Уравнение материального баланса. Основы материального баланса: Методическое пособие. Изучение и анализ производства медного купороса

При разработке газоконденсатной залежи в пласте при снижении Р ПЛ до Р Р в пласте выпадает конденсат. Уравнение материального баланса имеет вид:

т.е. начальная масса М Н газоконденсатной смеси в пласте равна сумме текущей массы газоконденсатной смеси в пласте М(t ) , массы выпавшего в пласт сырого конденсата к моменту времени t – М К (t ) и массы добытого М q (t ) пластового газа.

В случае газового режима уравнение материального баланса для газоконденсатной залежи можно записать в виде:

где:
– соответственно начальный газонасыщенный поровый объем

залежи и объем пор пласта, занятых выпавшим сырым конденсатом

к моменту времени t ,

–начальное и текущее среднее пластовое давление,

–коэффициенты сверхсжимаемости газоконденсатной смеси при Т ПЛ и

соответственно при Р Н и
,

–соответствующая плотность газа начального и текущего состава

приведена к Р АТ и Т О ,

–плотность выпавшего в пласт сырого конденсата на момент

времени t , приведенное к давлению
иТ ПЛ .

При определении массы добытого пластового газа на момент времени t используется следующее рекуррентное соотношение:

(возвратные последовательности, каждый следующий член которых, начиная с некоторого, выражается по определенному правилу через предыдущие)

где:
- масса добытого пластового газа на момент времениt – Δ t ,

Q q .С.Г. * (t - Δ t ) – добытое количество сухого газа на момент времени t и t – Δ t

соответственно, приведённое к Р АТ и Т О .

Δ t – шаг во времени

–объемный коэффициент сухого газа (коэффициент перевода газа в

пластовый газ)

Зависимость

,
,
, и
наиболее достоверно определяются в результате экспериментальных исследований с использованием бомбыPVT .

Часто используются зависимости по данным Рейтенбаха Г.Р., полученные для Вуктыльского месторождения, (Р Н = 37 МПа, Р Р = 33 МПа, конденсат содержит (500 см 3 /м 3) которые имеют вид:

1 – ρ к 2 - 1 – z 2 - β

Деформационные изменения в продуктивном пласте.

При разработке залежей газа приуроченных к карбонатным коллекторам, мы сталкиваемся с существенным изменением проницаемости и пористости коллектора при наличии трещиноватости.

Лабораторные исследования показали, что при снижении внутрипластового давления Р ПЛ коэффициенты пористости и проницаемости уменьшаются.

Экспоненциальная зависимость коэффициента пористости m от давления имеет вид:

где: – коэффициент пористости соответствующий давлениямР Н и Р ,

–коэффициент сжимаемости пор, 1/МПа .

Уравнение материального баланса для газовой залежи с деформируемым коллектором при допущении Z = 1 имеет вид:

(уравнение используется при Z ≥ 0,8 )

При деформации пласта – коллектора коэффициент газонасыщенности изменяется за счет уменьшения порового объема и расширения остаточной воды, т.е. текущий коэффициент газонасыщенности является функцией давления
.

Тогда уравнение материального баланса записывается в виде:

где:
– коэффициент объемной упругости жидкости

В

лияние деформации пласта – коллектора на зависимость
показано на графике.

1– зависимость при недеформированном коллекторе.

2– зависимость для деформируемого коллектора.

Вследствие деформации продуктивного коллектора кривая (2) располагается выше соответствующей кривой зависимости при отсутствии деформации (1), что объясняется уменьшением во времени порового объема залежи.

При = 0 линии (1) и (2) сходятся в одну точку, т.к. независимо от деформации пласта, добытое количество газа к моменту, когда= 0 должно быть равно начальным запасом газа в пласте.

По закону сохранения веса веществ количество (масса) исходных материалов, взятых для производства галенового препарата или готового лекарства, должно быть равно количеству (массе) полученных материалов (готовый продукт + побочные продукты + отбросы). Это положение может быть выражено следующим равенством:

g 1= g 2+ g 3+ g 4

где g - исходные материалы; g 2 - готовый продукт; gz - побочные продукты; g 4 - отбросы (всё в килограммах).

Однако на практике количество полученных материалов всегда меньше взятых количеств исходных материалов. Объясняется это тем, что при всяком производстве имеются материальные потери. Поэтому приведенное выше уравнение должно принять такой вид:

g 1=( g 2+ g 3+ g 4)+ g 5

где g 5 - материальные потери в килограммах.

Последнее уравнение называется уравнением материального баланса; под материальным балансом понимают соотношение между количеством исходных материалов, готового продукта, побочных продуктов, отбросов и материальных потерь.

Материальные потери имеют разное происхождение. Бывают потери механические, наблюдаемые чаще всего при отсутствии или недостаточной механизации перемещения перерабатываемых материалов (пролив, распыл, утруска, бой и т. п.). Могут быть физико-химические потери, например при извлечении (неполнота экстрагирования действующих веществ), фильтрации (потеря легколетучих растворителей при вакуум-фильтровании), выпаривании (потери эфирного масла и валериановой кислоты при сгущении под вакуумом вытяжки при производстве густого экстракта валерианового корня) и т. д. Возможны также потери химического порядка, чаще всего в результате неполноты реакции. Например, если реакция между мышьяковистым ангидридом и поташом не протекает полностью (вследствие несоблюдения теплового режима), получаемый при этом фаулеров раствор мышьяка будет содержать пониженное количество арсенита калия.

Материальный баланс имеет большое практическое значение, ибо в нем, как в зеркале, отражается степень совершенства технологического процесса. Чем он полнее составлен, тем, следовательно, детальнее изучена технология данного препарата; чем меньше в балансе разного рода потерь, тем правильнее проводится процесс производства. Наоборот, чем больше в балансе материальных потерь, тем меньше освоена технология данного препарата и тем больше в ней разного рода неполадок.

Материальный баланс может быть представлен в виде не только алгебраического уравнения, но также таблиц прихода и расхода материалов. В приходной части баланса приводятся количества материалов, введенных в производство, а в расходной части - количества получаемых материалов и потерь. Итоги приходной и расходной частей баланса должны составлять одну и ту же сумму.

Материальный баланс может быть изображен также в виде диаграммы.

Материальный баланс может быть составлен: 1) на одну стадию, операцию или загрузку; 2) на единицу времени (час, смена, сутки); 3) на единицу готового продукта (на 1000 или 100 кг). Первая форма составления баланса имеет место при периодическом технологическом процессе, причем из данных баланса можно исходить при составлении производственного регламента. Вторая форма материальных расчетов применяется при непрерывном процессе с целью установления количества сырья, расходуемого в течение часа (смены, суток), и количества получаемых при этом продуктов и потерь. Материальный баланс, составленный на 1000 или 100 кг готового продукта, удобен тем, что сразу дает расходные нормы на сырье.

В зависимости от особенностей сырья баланс на некоторые стадии производства ведут не только по массе материалов, но и по качеству их составных частей. Например, для растительного сырья - по экстрактивным веществам (включающим действующие вещества), влаге и нерастворимым сухим веществам, для спирта - по абсолютному спирту и воде. Необходимо указать также, что материальный баланс можно составлять по отношению не только ко всем материалам (суммарный баланс), участвующим в процессе, но и к какому-либо одному из них.

Пользуясь уравнением материального баланса, можно определить такие важные характеристики технологического процесса, как величины выхода, технологической траты, расходных коэффициентов, расходных норм.

Выход (η) -процентное отношение количества готовой продукции (g1) к количеству исходных материалов (g2):

Технологическая трата (ε) -отношение материальных потерь к весу исходных материалов, выраженное в процентах:

Расходный коэффициент. (Kpacx) - отношение суммарной массы исходных сырьевых материалов к массе полученного готового продукта:

Пользуясь расходным коэффициентом, нетрудно подсчитать необходимое количество исходных материалов - расходные нормы (Npacx), умножая цифры фармакопейной (или МРТУ) прописи на расходный коэффициент. Если технологический процесс сопровождается образованием отходов, которые перерабатываются на побочные продукты и отбросы, все перечисленные расчеты несколько усложняются. В этом случае выход и технологическая трата определяются не от массы сырьевых материалов, а в процентах от теоретического выхода:

Расходный коэффициент также рассчитывается как отношение теоретического выхода к массе готового продукта.

Развитие теоретических основ проектирования и разработки газовых и газоконденсатных месторождений можно разделить на 4 этапа.

В течении I этапа (дореволюционные годы и первые годы Советской власти) скважины бурили на случайно открытых газовых месторождениях в непосредственной близости от потребителя газа. Бурение последующих скважин проводилось по соседству с предыдущими, без предварительной разведки, в объеме, необходимом для подачи нужного количества газа потребителю. (Мельниковское, Мелитонольское месторождения в Ставрополье, и месторождение Дагестанские огни).

II этап пришел на смену кустарным методам разработки. На этом этапе применялись чисто эмпирические методы разработки газовых месторождений с механическим распространением на них практики разработки нефтяных месторождений, а так же методов разработки газовых месторождений США.

III этап характеризуется созданием и внедрением научно обоснованных методов эксплуатации газовых месторождений. Эта работа проводилась в Московском нефтяном институте им. Н.М. Губкина.

На основе полученных результатов наряду с проведением дальнейших теоретических исследований были выполнены и внедрены первые научно обоснованные проекты разработки газовых месторождений треста Куйбышевгаз и в дальнейшем и на др. месторождениях (Шебелинсского, Северо – Ставропольского, Газлинского и др.)

В результате научно – исследовательских работ III-го этапа в развитии теории разработки газовых месторождений были достигнуты значительные успехи. Созданы газодинамические методы расчета изменения во времени потребного числа газовых скважин, пластовых, забойных и устьевых давлений, приближенные методы расчета продвижения контурных или подошвенных вод при разработке месторождений в условиях водонапорного режима.

Вместо господствовавшего ранее режима постоянного процента отбора:

где: % - постоянный процент отбора,

q РГ – рабочий дебит газовой скважины,

q СКВ – дебит фонтанирующей газовой скважины.

считавшегося единственно рациональным технологическим режимом эксплуатации газовых скважин, обоснованы и внедрены в практику проектирования новые технологические режимы. К их числу относится режимы поддержания постоянного максимально допустимого градиента давления на забое скважины или постоянной депрессии при недостаточной устойчивости коллекторов, режим предельного безводного дебита газовых скважин при наличии подошвенной воды.

Исследования фильтрации газа к несовершенным скважинам в условиях нарушения закона Дарси привели к созданию и повсеместному внедрению новой методики обработки и интерпретации результатов исследования газовых скважин. Появились методы исследования скважин при нестационарных режимах фильтрации газа.

В результате выполнения ряда проектов разработки газовых месторождений, накопился значительный опыт комплексного применения методов геологии, геофизики, подземной газогидродинамики и отраслевой экономики.

На основе геолого-геофизических исследований устанавливается геологическое строение газовой залежи, составляется представление о пластовой водонапорной системе, возможном режиме газовой залежи. По данным испытания скважин определяются параметры пласта.

В результате газогидродинамических расчетов определяется изменение во времени необходимого числа скважин для выполнения плана добычи газа. На основе анализа технико-экономических показателей различных вариантов разработки выбирается наилучший из них.

В начале 60 – х годов теория проектирования и разработки месторождений природных газов вступает в IV этап своего развития. Особенностью этого этапа является комплексное применение в практике проектирования, анализа и определения перспектив разработки, газовых и газоконденсатных месторождений методов геологии, геофизики, в том числе ядерной геофизики, подземной газогидродинамики, техники и технологии добычи газа, появляется стремление к использованию возможностей современных быстродействующих электронных вычислительных и аналоговых машин. При этом главной задачей является нахождение при помощи ЭВМ такого варианта разработки газового (газоконденсатного) месторождения и обустройства промысла, который отличался бы оптимальными технико-экономическими показателями.

Лекция 2. Уравнения разработки залежи (часть 1)

При расчетах показателей разработки месторождений основными являются уравнения:

  • · материального баланса,
  • · технологического режима эксплуатации скважин,
  • · притока флюидов к скважине,
  • · движения в подъемных трубах.

Решение этой системы уравнений позволяет находить закономерности движения флюидов в залежи и в скважине.

Уравнения материального баланса

Уравнения материального баланса используются для определения показателей разработки месторождений, запасов залежей по данным об отобранных из них объемах газа и жидкости.

Согласно принципу материального баланса, начальная масса Мн нефти в пласте равняется отобранной к моменту t массе нефти Мдоб и оставшейся в пласте массы нефти Мост:

Анализ разработки нефтегазовой залежи на основе промысловых данных с помощью метода материального баланса

Обозначим общий объем нефтенасыщенной части залежи Vн, объем пласта, занятого газовой шапкой Vг. При начальном пластовом давлении, равном давлению насыщения нефти газом Рнас, объемный коэффициент нефти bно, объемный коэффициент газа газовой шапки bго, начальное газосодержание нефти Г0.

При отборе из залежи Qн нефти (в стандартных условиях) и воды Qв среднее пластовое давление снизилось до величины Р. При давлении Р объемные коэффициенты нефти bн, газа bг, воды bв, газосодержание нефти Г. За рассматриваемый период разработки в залежь вторглось пластовой воды Wв, а средний газовый фактор составил величину.

Используем метод материального баланса. В залежи при начальном пластовом давлении и температуре содержалось Gн* bно нефти. В момент времени разработки, когда давление снизилось до текущего значения Р, объем нефти стал (Gн? Qн) bн. Количество отобранной нефти определится:

Изменение количества свободного газа в пласте определим с учетом объема его, выделяющегося из нефти при понижении давления.

В начале разработки количество свободного газа в пласте определяется его содержанием в газовой шапке. Если относительный объем газовой шапки обозначить через

то объем свободного газа в пласте составит GнbноГш, а общее количество газа с учетом объема, растворенного в нефти определится выражением:

Если за рассматриваемый период разработки из залежи отобрано газа вместе с нефтью (- средний за этот период газовый фактор), то объем свободного газа в пласте при давлении Р выразится так:

Уменьшение объема свободного газа в пласте определится разностью между его запасами в начальный момент времени и при текущем давлении:

Объем воды в залежи изменился за рассматриваемый период разработки на величину:

Так как незначительные изменения объема порового пространства в пределах нефтегазовой залежи в процессе разработки не учитываем, то получаем, что сумма изменений объемов нефти, свободного газа и воды должна быть равна нулю. С учетом (2.1), (2.2) и (2.3) приходим к равенству выражения:

выражению (2.3)

Это равенство (под номером 2.4) и представляет собой обобщенное выражение материального баланса при разработке нефтегазовой залежи без учета изменения ее порового объема от давления.

Введем обозначение:

Этот «двухфазный объемный коэффициент», зависящий от давления, характеризует изменение единицы объема нефти и газа при снижении давления от текущего пластового до атмосферного. Очевидно, что при начальном пластовом давлении, когда, значение.

Преобразования уравнения (2.4) с учетом (2.5) приводят к расчетной формуле начальных запасов нефти в нефтегазовой залежи:

Если бы залежь не имела связи с законтурной областью, то вода в нее не смогла бы вторгаться () и не отбиралась бы с нефтью (). При этом начальные запасы нефти в нефтегазовой залежи определялись бы последним выражением без члена в ее числителе.

Для оценки влияния механизмов расширения газовой шапки, растворенного газа и вторжения воды в пределы залежи на добычу нефти при разработке нефтегазовой залежи приведем последнее уравнение к следующему виду:

Разделив обе части этого равенства на его правую часть, получим выражение, равное единице:

Числители слагаемых в левой части полученного выражения характеризуют соответственно изменение начального объема нефтяной части залежи, начальной газовой шапки и эффективный объем поступившей в залежь воды. Общий знаменатель всех слагаемых выражает пластовый объем суммарной добычи нефти и газа при текущем пластовом давлении. Очевидно, каждое слагаемое представляет долю (коэффициент нефтеотдачи) в общей добыче из залежи, получаемую за счет различных механизмов. В обозначениях Пирсона, который впервые получил уравнение, запишем относительные количества нефти, добываемой за счет проявления режимов:

растворенного газа:

расширения газовой шапки:

водонапорного режима:

Пример 2.1

Оценить начальные запасы нефти и коэффициенты нефтеотдачи нефтегазовой залежи.

Общий объем нефтенасыщенной части залежи Vн = 13,8·107 м3 , объем пласта, занятого газовой шапкой, Vг = 2,42·107 м3.

Начальное пластовое давление, равное давлению насыщения нефти газом, =Рнас= 18,4 МПа; обьемный коэффициент нефти при начальном давлении bно = 1,34 м3/ м3; объемный коэффициент газа газовой шапки 0,00627м3/ м3; начальное газосодержание нефти = 100,3 м3/ м3.

При отборе из залежи Qн = 3,18·106 м3 нефти (в стандартных условиях) и воды Qв = 0,167·106 м3 , среднее пластовое давление снизилось до Р=13,6 МПа, газосодержание уменьшилось до Г = 75 м3/ м3. При давлении Р=13,6 МПа объемный коэффициент нефти bн = 1,28 м3/ м3 , а объемный коэффициент газа bг = 0,00849 м3/ м3, объемный коэффициент воды bв = 1,028. За время разработки средний газовый фактор оказался равным = 125 м3/ м3, в залежь вторглось воды из законтурной области

Wв = 1,84·106 м3.

Подсчитаем начальные запасы нефти. Сперва определим относительный начальный объем газовой шапки и величину двухфазного объемного коэффициента по соответствующим формулам:

Запасы нефти в пласте составят величину:

За рассматриваемый период разработки коэффициент нефтеотдачи при относительном снижении пластового давления на 26,1% составил:

Разработка нефтегазовой залежи при отсутствии гидродинамической связи с водонапорным бассейном (количества вторгшейся и отобранной воды равны нулю) и исходных данных предыдущей задачи могла бы осуществляться при начальных запасах нефти и коэффициенте нефтеотдачи м3, .

Оценим влияние механизмов расширения газовой шапки, растворенного газа и вторжения воды в пределы залежи на добычу нефти при разработке нефтегазовой залежи для м3.

По приведенным формулам определим относительные количества нефти, добываемой за счет проявления режимов:

растворенного газа:

расширения газовой шапки:

водонапорного режима:


Сумма участия трех механизмов в добыче нефти равна единице. Интересно, что на рассматриваемый момент времени разработки залежи доминирующей формой пластовой энергии является энергия выделяющегося из нефти растворенного в ней газа. За счет этого фактора добыто 45 % нефти. На долю механизма вытеснения нефти водой приходится 31 % добытой нефти, за счет расширения газовой шапки отобрано 24 %.

Пример 2.2.

Подсчитать запасы газа в газовой шапке нефтегазовой залежи и суммарный отбор газа из нее, обеспечивающий постоянный объем газовой шапки при снижении среднего давления в залежи от начального до Пластовая температураС. Общий объем пласта, занятый газовой шапкой, составляет м3. Средняя пористость, насыщенность порового объема связанной водой, содержание рассеянной нефти в объеме газовой шапки. Относительная плотность газа равна 0,66.

Решение. Определим объем газа в газовой шапке по известному объему пласта, пористости и насыщенности (в млн м3):

Объемный коэффициент газа вычислим по формуле:

где стандартное и среднее текущее пластовые давления; стандартная температура (273K) и температура пласта; z коэффициент сверхжимаемости.

Найдем значения z. Так, при начальном давлении z=0,914, а при текущем Pпл = 16,1 МПа значение z равняется 0,892. Получим:

bго,= 0,3663* 10-3*0,914*(374/22,1) = 0,00566 м3/м3 .

bг= 0,3663* 10-3*0,892*(374/16,1) = 0,00759 м3/м3 .

Для перевода объема газа из пластовых в стандартные условия воспользуемся обратными значениями полученных объемных коэффициентов:

176,7 м3/м3 .

138,1 м3/м3 .

Начальные запасы газа в стандартных условиях:

Gг. ст = 3,09*106*176,6 =545*106 м3

При понижении пластового давления объем газовой шапки увеличится, если не отбирать газ. Чтоб объем газовой шапки не изменился, необходимо добыть следующее количество газа:

Для условий задачи имеем:

К рассматриваемому в задаче моменту времени, когда давление в залежи снизится до 16,1 МПа, необходимо отобрать из газовой шапки 25,4 % от первоначальных запасов, чтобы размеры газовой шапки не изменились.

Уравнение материального баланса

Для того чтобы осуществлять расчеты про­цессов разработки нефтяных месторождений при упругом режиме, необходимо прежде всего получить дифференциальное уравнение этого ре­жима, при выводе к-го исходят из уравнения не­разрыв­ности массы фильтрующегося вещества.

24. Режим растворенного газа. Разновидности режима (режим чисто рас-го газа, смешанный режим, газонапорный режим)

При уменьшении давления ниже давления на­сыщения в раз­рабатываемом пласте развивается режим растворенного газа. Когда насыщенность порового пространства свободным газом, выде­лившимся из нефти, еще мала, газ остается в нефти в виде пузырьков. С увеличением же газо­насыщенности в связи с прогрессирующим сни­жением пластового давления пузырьки газа всплывают под действием сил гравитации, обра­зуя в по­вышенной части пласта газовое скопле­ние - газовую шапку, если ее образованию не мешает слоистая или иная неоднород­ность.

Выделяющийся из нефти газ, расширяясь со снижением давления, способствует вытеснению нефти из пласта. Режим пласта, при котором происходит такое вытеснение нефти, на­зывают режимом растворенного газа. Если произо­шло отделение газа от нефти в пласте в целом и обра­зовалась газовая шапка, режим растворенного газа сменяется газонапорным.

При РРГ запасы пластовой энергии зависят от коли­чества растворенного газа в нефти.

25 . Виды заводнения и области их применения . В Настоящее время заводнение это наиболее интенсивный и экономически эффективный способ воздействия, позволяющий значительно уменьшить количество добывающих скважин, увеличить их дебит, снизить затраты на 1 т добываемой нефти . С его помощью в СССР в начале 80-х годов было добыто свыше 90 % нефти .

В зависимости от расположения нагнетательных скважин по отношению к залежи нефти различают: законтурное, приконтурное и внутриконтурное за-воднение. На многих месторождениях применяют сочетание этих разновид-ностей.

ЗАКОНТУРНОЕ ЗАВОДНЕНИЕ

Недостаточное продвижение контурных вод в процессе разработки, не компенсирующее отбор нефти из залежи, сопровождающееся снижением пластового давления и уменьшением дебитов скважин, обусловило возникновение метода законтурного заводнения. Сущность этого явления заключается в быстром восполнении природных энергетических ресурсов, расходуемых на продвижение нефти к забоям эксплуатационных скважин. С этой целью поддержание пластового давления производится закачкой воды через нагнетательные скважины, расположенные за пределами нефтеносной части продуктивного пласта в зоне, занятой водой (за внешним контуром нефтеносности ) (рис. 1). При этом, линию нагнетания намечают на некотором расстоянии за внешним контуром нефтеносности. Это расстояние зависит от таких факторов, как:

· степень разведанности залежи – степень достоверности установления местоположения внешнего контура нефтеносности , что в свою очередь зависит не только от числа пробуренных скважин, но и от угла падения продуктивного пласта и от его постоянства;

· предполагаемое расстояние между нагнетательными скважинами;

· расстояние между внешними и внутренними контурами нефтеносности и между внутренним контуром нефтеносности и первым рядом добывающих скважин.

Чем лучше степень разведанности, чем достовернее определено местопо-ложение внешнего контура нефтеносности , чем круче и выдержаннее пласт,тем ближе к контуру можно наметить линию нагнетания. Смысл этого требования заключается в гарантии от заложения нагнетательных скважин в нефтеносной части пласта. Чем больше будет расстояние между нагнетательными скважинами, тем больше должно быть и расстояние от контура нефтеносности до линии нагнетания. Выполнение этого требования обеспечивает сохранение формы контуров нефтеносности без резких языков вторжения воды в нефтяную часть пласта против нагнетательных скважин и достижение равномерности перемещения водонефтяного контакта (ВНК).

Положительный эффект системы законтурного заводнения

Законтурное заводнение дает значительный эффект и не имеет указанных выше недостатков при разработке залежей малых и средних размеров, когда имеется не более четырех батарей скважин.

При законтурном заводнении не нарушается естественное течение процесса, а лишь интенсифицируется, приближая область питания непосредственно к залежи.

Опыт разработки нефтяных месторождений с применением законтурного заводнения привел к следующим основным выводам:

1. Законтурное заводнение позволяет не только поддерживать пластовое давление на первоначальном уровне, но и превышать его.

2. Использование законтурного заводнения дает возможность обеспечивать доведение максимального темпа разработки месторождений до 5-7 % от начальных извлекаемых запасов, применять системы разработки с параметром плотности сетки скважин 20-60 10 4 м2 / скв при довольно высокой конечной нефтеотдаче , достигающей 0,50 – 0,55 в сравнительно однородных пластах и при вязкости нефти в пластовых условиях порядка 1-5 10 –3 Па с.

3. При разработке крупных по площади месторождений с числом рядов добывающих скважин больше пяти законтурное заводнение оказывает слабое воздействие на центральные части, в результате чего добыча нефти из этих частей оказывается низкой. Это ведет к тому, что темп разработки крупных месторождений в целом не может быть достаточно высоким при законтурном заводнении.

4. Законтурное заводнение не позволяет воздействовать на отдельные локальные участки пласта с целью ускорения извлечения из них нефти , выравнивания пластового давления в различных пластах и пропластках.

5. При законтурном заводнении довольно значительная часть воды, закачиваемой в пласт, уходит в водоносную область, находящуюся за контуромнефтеносности , не вытесняя нефть из пласта.

ПРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Приконтурное заводнение применяется для пластов с сильно пониженной проницаемостью в законтурной части. При нем нагнетательные скважиныбурятся в водонефтяной зоне пласта между внутренним и внешним контурами нефтеносности (рис. 2).

Рис. 2. Схема размещения скважин при приконтурном заводнении

Преимущества приконтурного заводнения очевидны. Краевые части залежей, вплоть до внешнего контура нефтеносности отличаются малыми мощностяминефтеносных пород, не имеющих для разработки практического значения. На крупных платформенных залежах добывающие скважины не закладываются в зонах малых мощностей (1 – 3 м).

Метод приконтурного заводнения, по сравнению с другими, более интенсивными методами не может обеспечить в течение краткого срока достижение максимального уровня добычи , но позволяет за более длительный промежуток времени сохранить достаточно высокий стабильный уровень добычи .

ВНУТРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Полученные результаты законтурного заводнения нефтяных пластов вызвали дальнейшее усовершенствование разработки нефтяных месторождений и привели к целесообразности использования внутриконтурного заводнения, особенно крупных месторождений, с разрезанием пластов рядами нагнетательных скважин на отдельные площади или блоки.

При внутриконтурном заводнении поддержание или восстановление баланса пластовой энергии осуществляется закачкой воды непосредственно в нефтенасыщенную часть пласта (рис. 3).

В России применяют следующие виды внутриконтурного заводнения:

· разрезание залежи нефти рядами нагнетательных скважин на отдельные площадки;

· барьерное заводнение;

· разрезание на отдельные блоки самостоятельной разработки;

· сводовое заводнение;

· очаговое заводнение;

· площадное заводнение.

Рис. 3. Схема размещения скважин при внутриконтурном заводнении

Система заводнения с разрезанием залежи на отдельные площади применяется на крупных месторождениях платформенного типа с широкими водонефтяными зонами. Эти зоны отрезают от основной части залежи и разрабатывают по самостоятельной системе. На средних и небольших по размеру залежах применяют поперечное разрезание их рядами нагнетательных скважин на блоки (блоковое заводнение). Ширина площадей и блоков выби-рается с учетом соотношения вязкостей и прерывистости пластов (литоло-гического замещения) в пределах до 3 – 4 км, внутри размещают нечетное число рядов добывающих скважин (не более 5 – 7).

Разрезание на отдельные площади и блоки нашло применение на Ромашкинском (23 пласта горизонта Д1 , Татария), Арланском (Башкирия), Мухановском (Куйбышевская обл.), Осинском (Пермская обл.), Покровском (Оренбургская обл.), Узеньском (Казахстан), Правдинском, Мамонтовском, Западно-Сургутском, Самотлорском (Западная Сибирь) и других место-рождениях.

Очаговое заводнение в настоящее время применяется в качестве до-полнительного мероприятия к основной системе заводнения. Оно осущест-вляется на участках залежи, из которых в связи с неоднородным строением пласта, линзовидным характером залегания песчаных тел и другими причинами, запасы нефти не вырабатываются.

Оно более эффективно на поздней стадии разработки. Внедрено на месторождениях Татарии, Башкирии, Пермской, Оренбургской областей и т.д.

Избирательное заводнение применяется в случае залежей с резко выра-женной неоднородностью пластов. Особенность этого вида заводнения заключается в том, что в начале скважины бурят по равномерной квадратной сетке без разделения на эксплуатационные и нагнетательные, а после исследования и некоторого периода разработки из их числа выбирают наиболее эффективные нагнетательные скважины. Благодаря этому, при меньшем их числе реализуется максимально интенсивная система заводнения и достигается более полный охват охват заводнением.

Площадное заводнение характеризуется рассредоточенной закачкой воды в залежь по всей площади ее нефтеносности . Площадные системы заводнения по числу скважино-точек каждого элемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех-, пяти-, семи- и девя-титочечные, также линейные (рис. 4).

Рис. 4 Площадная четырех-(а), пяти-(б), семи-(В), девятиточечная (г) и линейная (д,е) системы заводнения (с выделенными элементами)

Площадное заводнение эффективно при разработке малопроницаемых пластов. Его эффективность увеличивается с повышением однородности, толщины пласта, а также с уменьшением вязкости нефти и глубины залегания залежи.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...