электродвижущая сила), появляющаяся в контуре, ограниченном проводниками, прямопропорциональна скорости изменения потока, проходящего через площадь этого контура.

Важно! Для возникновения ЭДС провод должен пересекать силовые линии. При движении вдоль линий ЭДС отсутствует.

Если катушка, в которой возникает ЭДС, включена в электрическую цепь, то в обмотке возникает ток, создающий в катушке индуктивности своё электромагнитное поле.

При движении проводника в магнитном поле в нём наводится ЭДС. Её направленность зависит от направления движения провода. Метод, при помощи которого определяется направление магнитной индукции, называется «метод правой руки».

Расчёт величины магнитного поля важен для проектирования электрических машин и трансформаторов.

Видео

Магнитный поток и способы его изменения. Явление электромагнитной индукции. Закон электромагнитной индукции. Величина ЭДС индукции движущегося проводника.

Магнитный поток Ф через поверхность S – скалярная физическая величина, равная произведению модуля магнитной индукции на площадь поверхности и на косинус угла между нормалью к поверхности и вектором магнитной индукции.

Ф=В Scos

Единица измерения – 1 Вб.

1 Вб – это такой магнитный поток который создаётся магнитным полем с индукцией 1 Тл через плоскую поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции.

Магнитный поток характеризует число линий магнитной индукции, пронизывающих поверхность S.

Магнитный поток может изменяться при изменении: 1) магнитной индукции; 2) площади контура; 3) угла , т.е. ориентации контура в магнитном поле.

При изменении магнитного потока через замкнутый контур в этом контуре возникает индукционный ток . Протекание тока возможно в том случае, если на свободные заряды действуют сторонние силы. Следовательно, при изменении магнитного потока через поверхность, ограниченную замкнутым контуром, в этом контуре возникают сторонние силы, характеризуемые ЭДС, называемой ЭДС индукции .

Величина индукционного тока не зависит от причины изменения магнитного потока, а зависит от скорости изменения магнитного потока.

Закон Фарадея для электромагнитной индукции .

ЭДС индукции в замкнутом контуре равна скорости изменения потока магнитной индукции через поверхность, ограниченную контуром, взятой со знаком «-».

Знак минус объясняется правилом Ленца, которое определяет направление индукционного тока.

Правило Ленца .

ЭДС индукции создаёт в замкнутом контуре такой индукционный ток, который своим магнитным полем стремится компенсировать изменение потока внешнего магнитного поля.

Причина возникновения ЭДС индукции в замкнутом контуре зависит от того, каким образом изменился поток.

Возникновение ЭДС в движущемся проводнике объясняется действием на свободные заряды силы Лоренца. Величина ЭДС индукции движущегося проводника равна

i = B l v sin

где В – индукция магнитного поля, l – длина проводника, v – скорость проводника,  -угол между векторами скорости и магнитной индукции.

Направление индукционного тока в контуре с перемещающимся проводником можно определить с помощью правила правой руки .

Если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Возникновение ЭДС в неподвижном замкнутом проводнике , находящимся в изменяющемся магнитном поле, объясняется возникновением вихревого электрического поля.

Вихревое электрическое поле появляется при изменении магнитного поля и существует независимо от того, имеется ли в данной точке пространства замкнутый проводник или нет. Силовые линии этого поля замкнуты.

Билет 13

Потокосцепление и индуктивность. Явление самоиндукции. Величина ЭДС самоиндукции. Энергия магнитного поля.

Электрический ток, проходящий по замкнутому контуру, создаёт в окружающем пространстве магнитное поле, часть линий которого пересекает поверхность, ограниченную этим же контуром. Таким образом, получается, что контур пронизывается своим собственным потоком. Величина потока пропорциональна величине магнитной индукции, которая в свою очередь пропорциональна силе тока, протекающего по контуру. Следовательно, величина потока прямопропорциональна силе тока.

Ф  Ф= LI

где коэффициент пропорциональности L – называется индуктивностью контура .

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Индуктивность – скалярная физическая величина, равная собственному магнитному потоку, пронизывающему контур, при силе тока в контуре 1 А.

Е
диница измерения индуктивности1 генри .

1 Гн – это индуктивность такого контура, в котором при силе тока 1 А возникает магнитный поток через контур, равный 1 Вб.

Магнитный поток через один виток соленоида Ф=ВS, а через N витков полный магнитный поток, который называется потокосцеплением, равен

SN

Т
ак как модуль магнитной индукции магнитного поля внутри соленоида

С
равнивая полученное выражение для потокосцеления иLI, получим формулу для расчёта индуктивности соленоида.

где N – количество витков соленоида, S – площадь витка, l – длина соленоида.

Если ток, протекающий в контуре, начинает изменяться, то изменяется и создаваемое им магнитное поле, а следовательно, и магнитный поток, пронизывающий контур. Согласно закону Фарадея, в контуре возникает ЭДС индукции, которая называется ЭДС самоиндукции .

З
нак «-» соответствует правилу Ленца.

Отсюда следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Подключим контур к источнику тока. В контуре за счёт разности потенциалов на зажимах источника начинается перемещение зарядов. Ток в контуре возрастает. Следовательно, в контуре возникает ЭДС самоиндукции, препятствующая нарастанию тока. Работа источника тока по преодолению ЭДС самоиндукции и установлению тока идёт на создание магнитного поля.

Магнитное поле, также как электрическое, является носителем энергии. Энергия магнитного поля равна работе сторонних сил источника против ЭДС самоиндукции.

П
ри отключении контура от источника тока возникает ЭДС самоиндукции и по контуру протекает индукционный ток. В результате выделения теплоты Джоуля-Ленца, контур нагревается. Следовательно, энергия магнитного поля переходит во внутреннюю энергию проводника.

О
бъёмной плотностью энергии
называется энергия, заключённая в единице объёма

Взаимосвязь электрических и магнитных полей замечена очень давно. Данную связь еще в 19 веке обнаружил английский ученый-физик Фарадей и дал ему название . Она появляется в тот момент, когда магнитный поток пронизывает поверхность замкнутого контура. После того как происходит изменение магнитного потока в течение определенного времени, в этом контуре наблюдается появление электрического тока.

Взаимосвязь электромагнитной индукции и магнитного потока

Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S - поверхность контура (площадь), В - вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального - при cos α = 0.

Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.

Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая - с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.

Проведение исследований явления индукции

В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).

1 2

В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.

Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании - уменьшаться, одновременно пронизывая первую катушку.

3 4

5

В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.

Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.

Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = - ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.

Правило Ленца в отношении магнитного потока

Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:

Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.

Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд < 0, в результате этого появляется электроток с такой направленностью, при которой под влиянием его магнитного поля происходит изменение потока в сторону уменьшения при его прохождении через плоскость замкнутого контура.

Если поток снижается, то наступает обратный процесс, когда Ф < 0 и Еинд > 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.

Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором - более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.

На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.

Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока. В связи с этим, силовые линии магнитного поля катушки направлены в сторону, противоположную силовым линиям постоянного магнита, поскольку его движение происходит в сторону этой катушки.

Для определения направления тока используется с правой резьбой. Он должен ввинчиваться таким образом, чтобы направление его поступательного движения совпадало с направлением индукционных линий катушки. В этом случае направления индукционного тока и вращения рукоятки буравчика будут совпадать.

На уроке мы узнаем про новое для нас понятие - магнитный поток - и рассмотрим, чем он характеризуется.

Вспомним, что при изменении параметров магнитного поля вблизи замкнутого проводника в нем возникает ток. Данный ток получил название тока индукции, а явление - явление электромагнитной индукции.

Однако остается вопрос, какие конкретно параметры магнитного поля нам необходимо меня для получения данного эффекта. Для начала проведем эксперимент:

Для его проведения нам необходимо: катушка с большим количеством витков и подключенный к ней амперметр. В ходе проведения опыта обратите внимание на поведение стрелки амперметра (рис. 1).

Рис. 1. Опыты Фарадея

Как мы видим, при опускании и вынимании полосового магнита из катушки в ней образуется индукционный ток.

Проанализируем, изменение какого именно параметра привело к наблюдаемому эффекту. При приближении и отдалении магнита от катушки в ней меняется сила магнитного поля.

Таким образом, величиной, которая влияет на образование тока индукции в катушке, является сила магнитного поля.

Вспомним, что она описывается такой величиной, как магнитная индукция. Она является вектором и обозначается и измеряется в Тл.

Помещенное перпендикулярно магнитному полю замкнутое проволочное кольцо сжимаем с нескольких сторон, чтобы оно изменило свою форму (рис. 2).


Рис. 2. Иллюстрация к опыту

При этом на протяжении процесса деформации в кольце возникает ток индукции. Что же мы изменяли в этот раз?

Теперь изменению подверглась площадь кольца. Конечно же, вместо кольца можно экспериментировать с любым замкнутым проводником.

Контур - замкнутый проводник (рис. 3).

Рис. 3. Контур

Рис. 4. Генератор

Его основными элементами являются (рис. 4):

  • катушка, которая может вращаться вокруг своей оси;
  • установленный вокруг катушки постоянный магнит.

При вращении катушки в магнитном поле можно увидеть, что лампочка загорается (т. е. в цепи возникает ток индукции).

Из этого опыта можно сделать вывод о том, что явление электромагнитной индукции проявляет себя и при повороте катушки или проводящей рамки в магнитном поле (рис. 5), т. е. при изменении угла между магнитными линиями и плоскостью проводника.

Рис. 5. Иллюстрация к опыту

Все три параметра, изменения которых влияют на величину тока индукции, объединяет физическая величина под названием магнитный поток.

В - модуль магнитной индукции поля

S - площадь контура

Характеризует расположение плоскости контура относительно магнитной линии.

Магнитный поток измеряют в Веберах (Вб) и обозначают буквой Ф.

Таким образом, магнитный поток пропорционален модулю магнитной индукции поля, площади контура и зависит от расположения плоскости контура относительно магнитной линии.

Задача на анализ параметров магнитного потока

Для того чтобы научиться делать выводы об изменении магнитного потока в элементах различных электрических цепей, что может привести к наличию нежелательных индукционных токов, рассмотрим задачу.

Проволочная катушка со стальным сердечником включена в цепь постоянного тока последовательно с реостатом и ключом (рис. 6).

Рис. 6. Иллюстрация к задаче

Электрический ток, протекающий по веткам катушки, создает в пространстве вокруг нее магнитное поле (рис. 7). В поле катушки и находится такая же катушка .

Рис. 7. Иллюстрация к задаче

Каким образом можно поменять магнитный поток пронизывающий катушку ? Рассмотрите все возможные варианты.

Вспомним, изменение каких параметров приводит к изменению магнитного потока.

Начнем с изменения индукции магнитного поля катушки .Этого возможно добиться, если изменять силу тока, которая порождает ее магнитное поле. Изменять ток в изображенной цепи можно 2-мя способами:

1. Передвижение ползунка реостата

2. Включение/выключение ключа

Стоит отметить, что изменение значения тока будет наибольшим от максимального до нуля, что приведет к наибольшему изменению магнитного потока в катушке .

Следующим параметром, изменение которого повлияет на значение магнитного потока, является площадь контура. В нашем случае катушки Но изменить площадь сечения катушки мы не можем. Следовательно, вариант отпадает.

Последним вариантом изменения магнитного потока является поворот катушки относительно магнитных линий катушки . Для достижения максимального результата изменения повернуть катушку необходимо на 90(рис. 8).

Рис. 8. Иллюстрация к задаче

Что же описывается магнитным потоком?

Как мы уже отметили, он зависит:

  • От силы магнитного поля
  • От площади контура, через который эти магнитные линии проходят
  • От угла расположения между контуром и магнитными линиями

Таким образом, магнитный поток характеризует количество магнитных линий, пронизывающих ограниченный контур.

Это легко проверить.

1. Сравним количество линий, которые пронизывают одинаковый контур, но в различных по силе магнитных полях (рис. 9).

В более сильном поле контур пронизывает больше линий.

Рис. 9. Иллюстрация к задаче

2. Если сравнить количество линий, которые в одном и том же однородном магнитном поле пронизывают различные по площади контуры, то их очевидно больше через больший контур (рис. 10).

Рис. 10. Иллюстрация к задаче

3. Если сравнивать поворот контура в магнитном поле на угол к магнитным линиям и его расположение вдоль линий, то в первом случае их количество через плоскость контура будет максимально. А во втором магнитные линии будут скользить вдоль контура и не пронизывать его вовсе (рис. 11).

В указанных примерах большему числу линий через контур соответствовал больший магнитный поток.

В результате отметим, что поскольку величина тока индукции зависит от изменения магнитной индукции, площади контура и от ее ориентации в пространстве, то принято говорить, что она зависит от изменения магнитного потока.

Кроме того, опыты Фарадея показали, что важна скорость изменения магнитного потока. Чем быстрее изменять указанные величины, тем величина индукционного тока будет больше.

Таким образом, можно утверждать, что явление электромагнитной индукции характеризуется скоростью изменения магнитного потока.

Задача на определение условий возникновения индукционного тока

Для того чтобы разобраться со взаимосвязью магнитного потока через контур и явлением электромагнитной индукции в нем, рассмотрим задачу:

Небольшую катушку поступательно перемещают в однородном магнитном поле. Возникает ли в катушке индукционный ток? Ответ обоснуйте.

Рис. 12. Иллюстрация к задаче

Может показаться, что из-за движения катушки могут быть изменения, следствием которых будет являться возникновение тока индукции в ее витках (рис. 12).

Вспомним, что обязательным условием возникновения тока индукции является изменение магнитного потока через витки катушки. Для этого необходимо изменение магнитной индукции через контур катушки. Чего не наблюдается, т. к. по условию поле однородно.

Кроме этого возможно изменение площади сечения катушки, чего также не наблюдается.

Последний возможный вариант - это изменение угла поворота плоскости катушки к магнитным линиям поля, чего, очевидно, также не происходит, поскольку движение поступательное, а значит, никаких поворотов катушки не наблюдается.

Следовательно, делаем вывод - магнитный поток изменяться не будет, соответственно, никакого тока индукции образовываться в витках катушки тоже не будет.

Сравнение магнитного потока с потоком воды

Название изученной нами новой физической величины магнитного потока не случайно. Дело в том, что магнитный поток через контур можно сравнить с потоком воды через кольцо, которое помещено в трубу (рис. 13). (1)

Чем скорость воды больше, тем больше ее проходит через кольцо в единицу времени. (2)

Чем больше площадь кольца, тем, опять-таки, через него протечет больше воды за наблюдаемое время. (3)

Если поворачивать кольцо при его поперечном расположении к потоку воды, через плоскость кольца протечет максимальное количество воды. (4)

Если начать его поворачивать под острым углом к потоку, то воды будет протекать все меньше. (5)

Рис. 13. Сравнение магнитного потока с потоком воды

А при повороте вдоль оттока вода вообще не будет проходить сквозь кольцо, а будет скользить вдоль него. (6)

Аналогичные свойства мы с вами рассмотрели для магнитного потока.

На уроке мы объяснили, какие параметры магнитного поля и контура необходимо менять для наблюдения явления электромагнитной индукции. Мы объединили это в понятие «магнитный поток».

Список литературы

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования.
  2. Яворский Б.М., Пинский А.А., Основы физики, т.2., - М. Физматлит., 2003.
  3. Элементарный учебник физики. Под ред. Г.С. Ландсберга, Т. 3. - М., 1974.
  1. Festival.1september.ru ().
  2. Nvtc.ee ().
  3. Сlass-fizika.narod.ru ().

Домашнее задание

  1. От чего зависит магнитный поток, пронизывающий площадь плоского контура, помещенного в однородное магнитное поле?
  2. Как меняется магнитный поток при увеличении в n раз магнитной индукции, если ни площадь, ни ориентация контура не меняются?
  3. Меняется ли магнитный поток при таком вращении контура, когда линии магнитной индукции то пронизывают его. то скользят по его плоскости?

> Изменение магнитного потока создает электрическое поле

Рассмотрите возникновение электрического поля при изменении магнитного потока : закон электромагнитной индукции Фарадея, уравнение Максвелла, теорема Стокса.

При перемене магнитного потока создается электрическое поле. Это утверждает закон индукции Фарадея:

Задача обучения

  • Охарактеризовать связь меняющегося магнитного поля и электрического.

Основные пункты

Термины

  • Уравнение Максвелла – набор формул, характеризующих электрические и магнитные поля и их взаимодействие.
  • Область вектора – величина рассматриваемого вектора, расположенная перпендикулярно плоскости.
  • Теорема Стокса – интегрирование дифференциальных форм на многообразие, упрощающее и обобщающее несколько теорем из векторных вычислений.

Закон индукции Фарадея говорит о том, что при перемене магнитного поля создается электрическое: (ε индуцируется ЭДС, а Φ B – магнитный поток). Это главный закон в электромагнетизме, предсказывающий принципы взаимодействия магнитного поля с электрической цепью, что приведет к ЭДС.

В этом эксперименте демонстрируется индукция между катушками провода: жидкая батарея (справа) создает ток, протекающий сквозь небольшую катушку (А), формируя магнитное поле. Если катушки лишены движения, ток не индуцируется. Если же катушка смещается из/в более крупную (B ), то магнитный поток изменится и создаст ток, который проявит себя в гальванометре

Дифференциальная форма закона Фарадея

Магнитный поток , где – векторная площадь над замкнутой поверхностью S. Устройство, способное поддерживать разность потенциалов, несмотря на токовые потоки, выступает источником ЭДС. В математическом виде: , где интеграл характеризуется по замкнутой петле C.

Закон Фарадея теперь можно переписать: . Используя теорему Стокса в векторном исчислении, левая часть приравнивается к

В правой части . Поэтому мы получаем альтернативную форму закона индукции Фарадея: . Ее также именуют дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, контролирующих все электромагнитные явления.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...