Метод интегрирования неопределенного интеграла по частям. Интегралы для чайников: как решать, правила вычисления, объяснение

В этой теме мы подробно поговорим вычислении неопределённых интегралов с помощью так называемой "формулы интегрирования по частям". Нам понадобится таблица неопределенных интегралов и таблица производных . В первой части будут разобраны стандартные примеры, которые большей частью встречаются в типовых расчётах и контрольных работах. Более сложные примеры разобраны во второй части .

Постановка задачи в стандартном случае следующая. Допустим, под интегралом у нас расположены две функции разной природы : многочлен и тригонометрическая функция, многочлен и логарифм, многочлен и обратная тригонометрическая функция и так далее. В этой ситуации выгодно отделить одну функцию от другой. Грубо говоря, имеет смысл разбить подынтегральное выражение на части, - и разобраться с каждой частью по отдельности. Отсюда и название: "интегрирование по частям". Применение этого метода основано на следующей теореме:

Пусть функции $u(x)$ и $v(x)$ дифференцируемы на некотором промежутке, и на этом промежутке существует интеграл $\int v \; du$. Тогда на этом же промежутке существует и интеграл $\int u \; dv$, при этом верно следущее равенство:

\begin{equation} \int u \; dv=u\cdot v-\int v\; du \end{equation}

Формулу (1) и называют "формулой интегрирования по частям". Иногда, применяя вышеуказанную теорему, говорят о использовании "метода интегрирования по частям". Нам будет важна суть этого метода, которую и рассмотрим на примерах. Существует несколько стандартных случаев, в которых явно применима формула (1). Именно эти случаи и станут темой данной страницы. Пусть $P_n(x)$ - многочлен n-й степени. Введём два правила:

Правило №1

Для интегралов вида $\int P_n(x) \ln x \;dx$, $\int P_n(x) \arcsin x \;dx$, $\int P_n(x) \arccos x \;dx$, $\int P_n(x)\arctg x \;dx$, $\int P_n(x) \arcctg x \;dx$ принимаем $dv=P_n(x)dx$.

Правило №2

Для интегралов вида $\int P_n(x) a^x \;dx$ ($a$ - некоторое положительное число), $\int P_n(x) \sin x \;dx$, $\int P_n(x) \cos x \;dx$, $\int P_n(x)ch x \;dx$, $\int P_n(x) sh x \;dx$ принимаем $u=P_n(x)$.

Сразу отмечу, что указанные выше записи не нужно воспринимать буквально. Например, в интегралах вида $\int P_n(x) \ln x \;dx$ не обязательно будет стоять именно $\ln x$. Там могут быть расположены и $\ln 5x$, и $\ln (10x^2+14x-5)$. Т.е. запись $\ln x$ нужно воспринимать как своего рода обобщение.

Ещё один момент. Бывает, что формулу интегрирования по частям приходится применять несколько раз. Об этом поговорим подробнее в примерах №4 и №5. Теперь перейдём непосредственно к решению типичных задач. Решение задач, уровень которых чуть выше стандартных, разбирается во второй части .

Пример №1

Найти $\int (3x+4) \cos (2x-1) \; dx$.

Под интегралом расположен многочлен $3x+4$ и тригонометрическая функция $\cos (2x-1)$. Это классический случай для применения формулы , поэтому возьмём заданный интеграл по частям. Формула требует, чтобы интеграл $\int (3x+4) \cos (2x-1) \; dx$ был представлен в форме $\int u \; dv$. Нам нужно выбрать выражения для $u$ и для $dv$. Можно в качестве $u$ принять $3x+4$, тогда $dv=\cos (2x-1)dx$. Можно взять $u=\cos (2x-1)$, тогда $dv=(3x+4)dx$. Чтобы сделать правильный выбор обратимся к . Заданный интеграл $\int (3x+4) \cos (2x-1) \; dx$ подпадает под вид $\int P_n(x) \cos x \;dx$ (многочлен $P_n(x)$ в нашем интеграле имеет вид $3x+4$). Согласно нужно выбрать $u=P_n(x)$, т.е. в нашем случае $u=3x+4$. Так как $u=3x+4$, то $dv=\cos(2x-1)dx$.

Однако недостаточно просто выбрать $u$ и $dv$. Нам еще понадобятся значения $du$ и $v$. Так как $u=3x+4$, то:

$$ du=d(3x+4)=(3x+4)"dx=3dx.$$

Теперь разберёмся с функцией $v$. Так как $dv=\cos(2x-1)dx$, то согласно определению неопределённого интеграла имеем: $ v=\int \cos(2x-1)\; dx$. Чтобы найти нужный интеграл применим внесение под знак дифференциала :

$$ v=\int \cos(2x-1)\; dx=\frac{1}{2}\cdot \int \cos(2x-1)d(2x-1)=\frac{1}{2}\cdot \sin(2x-1)+C=\frac{\sin(2x-1)}{2}+C. $$

Однако нам нужно не всё бесконечное множество функций $v$, которое описывает формула $\frac{\sin(2x-1)}{2}+C$. Нам нужна какая-то одна функция из этого множества. Чтобы получить искомую функцию нужно вместо $C$ подставить какое-либо число. Проще всего, разумеется, подставить $C=0$, получив при этом $v=\frac{\sin(2x-1)}{2}$.

Итак, соберём всё вышеизложенное воедино. Мы имеем: $u=3x+4$, $du=3dx$, $dv=\cos(2x-1)dx$, $v=\frac{\sin(2x-1)}{2}$. Подставляя всё это в правую часть формулы будем иметь:

$$ \int (3x+4) \cos (2x-1) \; dx=(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx. $$

Осталось, по сути, только найти $\int\frac{\sin(2x-1)}{2}\cdot 3dx$. Вынося константу (т.е. $\frac{3}{2}$) за знак интеграла и применяя метод внесения под знак дифференциала , получим:

$$ (3x+4)\cdot \frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx= \\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\int \sin(2x-1) \;d(2x-1)= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Итак, $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$. В сокращенном виде процесс решения записывают так:

$$ \int (3x+4) \cos (2x-1) \; dx=\left | \begin{aligned} & u=3x+4; \; du=3xdx.\\ & dv=\cos(2x-1)dx; \; v=\frac{\sin(2x-1)}{2}. \end{aligned} \right |=\\ =(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C= \frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Неопределённый интеграл по частям найден, осталось лишь записать ответ.

Ответ : $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$.

Полагаю, здесь не обойдётся без вопроса, поэтому попробую сформулировать его и дать ответ.

Почему мы приняли именно $u=3x+4$ и $dv=\cos(2x-1)dx$? Да, интеграл был решён. Но, может быть, если бы мы взяли $u=\cos (2x-1)$ и $dv=(3x+4)dx$ интеграл тоже был бы найден!

Нет, если принять $u=\cos (2x-1)$ и $dv=(3x+4)dx$, то ничего хорошего с этого не выйдет, - интеграл не упростится. Судите сами: если $u=\cos(2x-1)$, то $du=(\cos(2x-1))"dx=-2\sin(2x-1)dx$. Кроме того, так как $dv=(3x+4)dx$, то:

$$ v=\int (3x+4) \; dx=\frac{3x^2}{2}+4x+C.$$

Приняв $C=0$, получим $v=\frac{3x^2}{2}+4x$. Подставим теперь в формулу найденные значения $u$, $du$, $v$ и $dv$:

$$ \int (3x+4) \cos (2x-1) \; dx=\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) - \int \left(\frac{3x^2}{2}+4x \right) \cdot (-2\sin(2x-1)dx)=\\ =\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) +2\cdot\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx $$

И к чему мы пришли? Мы пришли к интегралу $\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx$, который явно сложнее нежели исходный интеграл $\int (3x+4) \cos (2x-1) \; dx$. Это говорит о том, что выбор $u$ и $dv$ был сделан неудачно. После применения формулы интегрирования по частям полученный интеграл должен быть проще исходного. Находя неопределенный интеграл по частям мы должны упрощать его, а не усложнять, поэтому если после применения формулы (1) интеграл усложнился, то выбор $u$ и $dv$ осуществлён некорректно.

Пример №2

Найти $\int (3x^4+4x-1) \ln 5x \; dx$.

Под интегралом расположен многочлен (т.е. $3x^4+4x-1$) и $\ln 5x$. Этот случай подпадает под , поэтому возьмём интеграл по частям. Заданный интеграл имеет такую же структуру, как и интеграл $\int P_n(x) \ln x\; dx$. Вновь, как и в примере №1, нам нужно выбрать какую-то часть подынтегрального выражения $(3x^4+4x-1) \ln 5x \; dx$ в качестве $u$, а какую-то часть - в качестве $dv$. Согласно , нужно выбрать $dv=P_n(x)dx$, т.е. в нашем случае $dv=(3x^4+4x-1)dx$. Если из выражения $(3x^4+4x-1) \ln 5x \; dx$ "изьять" $dv=(3x^4+4x-1)dx$, то останется $\ln 5x$ - это и будет функция $u$. Итак, $dv=(3x^4+4x-1)dx$, $u=\ln 5x$. Для применения формулы нам понадобятся также $du$ и $v$. Так как $u=\ln 5x$, то:

$$ du=d(\ln 5x)=(\ln 5x)"dx=\frac{1}{5x}\cdot 5 dx=\frac{1}{x}dx. $$

Теперь найдём функцию $v$. Так как $dv=(3x^4+4x-1)dx$, то:

$$ v=\int(3x^4+4x-1)\; dx=\frac{3x^5}{5}+2x^2-x+C. $$

Из всего найденного бесконечного множества функций $\frac{3x^5}{5}+2x^2-x+C$ нам нужно выбрать одну. А проще всего это сделать приняв $C=0$, т.е. $v=\frac{3x^5}{5}+2x^2-x$. Для применения формулы всё готово. Подставим в правую часть указанной формулы значения $u=\ln 5x$, $du=\frac{1}{x}dx$, $v=\frac{3x^5}{5}+2x^2-x$ и $dv=(3x^4+4x-1)dx$ будем иметь:

$$ \int (3x^4+4x-1) \ln 5x \; dx=\left | \begin{aligned} & u=\ln 5x; \; du=\frac{1}{x}dx.\\ & dv=(3x^4+4x-1)dx; \; v=\frac{3x^5}{5}+2x^2-x. \end{aligned} \right |=\\ =\ln 5x \cdot \left (\frac{3x^5}{5}+2x^2-x \right)-\int \left (\frac{3x^5}{5}+2x^2-x \right)\cdot \frac{1}{x}dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x -\int \left (\frac{3x^4}{5}+2x-1 \right)dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \left (\frac{3x^5}{25}+x^2-x \right)+C=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C. $$

Ответ : $\int (3x^4+4x-1) \ln 5x \; dx=\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C$.

Пример №3

Найти $\int \arccos x \; dx$.

Этот интеграл имеет структуру $\int P_n(x) \arccos x \;dx$, подпадающую под . Понимаю, что сразу возникнет резонный вопрос: "а где в заданном интеграле $\int\arccos x \; dx$ спрятали многочлен $P_n(x)$? Там же нет никакого многочлена, только арккосинус и всё!". Однако на самом деле под интегралом расположен не только арккосинус. Я представлю интеграл $\int arccos x \; dx$ в таком виде: $\int 1\cdot\arccos x \; dx$. Согласитесь, что от домножения на единицу подынтегральное выражение не изменится. Вот эта единица и есть $P_n(x)$. Т.е. $dv=1\cdot dx=dx$. А в качестве $u$ (согласно ) принимаем $\arccos x$, т.е. $u=\arccos x$. Значения $du$ и $v$, кои учавствуют в формуле , найдём так же, как и в предыдущих примерах:

$$ du=(\arccos x)"dx=-\frac{1}{\sqrt{1-x^2}}dx;\\ v=\int 1\; dx=x+C. $$

Как и в предыдущих примерах, полагая $C=0$ получим $v=x$. Подставляя все найденные параметры в формулу , будем иметь следующее:

$$ \int \arccos x \; dx=\left | \begin{aligned} & u=\arccos x; \; du=-\frac{1}{\sqrt{1-x^2}}dx.\\ & dv=dx; \; v=x. \end{aligned} \right |=\\ =\arccos x \cdot x-\int x\cdot \left(-\frac{1}{\sqrt{1-x^2}}dx \right)= \arccos x \cdot x+\int \frac{xdx}{\sqrt{1-x^2}}=\\ =x\cdot\arccos x-\frac{1}{2}\cdot\int (1-x^2)^{-\frac{1}{2}}d(1-x^2)= =x\cdot\arccos x-\frac{1}{2}\cdot\frac{(1-x^2)^{\frac{1}{2}}}{\frac{1}{2}}+C=\\ =x\cdot\arccos x-\sqrt{1-x^2}+C. $$

Ответ : $\int\arccos x \; dx=x\cdot\arccos x-\sqrt{1-x^2}+C$.

Пример №4

Найти $\int (3x^2+x) e^{7x} \; dx$.

В этом примере формулу интегрирования по частям придётся применять два раза. Интеграл $\int (3x^2+x) e^{7x} \; dx$ имеет структуру $\int P_n(x) a^x \;dx$. В нашем случае $P_n(x)=3x^2+x$, $a=e$. Согласно имеем: $u=3x^2+x$. Соответственно, $dv=e^{7x}dx$.

$$ du=(3x^2+x)"=(6x+1)dx;\\ v=\int e^{7x}\;dx=\frac{1}{7}\cdot \int e^{7x}\;d(7x)=\frac{1}{7}\cdot e^{7x}+C=\frac{e^{7x}}{7}+C. $$

Опять-таки, как и в предыдущих примерах, полагая $C=0$, имеем: $v=\frac{e^{7x}}{7}$.

$$ \int (3x^2+x) e^{7x} \; dx=\left | \begin{aligned} & u=3x^2+x; \; du=(6x+1)dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =(3x^2+x)\cdot\frac{e^{7x}}{7}-\int \frac{e^{7x}}{7}\cdot (6x+1)dx= \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx. $$

Мы пришли к интегралу $\int (6x+1) e^{7x}\;dx$, который вновь необходимо брать по частям. Приняв $u=6x+1$ и $dv=e^{7x}dx$ будем иметь:

$$ \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx=\left | \begin{aligned} & u=6x+1; \; du=6dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =\frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \left ((6x+1)\cdot\frac{e^{7x}}{7} - \int\frac{e^{7x}}{7}\cdot 6\;dx \right)=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\int\ e^{7x}\;dx=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\frac{e^{7x}}{7}+C=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C. $$

Полученный ответ можно и упростить, раскрыв скобки и перегруппировав слагаемые:

$$ \frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C. $$

Ответ : $\int (3x^2+x) e^{7x} \; dx=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C$.

Пример №5

Найти $\int (x^2+5)\sin(3x+1) \; dx$.

Здесь, как и в предыдущем примере, интегрирование по частям применяется дважды. Подробные пояснения были даны ранее, поэтому приведу только решение:

$$ \int (x^2+5)\sin(3x+1) \; dx=\left | \begin{aligned} & u=x^2+5; \; du=2xdx.\\ & dv=\sin(3x+1)dx; \; v=-\frac{\cos(3x+1)}{3}. \end{aligned} \right |=\\ =(x^2+5)\cdot \left(-\frac{\cos(3x+1)}{3} \right)-\int\left(-\frac{\cos(3x+1)}{3} \right)\cdot 2xdx=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\int x\cos(3x+1)dx= \left | \begin{aligned} & u=x; \; du=dx.\\ & dv=\cos(3x+1)dx; \; v=\frac{\sin(3x+1)}{3}. \end{aligned} \right |=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\cdot \left(x\cdot\frac{\sin(3x+1)}{3}-\int\frac{\sin(3x+1)}{3}dx \right)=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot\int\sin(3x+1)dx=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot \left(-\frac{\cos(3x+1)}{3}\right)+C=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3}-\frac{5\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C. $$

Ответ : $\int (x^2+5)\sin(3x+1) \; dx=-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C$.

Применение метода интегрирования по частям в несколько нестандартных случаях, не подпадающих под действие правил №1 и №2, будет дано во

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)
Перейти: Онлайн сервис "Несобственный интеграл"

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования
Перейти: Онлайн сервис "Тройной интеграл"

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

(8.7)

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. = .

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Пример 3.39 . Вычислить интеграл J = .

Решение. Имеем: . Поэтому =
=
=. вводится так sqrt(tan(x/2)).

А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Интегрирование по частям - метод, применяемый для решения определенных и неопределенных интегралов, когда одна из подынтегральных функций легко интегрируема, а другая дифференцируема. Достаточно распространенный метод нахождения интегралов как неопределенных, так и определенных. Главный признак, когда нужно использовать его - это состоящая из произведения двух функций некоторая функция, которую нельзя проинтегрировать в упор.

Формула

Для того, чтобы успешно использовать данный метод необходимо разобрать и выучить формулы.

Формула интегрирования по частям в неопределенном интеграле:

$$ \int udv = uv - \int vdu $$

Формула интегрирования по частям в определенном интеграле:

$$ \int \limits_{a}^{b} udv = uv \bigg |_{a}^{b} - \int \limits_{a}^{b} vdu $$

Примеры решений

Рассмотрим на практике примеры решений интегрирования по частям, которые часто предлагаются преподавателями на контрольных работах. Обратите внимание, что под значком интеграла стоит произведение двух функций. Это как признак того, что для решения подойдет данный метод.

Пример 1
Найти интеграл $ \int xe^xdx $
Решение

Видим, что подынтегральная функция состоит из двух функций, одна из которых при дифференцировании моментально превращается в единицу, а другая легко интегрируется. Для решения интеграла воспользуемся методом интегрирования по частям. Положим, $ u = x \rightarrow du=dx $, а $ dv = e^x dx \rightarrow v=e^x $

Подставляем найденные значения в первую формулу интегрирования и получаем:

$$ \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ \int xe^x dx = xe^x - e^x + C $$

Пример 4
Вычислить интеграл $ \int \limits_0 ^1 (x+5) 3^x dx $
Решение

По аналогии с предыдущими решенными примерами разберемся какую функцию без проблем интегрировать, какую дифференцировать. Обращаем внимание, что если продифференцировать $ (x+5) $, то произойдет автоматическое преобразования этого выражения в единицу, что нам будет "на руку". Поэтом поступаем так:

$$ u=x+5 \rightarrow du=dx, dv=3^x dx \rightarrow v=\frac{3^x}{ln3} $$

Теперь все неизвестные функции стали найдены и могут быть поставлены во вторую формулу интегрирования по частям для определенного интеграла.

$$ \int \limits_0 ^1 (x+5) 3^x dx = (x+5) \frac{3^x}{\ln 3} \bigg |_0 ^1 - \int \limits_0 ^1 \frac{3^x dx}{\ln 3} = $$

$$ = \frac{18}{\ln 3} - \frac{5}{\ln 3} - \frac{3^x}{\ln^2 3}\bigg| _0 ^1 = \frac{13}{\ln 3} - \frac{3}{\ln^2 3}+\frac{1}{\ln^2 3} = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$

Ответ
$$ \int\limits_0 ^1 (x+5)3^x dx = \frac{13}{\ln 3}-\frac{4}{\ln^2 3} $$


Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...