Строение эндокринного центра гипоталамус и его функции в организме. Особенности строения и функций гипоталамуса

Что такое гипофиз и гипоталамус, какая связь между этими частями мозга? Они составляют гипоталамо-гипофизарный комплекс, отвечающий за нормальную и слаженную работу всего организма. Где расположен этот отдел мозга, какая его анатомия, гистология, строение и функции? За что отвечает каждая часть гипоталамуса (что это такое - подробно описывает Википедия).

Гипоталамус представляет собой незначительную по размерам область, размещающуюся в промежуточном мозге. Он состоит из большого количества групп клеток – ядер. Данный отдел мозга представляет из себя очень важный центр, который связан со многими частями центральной нервной системы. В их число входит спинной мозг, кора и ствол головного мозга, гиппокамп, миндалина и другие. Данный отдел расположен ниже таламуса, благодаря чему и получил свое название. Относительно ствола мозга он размещается немного выше.

Гипоталамус находится в части, которая отделена от таламуса гипоталамической бороздой. При этом его границы достаточно нечеткие, что объясняется те, что некоторая группа клеток заходит на соседние области, а другая – характеризуется неопределенностью в терминологии. Несмотря на такую неоднозначность, считается, что данный отдел расположен между верхним мозгом и конечной пластинкой, передней спайкой, зрительным перекрестом.

Строение

Анатомия данной части мозга подразумевает разделение на отделы гипоталамуса, которых насчитывают 12 штук. К ним относят область серого бугра, сосцевидных тел и другие. Ядра гипоталамуса – это группа нейронов, которые выполняют определенные функции в организме человека. Их количество превышает 30 штук. Преимущественно ядра гипоталамуса парные.

Анатомия и гистология для удобства изучения данных структур разделяет их на зоны:

  • перивентрикулярная или околожелудочковая;
  • медиальная;
  • латеральная.

Перивентрикулярная зона является тонкой полоской, которая находится около третьего желудочка. В медиальной части ядра гипоталамуса группируются в несколько областей, размещающихся в переднезаднем направлении. Преоптическая зона также принадлежит данному отделу, хоте ее логичнее относить к переднему мозгу.

В нижней области гипоталамуса выделяют такие части, как сосцевидные тела, воронка (ее средняя часть приподнята и носит название срединное возвышение) и серый бугор. Такое деление не однозначно и достаточно спорно, но часто используется в медицинской литературе. Медиальное возвышение гипоталамуса содержит большое количество кровеносных сосудов. Они обеспечивают перенос всех продуцируемых веществ в гипофиз, который таким образом связан с гипоталамусом. Нижняя часть воронки соединяется с ножкой питуитарной железы.

Деятельность гипоталамуса через гипофиз позволяет эффективно связать нервную и эндокринную системы. Такая функция возможна благодаря выделению как гормонов, так и нейропептидов. Ядерные зоны, которые способны продуцировать данные вещества, называют гипофизарной областью. Они содержат нейроны, способные выделять определенные гормоны.

Ядерные структуры

Деятельность гипоталамуса, строение которого достаточно сложное, обеспечивается совместной работой всех ядер. Почти невозможно выделить зоны, отвечающие за определенные функции в организме человека. Только супраоптическое и паравентрикулярное ядро имеют нейроны, отростки которых идут к гипофизу, и их нейросекреция обеспечивает выработку окситоцина и вазопрессина. Особенностью латеральной зоны считается то, что в ней нет отдельных ядерных областей. Нейроны находятся вокруг медиального пучка переднего мозга (диффузный характер распределения).

В группу ядер хиазматической области включаются переднее гипоталамическое, супраоптическое, паравентрикулярное и другие, а в околожелудочковой зоне размещается перивентрикулярное. Около серого бугра выделяют вентромедиальное, дорсомедиальное и аркуатное нейронное скопление. Находящийся в этой области пучок, называемый латеральным серобугорным ядром, ярко развит исключительно у человека и высших приматов. Также здесь присутствует туберомамиллярный комплекс, который разделяют на несколько частей.

Гормональная функция

При изучении гипоталамуса, функции которого заключаются в нейроэндокринной регуляции организма, понятно, что он определенным образом воздействует на гипофиз. Он, в свою очередь, выделяет гормоны, которые регулируют деятельность многих органов, желез и систем.

В гипоталамических ядрах происходит высвобождение рилизинг-факторов. В последующем они перемещаются по аксонам к гипофизу, где сохраняются определенное время и выпускаются в кровь при необходимости. К гормонам, которые вырабатываются в данной области, относят:

  • соматотропин;
  • кортикотропин;
  • соматостатин.

Нейротензин, орексин, вазопрессин вырабатываются в зоне срединного возвышения нейросекреторными клетками гипоталамуса. Также все гормоны, которые секретируются в данном отделе мозга, разделяют на либерины и статины. Первые воздействуют на гипофиз, пробуждая его функционирование. Статины характеризуются противоположным эффектом. Они, наоборот, понижают уровень определенных гормонов.

Функции

При воздействии на гипоталамус определенных раздражителей наблюдается его нейроэндокринная функция, которая заключается в следующем:

  • поддерживает в организме некоторые жизненно важные параметры – температуру тела, энергетический и кислотно-щелочной баланс;
  • обеспечивает гомеостаз, который заключается в сохранении постоянства внутреннего состояния тела при воздействии любых факторов внешней среды. Это дает возможность человеку выжить в неблагоприятных для него условиях;
  • регулирует деятельность нервной и эндокринной системы;

  • наблюдается влияние на поведение, что помогает человеку выжить. К этим функциям относят обеспечение памяти, желания добывать пищу, заботиться о потомстве, размножаться;
  • данный отдел мозга оперативно получает информацию о составе и температуре крови, спинномозговой жидкости, собирает сигналы от органов чувств, благодаря чему происходит корректировка поведения, наблюдаются соответствующие реакции автономной нервной системы;
  • отвечает за наличие дневных и сезонных ритмов деятельности организма из-за реакции на свет, его количество на протяжении суток;
  • регулирует аппетит;
  • устанавливает сексуальную ориентацию мужчин и женщин.

Нарушение работы данного отдела мозга

Нарушение нормальной работы данного отдела мозга может быть связано с образованием опухоли, травмированием или протеканием воспалительных процессов. Даже при незначительном повреждении гипоталамуса вследствие таких негативных факторов могут наблюдаться серьезные изменения. Также на характер расстройств может влиять длительность или тяжесть воздействия определенных патологий. Иногда их развитие может проходить почти незамеченным до определенного времени (при опухолевых процессах).

На фоне воздействия определенных негативных процессов могут наблюдаться следующие нарушения:

  • преждевременный пубертат объясняется гиперфункцией данного отдела мозга. Для этого заболевания характерно появление вторичных половых признаков в возрасте 8-9 лет. Причиной данного явления считается повышенная выработка гонадолиберинов;
  • гипофункция данного отдела мозга. Приводит к появлению несахарного диабета, который сопровождается обезвоживанием организма, слишком частым мочеиспусканием. Снижение концентрации вазопрессина провоцирует развитие этого заболевания.

Также нарушение работы данного отдела мозга может сопровождаться расстройством сна, гипотермией, пойкилотермией, эндокринными, эмоциональными и вегетативными нарушениями. Иногда наблюдается амнезия, полно отсутствие аппетита и чувства жажды или другие патологические процессы.

Список литературы

  1. Милку, Шт.-М. Терапия эндокринных заболеваний
  2. Изард К. Эмоции человека. – М., 1980.
  3. Фрейд З. Введение в психоанализ. – М., 1989.
  4. Попова, Юлия Женские гормональные заболевания. Самые эффективные методы лечения / Юлия Попова. - М.: Крылов, 2015. - 160 c
  5. Гремлинг С. Практикум по управлению стрессом / С. Гремлинг, С. Ауэрбах. – СПб., 2002, с. 37–44.

Кора большого мозга

Высшим отделом ЦНС является кора большого мозга (кора боль­ших полушарий). Она обеспечивает совершенную организацию по­ведения животных на основе врожденных и приобретенных в онто­генезе функций.

Морфофункциональная организация

Кора большого мозга имеет следующие морфофункциональные особенности:

Многослойность расположения нейронов;

Модульный принцип организации;

Соматотопическая локализация рецептирующих систем;

Экранность, т. е. распределение внешней рецепции на пло­скости нейронального поля коркового конца анализатора;

Зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;

Наличие представительства всех функций нижележащих структур ЦНС;

Цитоархитектоническое распределение на поля;

Наличие в специфических проекционных сенсорных и мотор­ной системах вторичных и третичных полей с ассоциативными функциями;

Наличие специализированных ассоциативных областей;

Динамическая локализация функций, выражающаяся в воз­можности компенсаций функций утраченных структур;

Перекрытие в коре большого мозга зон соседних перифери­ческих рецептивных полей;

Возможность длительного сохранения следов раздражения;

Реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;

Способность к иррадиации возбуждения и торможения;

Наличие специфической электрической активности.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Ост­ровок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.

Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроиз­ведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.

Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга фун­кций нижележащих структур мозга. Однако эта передача не озна­чает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптималь­ной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В даль­нейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.

Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС.

Звездчатые клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или го­ризонтальные взаимосвязи нейронов разных слоев коры.

Кора большого мозга имеет преимущественно шестислойное стро­ение

Слой I - верхний молекулярный, представлен в основном вет­влениями восходящих дендритов пирамидных нейронов, среди ко­торых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регу­лирующие через дендриты этого слоя уровень возбудимости коры большого мозга.

Слой II - наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т. е. имеющих отношение к памяти.

Слой III - наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивают корко-корковые связи различных извилин мозга.

Слой IV - внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокортикальные пути, т. е. пути, начинающиеся от рецепторов анализаторов.

Слой V - внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.

Слой VI - слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.

Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Ней­ронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере со­вершенствования ее функции в филогенезе.

У высших млекопитающих в отличие от низших от двигательного 4 поля хорошо дифференцируются вторичные поля 6, 8 и 10, функци­онально обеспечивающие высокую координацию, точность движений; вокруг зрительного поля 17 - вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного стимула (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассо­циацию функций данного анализатора с функциями других анализа­торов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору большого мозга периферических рецептирующих систем. Так, в сенсорной области коры второй цент­ральной извилины имеются участки представительства локализации каждой точки кожной поверхности, в двигательной области коры каж­дая мышца имеет свою топику (свое место), раздражая которую мож­но получить движение данной мышцы; в слуховой области коры име­ется топическая локализация определенных тонов (тонотопическая локализация), повреждение локального участка слуховой области ко­ры приводит к потере слуха на определенный тон.

Точно так же в проекции рецепторов сетчатки глаза на зрительное поле коры 17 имеется топографическое распределение. В случае гибели локальной зоны поля 17 изображение не воспри­нимается, если оно падает на участок сетчатки, проецирующийся на поврежденную зону коры большого мозга.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность пе­редачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.

Входные (афферентные) импульсы поступают в кору снизу, под­нимаются к звездчатым и пирамидным клеткам III-V слоев коры. От звездчатых клеток IV слоя сигнал идет к пирамидным нейронам III слоя, а отсюда по ассоциативным волокнам - к другим полям, об­ластям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны V слоя, отсюда об­работанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки - функциональные единицы коры, организованные в вертикальном направлении. До­казательством этого служит следующее: если микроэлектрод погру­жать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микро­электрод вводить горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.

Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, орга­низующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Каждая колонка может иметь ряд ансамблей, реализующих ка­кую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что при повторном раздражении в реакции участвует не вся группа нейронов, а ее часть. Причем каждый раз часть участвующих нейронов может быть разной по составу, т. е. формируется группа активных нейронов (вероятност­ный принцип), среднестатистически достаточная для обеспечения нужной функции (статистический принцип).

Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т. д. Наличие структурно различных полей предполагает и разное их функциональное предназначение (рис. 4.14). Действительно, в коре большого мозга выделяют сен­сорные, моторные и ассоциативные области.

Сенсорные области

Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Кор­ковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисен­сорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.

Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние - туловища, на нижние отделы - руки, головы.

На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.

При повреждениях коры более грубо страдают функции дистальных отделов конечностей, особенно рук.

Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).

Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.

Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).

Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).

Моторные области

Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двига­тельную реакцию. В то же время признано, что двигательная область является анализаторной.

В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины - нижние конечности, в нижних - верхние.

Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обес­печивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.

В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.

Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус­ловлено наличие в ней значительного числа полисенсорных ней­ронов.

Ассоциативные области

Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга (см. рис. 4.14). Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколь­кими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В ре­зультате формируются сложные элементы сознания.

Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.

Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зри­тельном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекци­онном поле 17 всего 10-12%.

Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.

Полисенсорность нейронов ассоциативной области коры обеспе­чивает их участие в интеграции сенсорной информации, взаимо­действие сенсорных и моторных областей коры.

В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.

Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.

Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда посту­пает не первичная, а достаточно обработанная информация с вы­делением биологической значимости сигнала. Это позволяет фор­мировать программу целенаправленного поведенческого акта.

Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значи­мости поступающей сенсорной информации.

Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обу­чения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).

Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.

Речевые функции, связанные с письменной речью, - чтение, письмо - регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).

При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может го­ворить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние назы­вается сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).

Поражение зрительного центра речи приводит к невозможности чтения, письма.

Изолированное нарушение письма - аграфия, возникает также в случае расстройства функции задних отделов второй лобной из­вилины левого полушария.

В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго опи­сывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» боль­ной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Распределение функций по областям мозга не является абсолют­ным. Установлено, что практически все области мозга имеют поли­сенсорные нейроны, т. е. нейроны, реагирующие на различные раз­дражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.

Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.

Важной особенностью коры большого мозга является ее способ­ность длительно сохранять следы возбуждения.

Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково-стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения ин­формации, накопления базы знаний.

Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3-5 мин, в зрительной - 5-8 мин.

Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность вни­мания на одном процессе.

Реципрокные отношения активности очень часто наблюдаются в активности соседних нейронов.

Отношение между возбуждением и торможением в коре прояв­ляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяженности, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект.

Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения - возбуждение - так называемая последовательная индукция.

В тех случаях когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может происходить от нейрона к нейрону, по системам ассоциативных волокон I слоя, при этом она имеет очень малую скорость - 0,5-2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пира­мидных клеток III слоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при органи­зации условнорефлекторного и других форм поведения.

Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния торможения по коре. Механизм иррадиации торможения заключа­ется в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.

Электрические проявления активности коры большого мозга

Оценка функционального состояния коры большого мозга чело­века является трудной и до настоящего времени нерешенной задачей. Одним из признаков, косвенно свидетельствующем о функциональ­ном состоянии структур головного мозга, является регистрация в них колебаний электрических потенциалов.

Каждый нейрон имеет заряд мембраны, который при активации уменьшается, а при торможении - чаще увеличивается, т. е. раз­вивается гиперполяризация. Глия мозга также имеет заряд клеток мембран. Динамика заряда мембраны нейронов, глии, процессы, происходящие в синапсах, дендритах, аксонном холмике, в аксоне - все это постоянно изменяющиеся, разнообразные по интенсивности, скорости процессы, интегральные характеристики которых зависят от функционального состояния нервной структуры и суммарно оп­ределяют ее электрические показатели. Если эти показатели реги­стрируются через микроэлектроды, то они отражают активность локального (до 100 мкм в диаметре) участка мозга и называются фокальной активностью.

В случае, если электрод располагается в подкорковой структуре, регистрируемая через него активность называется субкортикограммой, если электрод располагается в коре мозга - кортикограммой. Наконец, если электрод располагается на поверхности кожи головы, то регистрируется суммарная активность как коры, так и подкор­ковых структур. Это проявление активности называется электроэн­цефалограммой (ЭЭГ) (рис. 4.15).

Все виды активности мозга в динамике подвержены усилению и ослаблению и сопровождаются определенными ритмами электриче­ских колебаний. У человека в покое при отсутствии внешних раздражений преобладают медленные ритмы изменения состояния коры мозга, что на ЭЭГ находит отражение в форме так называемого альфа-ритма, частота колебаний которого составляет 8-13 в се­кунду, а амплитуда - приблизительно 50 мкВ.

Переход человека к активной деятельности приводит к смене альфа-ритма на более быстрый бета-ритм, имеющий частоту коле­баний 14-30 в секунду, амплитуда которых составляет 25 мкВ.

Переход от состояния покоя к состоянию сосредоточенного вни­мания или ко сну сопровождается развитием более медленного тета-ритма (4-8 колебаний в секунду) или дельта-ритма (0,5-3,5 колебаний в секунду). Амплитуда медленных ритмов составляет 100-300 мкВ (см. рис. 4.15).

Когда на фоне покоя или другого состояния мозгу предъявляется новое быстрое нарастающее раздражение, на ЭЭГ регистрируются так называемые вызванные потенциалы (ВП). Они представляют собой синхронную реакцию множества нейронов данной зоны коры.

Латентный период, амплитуда ВП зависят от интенсивности наносимого раздражения. Компоненты ВП, количество и характер его колебаний зависят от адекватности стимула относительно зоны регистрации ВП.

ВП может состоять из первичного ответа или же из первичного и вторичного. Первичные ответы представляют собой двухфазные, позитивно-негативные колебания. Они регистрируются в первичных зонах коры анализатора и только при адекватном для данного анализатора стимуле. Например, зрительная стимуляция для пер­вичной зрительной коры (поле 17) является адекватной (рис. 4.16). Первичные ответы характеризуются коротким латентным периодом (ЛП), двухфазностью колебания: вначале положительная, затем - отрицательная. Первичный ответ формируется за счет кратковре­менной синхронизации активности близлежащих нейронов.

Вторичные ответы более вариабельны по ЛП, длительности, амплитуде, чем первичные. Как правило, вторичные ответы чаще возникают на сигналы, имеющие определенную смысловую нагруз­ку, на адекватные для данного анализатора стимулы; они хорошо формируются при обучении.

Межполушарные взаимоотношения

Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности уп­равления деятельностью органов, систем органов и организма в целом.

Роль взаимоотношений полушарий большого мозга наиболее чет­ко проявляется при анализе функциональной межполушарной асим­метрии.

Асимметрия в функциях полушарий впервые была обнаружена в XIX в., когда обратили внимание на различные последствия повреждения левой и правой половины мозга.

В 1836 г. Марк Дакс выступил на заседании медицинского об­щества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи - состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полуша­рия. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблю­дения, Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием.

Его доклад не имел успеха. Спустя некоторое время после смерти Дакса Брока при посмертном исследовании мозга больных, страдав­ших потерей речи и односторонним параличом, отчетливо выявил в обоих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена, как область в задних отделах нижней лобной из­вилины.

Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у праворуких.

Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга.

В 1864 г. английский невролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной».

Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминант­ности полушарий. «Два полушария не могут просто дублировать друг друга, - писал он, - если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, «что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической».

К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруд­нения и в понимании речи.

У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Счи­талось также, что левое полушарие управляет и «целенаправлен­ными движениями».

Совокупность этих данных стала основой представления о вза­имоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого.

Выявленная первой речевая асимметрия полушарий мозга пред­определила представление об эквипотенциальности полушарий боль­шого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела.

Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просуществовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарии как о вто­ростепенном, зависимом, не соответствует действительности. Так, у больных с нарушениями левого полушария мозга хуже выполня­ются тесты на восприятие форм и оценку пространственных взаи­мосвязей, чем у здоровых. Неврологически здоровые испытуемые, владеющие двумя языками (английским и идиш), лучше иденти­фицируют английские слова, предъявленные в правом поле зрения, а слова на идиш - в левом. Был сделан вывод, что такого рода асимметрия связана с навыками чтения: английские слова читаются слева направо, а слова идиш - справа налево.

Почти одновременно с распространением концепции доминант­ности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное, полушарие также обладает своими особыми способностями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов.

Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выпол­няли невербальные тесты, включавшие манипуляции с геометриче­скими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений.

Обнаружено, что повреждение правого полушария часто сопро­вождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специали­зацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреж­дение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга.

После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стало ясно, что правое полушарие обладает соб­ственными высшими гностическими функциями.

Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не ха­рактеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие спе­циализировано в переработке информации на образном функцио­нальном уровне, левое - на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне.

Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации как на семантическом, так и на перцептивном функциональных уровнях, возможности правого полуша­рия ограничиваются перцептивным уровнем.

В случаях латерального предъявления информации можно вы­делить три способа межполушарных взаимодействий, проявляющих­ся в процессах зрительного опознания.

1. Параллельная деятельность. Каждое полушарие перерабаты­вает информацию с использованием присущих ему механизмов.

2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии.

3. Совместная деятельность. Оба полушария участвуют в пере­работке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса.

Основным фактором, определяющим участие того или иного полушария в процессах узнавания неполных изображений, является то, каких элементов лишено изображение, а именно какова степень значимости отсутствующих в изображении элементов. В случае, если детали изображения удалялись без учета степени их значи­мости, опознание в большей мере было затруднено у больных с поражениями структур правого полушария. Это дает основание счи­тать правое полушарие ведущим в опознании таких изображений. Если же из изображения удалялся относительно небольшой, но высокозначимый участок, то опознание нарушалось в первую очередь при поражении структур левого полушария, что свидетельствует о преимущественном участии левой гемисферы в опознании подобных изображений.

В правом полушарии осуществляется более полная оценка зри­тельных стимулов, тогда как в левом оценнваются наиболее суще­ственные, значимые их признаки.

Когда значительное число деталей изображения, подлежащего опознанию, удалено, вероятность того, что наиболее информативные, значимые его участки не подвергнутся искажению или удалению, невелика, а потому левополушарная стратегия опознания значи­тельно ограничена. В таких случаях более адекватной является стратегия, свойственная правому полушарию, основанная на ис­пользовании всей содержащейся в изображении информации.

Трудности в реализации левополушарной стратегии в этих ус­ловиях усугубляются еще и тем обстоятельством, что левое по­лушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. Об этом свидетельствуют также исследования, согласно которым оценка длины и ориентации линий, кривизны дуг, величины углов нарушается прежде всего при пора­жениях правого полушария.

Иная картина отмечается в случаях, когда большая часть изо­бражения удалена, но сохранен наиболее значимый, информативный его участок. В подобных ситуациях более адекватным является способ опознания, основанный на анализе наиболее значимых фраг­ментов изображения - стратегия, используемая левым полушарием.

В процессе узнавания неполных изображений участвуют струк­туры как правого, так и левого полушария, причем степень участия каждого из них зависит от особенностей предъявляемых изображе­ний, и в первую очередь от того, содержит ли изображение наиболее значимые информативные элементы. При наличии этих элементов преобладающая роль принадлежит левому полушарию; при их уда­лении преимущественную роль в процессе опознания играет правое полушарие.

Гипоталамус - важный отдел головного мозга. Высший вегетативный центр осуществляет комплексный контроль и регуляцию многих систем организма. Хорошее эмоциональное состояние, баланс между процессами возбуждения и торможения, своевременная передача нервных импульсов - следствие правильной работы важного элемента.

Поражение структуры промежуточного мозга негативно отражается на функционировании сердечно-сосудистой, дыхательной, эндокринной систем, общем состоянии человека. Интересно и полезно знать, что такое гипоталамус, и за что он отвечает. В статье есть немало информации о строении, функциях, заболеваниях важной структуры, признаках патологических изменений, современных методах лечения.

Что это за орган

Отдел промежуточного мозга влияет на стабильность внутренней среды, обеспечивает взаимодействие и оптимальное сочетание отдельных систем с целостной работой организма. Важная структура вырабатывает комплекс гормонов трех подклассов.

Нейросекреторные и нервно-проводниковые клетки - основа важного элемента промежуточного мозга. Органические патологии в сочетании с поражением функций нарушают периодичность многих процессов в организме.

Гипоталамус имеет разветвленные связи с другими структурами мозга, непрерывно взаимодействует с корой мозга и подкоркой, что обеспечивает оптимальное психоэмоциональное состояние. Декортикация провоцирует развитие синдрома «мнимой ярости».

Инфицирование, опухолевый процесс, врожденные аномалии, травмы важного отдела мозга негативно влияют на нервно-гуморальную регуляцию, мешают передаче импульсов из сердца, легких, органов пищеварения, других элементов организма. Разрушение различных долей гипоталамуса нарушает сон, обменные процессы, провоцируют развитие эпилепсии, ожирение, снижение температуры, эмоциональные расстройства.

Не все знают, где находится гипоталамус. Элемент промежуточного мозга расположен под гипоталамической бороздой, ниже таламуса. Клеточные группы структуры плавно переходят в прозрачную перегородку. Строение небольшого органа сложное, он сформирован из 32 пар ядер гипоталамуса, состоящих из нервных клеток.

Гипоталамус состоит из трех областей, между ними нет четкой границы. Веточки артериального круга обеспечивают полноценное поступление крови к важному отделу мозга. Специфическая особенность сосудов этого элемента - возможность проникновения через стенки молекул белков, даже крупного размера.

За что отвечает

Функции гипоталамуса в организме:

  • контролирует функционирование органов дыхания, пищеварения, сердце, сосуды, терморегуляцию;
  • поддерживает оптимальное состояние эндокринной и выделительной системы;
  • влияет на работу половых желез, яичников, гипофиза, надпочечников, поджелудочной и ;
  • отвечает за эмоциональное поведение человека;
  • участвует в процессе регуляции бодрствования и сна, продуцирует гормон мелатонин, при дефиците которого развивается бессонница, ухудшается качество сна;
  • обеспечивает оптимальную температуру тела. При патологических изменениях в задней части гипоталамуса, разрушении этой зоны температура снижается, развивается слабость, обменные процессы протекают медленнее. Нередко возникает внезапный подъем субфертильной температуры;
  • влияет на передачу нервных импульсов;
  • продуцирует комплекс гормонов, без достаточного количества которых невозможно правильное функционирование организма.

Гормоны гипоталамуса

Важный элемент мозга вырабатывает несколько групп регуляторов:

  • статины: пролактостатин, меланотатин, соматостатин;
  • гормоны задней доли гипофиза: вазопрессин, окситоцин;
  • рилизинг-гормоны: фоллилиберин, кортиколиберин, пролактолиберин, меланолиберин, соматолиберин, люлиберин, тиролиберин.

Причины проблем

Поражение структурных элементов гипоталамуса - следствие влияния нескольких факторов:

  • черепно-мозговые травмы;
  • бактериальные, вирусные инфекции: лимфогранулематоз, сифилис, базальный менингит, лейкоз, саркоидоз;
  • опухолевый процесс;
  • нарушение функционирования желез внутренней секреции;
  • интоксикация организма;
  • воспалительные процессы различного рода;
  • сосудистые патологии, влияющие на объем и скорость поступления питательных веществ, кислорода к клеткам гипоталамуса;
  • нарушение течения физиологических процессов;
  • нарушение проницаемости сосудистой стенки на фоне проникновения инфекционных агентов.

Заболевания

Негативные процессы протекают на фоне непосредственных нарушений функций важной структуры. Опухолевый процесс в большинстве случаев имеет доброкачественный характер, но под влиянием негативных факторов нередко происходит малигнизация клеток.

Обратите внимание! Лечение поражений гипоталамуса требует комплексного подхода, терапия связана со многими рисками и сложностями. При выявлении онкопатологий нейрохирург удаляет новообразование, далее пациент проходит сеансы химио- и лучевой терапии. Для стабилизации работы проблемного отдела назначают комплекс лекарственных средств.

Основные виды опухоли гипоталамуса:

  • тератомы;
  • менингиомы;
  • краниофарингиомы;
  • глиомы;
  • аденомы (прорастают из гипофиза);
  • пинеаломы.

Симптомы

Нарушение функционирования гипоталамуса провоцирует комплекс отрицательных признаков:

  • нарушение пищевого поведения, неконтролируемый аппетит, резкое похудение или тяжелая степень ожирения;
  • тахикардия, колебания артериального давления, боль в области грудины, аритмия;
  • снижение либидо, отсутствие менструаций;
  • ранее половое созревание на фоне опасной опухоли - гамартомы;
  • головные боли, выраженная агрессия, неконтролируемый плач либо приступы смеха, судорожный синдром;
  • ярко выраженная беспричинная агрессия, припадки ярости;
  • гипоталамическая эпилепсия с высокой частотой припадков на протяжении дня;
  • отрыжка, диарея, болезненность в подложечной области и животе;
  • мышечная слабость, пациенту сложно стоять и ходить;
  • нервно-психические нарушения: галлюцинации, психозы, тревожность, депрессия, ипохондрия, перепады настроения;
  • сильные головные боли на фоне повышения внутричерепного давления;
  • нарушение сна, пробуждение несколько раз за ночь, разбитость, слабость, головные боли утром. Причина - нехватка важного гормона мелатонина. Для устранения нарушений нужно скорректировать режим бодрствования и ночного сна, пропить курс препаратов для восстановления объема важного регулятора. Хороший терапевтический эффект дает - препарат нового поколения с минимумом побочных эффектов, без синдрома привыкания;
  • ухудшение зрения, плохое запоминание новой информации;
  • резкий подъем температуры либо снижение показателей. При повышении температуры часто сложно понять, в чем причина негативных изменений. Поражение гипоталамуса можно заподозрить по комплексу признаков, указывающих на поражение эндокринной системы: неконтролируемый голод, жажда, ожирение, усиленное выведение мочи.

Перейдите по адресу и ознакомьтесь с информацией о правилах соблюдения диеты и лечении сахарного диабета 2 типа.

Диагностика

Симптомы при поражении гипоталамуса настолько разнообразны, что нужно провести несколько диагностических процедур. Высокоинформативные методы: УЗИ, ЭКГ, МРТ. Обязательно обследовать надпочечники, щитовидную железу, органы в брюшной полости, яичники, головной мозг, сосудистую сеть.

Важно сдать анализы крови и мочи, уточнить уровень глюкозы, СОЭ, мочевины, лейкоцитов, показатели гормонов. Пациент посещает эндокринолога, уролога, гинеколога, офтальмолога, эндокринолога, невролога. При выявлении опухоли понадобится консультация специалиста отделения нейрохирургии.

Лечение

Схема терапии при поражении гипоталамуса включает несколько направлений:

  • коррекция режима дня для стабилизации выработки мелатонина, устранение причин для излишнего возбуждения, нервного перенапряжения либо апатии;
  • изменение рациона для поступления оптимального количества витаминов, минералов, нормализующих состояние нервной системы и сосудов;
  • проведение медикаментозного лечения при выявлении воспалительных процессов с инфицированием с поражением отделов мозга (антибиотики, глюкокортикостероиды, противовирусные препараты, общеукрепляющие составы, витамины, НПВС);
  • получение седативных препаратов, транквилизаторов;
  • хирургическое лечение для удаления новообразований злокачественного и доброкачественного характера. При онкопатологиях мозга проводят облучение, назначают химиотерапию, иммуномодуляторы;
  • хороший эффект при лечении нарушений пищевого поведения дает диета, инъекции витаминов, регулирующих нервную деятельность (В1и В12), препараты, подавляющие неконтролируемый аппетит.

Важно знать, почему поражение гипоталамуса может привести к быстрой разбалансированности физиологических процессов в организме. При выявлении патологий этого отдела мозга нужно пройти комплексное обследование, получить консультации нескольких врачей. При своевременном начале терапии прогноз благоприятный. Особая ответственность нужна при подтверждении развития опухолевого процесса: отдельные виды новообразований состоят из атипичных клеток.

Более подробно о том, что такое гипоталамус и за что отвечает важный орган узнайте после просмотра видеоролика:

Отвечающий за механизмы бодрствования и сна, изменения температуры тела и обменные процессы в организме. От него зависит работоспособность всех органов и тканей организма. Эмоциональные реакции человека также находятся в компетенции гипоталамуса. Кроме того, гипоталамус руководит работой эндокринных желез, участвует в процессе пищеварения, а также в продлении рода. Расположен гипоталамус в головном мозге под зрительным бугром – таламусом. Поэтому, гипоталамус, в переводе с латыни означает «подбугорье ».

  • Гипоталамус по размеру равен фаланге большого пальца руки.
  • Ученые нашли в гипоталамусе центры «рая» и «ада». Эти участки мозга отвечают за приятные и неприятные ощущения организма.
  • Деление людей на «жаворонков» и «сов» также находится в компетенции работы гипоталамуса
  • Ученые называют гипоталамус «внутренним солнцем организма» и считают, что дальнейшее изучение его возможностей может привести к увеличению продолжительности жизни человека, к победе над многими эндокринными заболеваниями, а также к дальнейшему освоению Космоса, благодаря управляемому летаргическому сну, в который можно будет погружать космонавтов, преодолевающих расстояние в десятки и сотни световых лет.

Полезные продукты для гипоталамуса

  • Изюм , курага , мед – содержат глюкозу, необходимую для полноценной работы гипоталамуса.
  • Зелень и листовые овощи. Прекрасный и калия . Являются отличными антиоксидантами. Предохраняют гипоталамус от риска кровоизлияний, инсульта .
  • Молоко и молочные продукты . Содержат витамины группы В, которые необходимы для полноценной работы нервной системы, а также кальций и другие питательные вещества.
  • Яйца . Снижают риск возникновения инсульта, благодаря содержанию в них полезных для мозга веществ.
  • Кофе , черный шоколад. В небольшом количестве тонизируют работу гипоталамуса.
  • Бананы , помидоры , апельсины . Поднимают настроение. Облегчают работу не только гипоталамуса, но и всех структур мозга. Полезны для нервной системы, деятельность которой тесно связана с работой гипоталамуса.
  • Грецкие орехи . Стимулируют работоспособность гипоталамуса. Тормозят процессы старения мозга. Богаты полезными жирами, витаминами и микроэлементами.
  • Морковь . Замедляет процессы старения в организме, стимулирует образование молодых клеток, участвует в проведении нервных импульсов.
  • Морская капуста . Содержит вещества, необходимые для обеспечения гипоталамуса кислородом. Большое количество йода, содержащегося в морской капусте, помогает бороться с бессонницей и раздражительностью, усталостью и перенапряжением.
  • Жирная рыба и растительные масла. Содержат полиненасыщенные жирные кислоты, которые являются важными компонентами питания гипоталамуса. Предотвращают отложение холестерина, являются стимуляторами выработки гормонов.

Для полноценного функционирования гипоталамуса необходимы:

  • Лечебная физкультура и ежедневные прогулки на свежем воздухе (особенно вечером, перед сном).
  • Регулярное и полноценное питание. Предпочтительна молочно-растительная диета. Медики советуют избегать переедания.
  • Соблюдение режима дня помогает гипоталамусу войти в привычный для него ритм работы.
  • Исключить из употребления алкогольные напитки и избавиться от вредной тяги к курению, которые вредят работе нервной системы, с деятельностью которой тесно связан гипоталамус.
  • Исключить перед сном просмотр телепередач и работу за компьютером. В противном случае, из-за нарушения светового режима дня, может возникнуть нарушения в работе гипоталамуса и всей нервной системы.
  • С целью профилактики перевозбуждения гипоталамуса, в яркий солнечный день рекомендуется носить солнцезащитные очки.

Народные методы восстановления функций гипоталамуса

Причинами нарушений работы гипоталамуса являются:

  1. 1 Инфекционные заболевания, интоксикации организма.
  2. 2 Нарушения в работе нервной системы.
  3. 3 Слабый иммунитет.

В первом случае могут использоваться травы противовоспалительного назначения (ромашка , календула, зверобой) – по рекомендации врача. При интоксикациях полезны йодсодержащие продукты – черноплодная рябина, морская капуста, фейхоа , грецкие орехи.

Во втором случае , при нарушении работы НС, используются тонизирующие средства (цикорий, кофе), или наоборот, успокаивающие - настойка валерианы , пустырника и боярышника, хвойные ванны.

При тахикардии и беспричинном повышении давления, связанных с неправильной работой гипоталамуса, полезны водные процедуры: теплый душ с последующим энергичным растиранием кожных покровов.

При депрессивных состояниях хорошо помогает отвар травы зверобоя, конечно, если нет медицинских противопоказаний к применению!

Гипоталамус - что это такое? Гипоталамус является частью среднего (промежуточного) мозга, вторая часть этого отдела - таламус. Функции гипоталамуса и таламуса различны. Таламус передает в кору мозга все импульсы от многочисленных рецепторов. Гипоталамус же осуществляет обратную связь, он регулирует почти все функции организма человека.

Это важный вегетативный центр, интегрирующий функции внутренних систем и их подстройку к общему процессу жизнедеятельности.

Факт. Последние научные работы рассказывают о влиянии гипоталамуса на уровень и качество памяти, а также на эмоциональное здоровье человека.

Место расположения

Находится гипоталамус в нижней части мозга, под таламусом, под гипоталамической бороздой. Гипоталамус связан с аденогипофизом портальными сосудами последнего. Кровеносные сосуды гипоталамуса являются проницаемыми для больших молекул белка.

Внутреннее устройство

Устройство гипоталамуса очень сложное, несмотря на маленький размер органа. Он представляет собой промежуточную часть головного мозга и им образованы стенки и основание нижней части 3-го желудочка мозга.

Гипоталамус представляет собой область структуры мозга, он состоит из ядер и нескольких менее различимых областей. Отдельные клетки могут проникать в рядом находящиеся области головного мозга, это делает его граничные части размытыми. Передняя часть ограничивается терминальной пластиной, а дорсолатеральная область располагается рядом с медиальной областью мозолистого тела, снизу располагаются сосцевидные тела, серый бугор и воронка.

Центральная область воронки имеет название «срединное возвышение», она слегка приподнята, а сама воронка идёт от серого бугра.

Ядра гипоталамуса

Гипоталамус состоит из внутреннего комплекса гипоталамических ядер, который в свою очередь делится на 3 области из групп нервных клеток:

  • Передняя область.
  • Задняя область.
  • Средняя область.

Каждое из ядер выполняет свою строго определённую функцию, будь то голод или насыщение, активность или вялое поведение и многое другое.

Факт. Строение некоторых ядер зависит от пола человека, то есть, проще говоря, у мужчин и женщин строение и функции гипоталамуса в некоторой степени различны.

За что отвечает гипоталамус?

Свойство живого организма всё время сохранять свою внутреннюю среду в определённом состоянии даже при возникновении небольших внешних раздражителей гарантирует выживаемость организма, такая способность имеет название - гомеостаз.

Гипоталамус как раз и занимается регулировкой функционирования автономной нервной и эндокринной систем, которые необходимы для поддержания гомеостаза, кроме дыхания, которое совершается на автомате, частоты сердцебиения и давления крови.

Важно! На что влияет гипоталамус? Деятельность этого регуляторного центра достаточно серьёзно влияет на то, как ведёт себя человек, на его способность выживать, а также на способность производить потомство. Его функции распространяются на регулировку систем организма в ответ на раздражающие факторы окружающего мира.

Вместе с гипофизом гипоталамус представляет единый функциональный комплекс, где гипоталамус - это регулятор, а гипофиз выполняет эффекторные функции, передавая сигналы нервной системы к органам и тканям гуморальным путем

Какие гормоны вырабатывает?

Гормоны гипоталамуса - пептиды, они разделяются на три вида:

  • Рилизинг-гормоны - стимулируют формирование гормонов передней доли гипофиза.
  • Статины в гипоталамусе при необходимости притормаживают образование гормонов передней доли.
  • Гормоны задней доли гипофиза - вырабатываются гипоталамусом и депонируются гипофизом, затем отправляются в нужные места.

Гамартома

Гамартома представляет собой доброкачественную опухоль гипоталамуса. Известно, что это заболевание диагностируется ещё на стадии внутриутробного развития, но, к сожалению, оно ещё недостаточно изучено.

Существует по всему миру всего несколько серьёзных центров по лечению данного заболевания, один из них располагается в Китае.

Симптомы гамартомы

К многочисленным симптомам гамартомы относятся: судороги (напоминающие припадки смеха), когнитивные расстройства и раннее половое созревание. Также при появлении данного рода опухоли нарушается деятельность эндокринной системы. Из-за неправильной работы гипоталамуса у пациента появляется лишний вес или, наоборот, его недостаток.

Важно. Нарушение правильной работы этого отдела головного мозга провоцирует возникновение ненормального поведения человека, появляются психологические расстройства, эмоциональная нестабильность, беспричинная агрессивность.

Диагностировать гамартому можно при помощи средств медицинской визуализации, таких, как томограмма и МРТ. Также необходимо сдать анализ крови на гормоны.

Как лечат гамартому

Существует несколько способов лечения данной опухоли: первый способ основывается на медикаментозной терапии, второй - хирургический, и третий - лучевое лечение и радиохирургия.

Важно! Медикаментозное лечение лишь убирает симптомы болезни, но не ее причину.

Причины появления опухоли

К сожалению, до сих пор до конца не выявлено достоверных причин появления гамартомы, но существует предположение, что опухоль возникает вследствие нарушений на генетическом уровне, например, пациенты с синдромом Паллистера-Холла имеют предрасположенность к этому заболеванию.

Другие заболевания

Болезни гипоталамуса могут возникать из-за различных причин, внешних и внутренних воздействий. Самыми распространёнными болезнями этой части мозга являются: ушиб, инсульт, опухоль, воспаление.

В связи с патологическими изменениями в гипоталамусе происходит уменьшение образования важных гормонов, а воспаление и опухоль могут создавать давление на расположенные рядом ткани и негативно воздействовать на их функции.

Для правильного и полноценного функционирования гипоталамуса необходимо следовать таким рекомендациям:

  • Занятия спортом и каждодневные прогулки на свежем воздухе.
  • Чтобы гипоталамус вошёл в привычный ритм работы, соблюдайте режим дня.
  • Исключите спиртное и сигареты. Откажитесь от просмотра телепередач и работы за компьютером перед сном.
  • Правильное питание без переедания.
  • Старайтесь употреблять в пищу побольше овощей, изюма, кураги, мёда, яиц, грецких орехов, жирной рыбы и морской капусты.

Старайтесь следить за состоянием своего здоровья. Несмотря на то, что гамартома - это доброкачественная опухоль, она является достаточно серьёзным и не до конца изученным заболеванием, поэтому при первых симптомах недомогания обратитесь за консультацией к врачу.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...