Равна магнитная проницаемость стали. Магнитная проницаемость вещества. Удельное электрическое сопротивление некоторых полупроводников и диэлектриков

Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз , которая теперь станет равна L.

Экспериментальное наблюдение

Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, локализовано только в этой обозначенной области, не выходя за ее границы.

Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки - соленоида, у которого все магнитные линии так же сосредоточены внутри - по оси.


Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть ни что иное, как относительная магнитная проницаемость названного вещества (иногда говорят просто «магнитная проницаемость»).

Становится очевидно: магнитная проницаемость - это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.

Понимание термина


Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.

Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).

Легко заметить: магнитная проницаемость относительная (она же - магнитная проницаемость) - это величина безразмерная. А вот абсолютная магнитная проницаемость - имеет размерность Гн/м, ту же самую, что у магнитной проницаемости (абсолютной!) вакуума (она же - магнитная постоянная).

Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.

Физический смысл данного наблюдения заключается в том, что при одном и том же токе катушки (при одной и той же магнитной напряженности H), индукция ее магнитного поля окажется в определенное количество раз больше (в некоторых случаях - меньше) в веществе с магнитной проницаемостью мю, чем в полном вакууме.

Это происходит потому, что , и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.

Единица измерения абсолютной магнитной проницаемости - 1 Гн/м (генри на метр или ньютон на ампер в квадрате), то есть это магнитная проницаемость такой среды, где при напряженности Н магнитного поля, равной 1 А/м - возникает магнитная индукция величиной 1 Тл.

Физическая картина явления

Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей - магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.

По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы - намагничиваются против приложенного поля), парамагнетики (больше единицы - намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы - намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).

Ферромагнетикам свойственен , поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.

У сверхпроводников магнитная проницаемость - 0 (поскольку магнитное поле полностью вытесняется из их объема), а абсолютная магнитная проницаемость воздуха почти равна мю вакуума (читай магнитной постоянной). У воздуха мю относительная чуть-чуть больше 1.

Называемой магнитной проницаемостью. Абсолютная магнитная проницаемость среды - это отношение B к H. Согласно Международной системе единиц она измеряется в единицах, называемых 1 генри на метр.

Числовое значение ее выражается отношением ее величины к величине магнитной проницаемости вакуума и обозначается µ. Данная величина именуется относительной магнитной проницаемостью (или просто магнитной проницаемостью) среды. Как величина относительная, она не имеет единицы измерения.

Следовательно, относительная магнитная проницаемость µ - величина, показывающая, в какое число раз индукция поля данной среды меньше (или больше) индукции вакуумного магнитного поля.

При воздействии на вещество внешним магнитным полем оно становится намагниченным. Каким образом это происходит? По гипотезе Ампера, в каждом веществе постоянно циркулируют микроскопические электротоки, вызванные движением электронов по своим орбитам и наличием у них собственного В обычных условиях это движение неупорядочено, и поля «гасят» (компенсируют) друг друга. При помещении тела во внешнее поле происходит упорядочивание токов, и тело становится намагниченным (т. е. обладающим своим полем).

Магнитная проницаемость всех веществ различна. Исходя из ее величины, вещества подлежат делению на три большие группы.

У диамагнетиков величина магнитной проницаемости µ - чуть меньше единицы. Например, у висмута µ = 0,9998. К диамагнетикам относятся цинк, свинец, кварц, медь, стекло, водород, бензол, вода.

Магнитная проницаемость парамагнетиков чуть-чуть побольше единицы (у алюминия µ = 1,000023). Примеры парамагнетиков - никель, кислород, вольфрам, эбонит, платина, азот, воздух.

Наконец, к третьей группе принадлежит целый ряд веществ (в основном это металлы и сплавы), чья магнитная проницаемость значительно (на несколько порядков) превышает единицу. Эти вещества - ферромагнетики. В основном сюда относятся никель, железо, кобальт и их сплавы. Для стали µ = 8∙10^3, для сплава никеля с железом µ=2.5∙10^5. Ферромагнетики обладают свойствами, отличающими их от других веществ. Во-первых, они обладают остаточным магнетизмом. Во-вторых, их магнитная проницаемость находится в зависимости от величины индукции внешнего поля. В-третьих, для каждого из них существует определенный порог температуры, называемый точкой Кюри , при котором он теряет ферромагнитные свойства и становится парамагнетиком. Для никеля точка Кюри - 360°C, для железа - 770°C.

Свойства ферромагнетиков определяет не только магнитная проницаемость, но и величина I, именуемая намагниченностью данного вещества. Это сложная нелинейная функция магнитной индукции, рост намагниченности описывается линией, именуемой кривой намагниченности . При этом, достигнув определенной точки, намагниченность практически перестает расти (наступает магнитное насыщение ). Отставание величины намагниченности ферромагнетика от растущей величины индукции внешнего поля называется магнитным гистерезисом . При этом существует зависимость магнитных характеристик ферромагнетика не только от его состояния в настоящий момент, но и от его предшествующей намагниченности. Графическое изображение кривой данной зависимости именуется петлей гистерезиса .

Благодаря своим свойствам, ферромагнетики повсеместно применяются в технике. Их используют в роторах генераторов и электродвигателей, при изготовлении сердечников трансформаторов и в производстве деталей электронно-вычислительных машин. ферромагнетиков используются в магнитофонах, телефонах, на магнитных лентах и других носителях.

§ 40. Намагничивание стали. Магнитная проницаемость

Для усиления магнитного поля и придания ему определенной формы в различных электрических машинах и аппаратах широко применяют ферромагнитные материалы: железо, кобальт, никель и их сплавы - сталь и др.
Если ферромагнитный материал поместить в катушку и пропустить по ее виткам электрический ток, то под воздействием магнитного поля, созданного током, материал намагнитится. Это значит, что в материале образуется собственное магнитное поле, полученное в результате сложения магнитных полей (магнитных моментов) отдельных атомов.
Изменение силы тока в катушке приводит к изменению напряженности ее магнитного поля H , что вызывает изменение магнитной индукции В в сердечнике этой катушки.
На рис. 36 показаны графики изменения магнитной индукции в зависимости от напряженности намагничивающего магнитного поля. Такие графики называются кривыми намагничивания. Для различных материалов и их марок кривые намагничивания различны. При небольших значениях напряженности поля Н магнитная индукция в материале быстро увеличивается, намагничивание происходит примерно пропорционально изменению напряженности, а затем, по мере увеличения напряженности магнитного поля, возрастание магнитной индукции материала замедляется.


Состояние материала, при котором дальнейшее увеличение напряженности магнитного поля не приводит к возрастанию его намагниченности, называется магнитным насыщением .
Магнитные свойства материалов характеризуются их абсолютной магнитной проницаемостью μ а. Она определяется отношением магнитной индукции В к напряженности магнитного поля Н и измеряется в генри/метр (гн/м )

Абсолютная магнитная проницаемость вакуума μ а = 4π · 10 -7 гн/м . Для воздуха и других неферромагнитных материалов она незначительно отличается от μ а и при технических расчетах принимается равной 4π · 10 -7 гн/м .
Так как абсолютная магнитная проницаемость для вакуума и указанных выше материалов практически одинакова, то μ а называется магнитной постоянной μ 0 .
Абсолютная магнитная проницаемость μ а ферромагнитных материалов непостоянна и во много раз превышает магнитную проницаемость вакуума.
Число, показывающее, во сколько раз абсолютная магнитная проницаемость μ а ферромагнитного материала больше магнитной постоянной μ 0 , называется относительной магнитной проницаемостью μ или сокращенно магнитной проницаемостью (табл. 5).

Пример. Сталь в определенных условиях обладает абсолютной магнитной проницаемостью (μ а = 0,0008792 гн/м . Вычислить относительную магнитную проницаемость μ этой стали.
Решение . Магнитная постоянная μ 0 = 4π · 10 -7 гн/м , тогда относительная магнитная проницаемость

Как видно из кривых намагничивания (см. рис. 36), способность материалов намагничиваться - их магнитная проницаемость - в слабых магнитных полях велика, а затем с ростом индукции постепенно уменьшается.
Следовательно, магнитная проницаемость ферромагнитных материалов - величина изменяющаяся, зависящая от степени их намагничивания.

Таблица 5

Наибольшая относительная магнитная проницаемость некоторых материалов

При одной и той же напряженности магнитного поля магнитная индукция в стали больше, чем в чугуне. Это объясняется тем, что магнитная проницаемость стали больше магнитной проницаемости чугуна.
Магнитная индукция прямо пропорциональна напряженности поля H и абсолютной магнитной проницаемости μ а намагничиваемого материала.

Магнитная проницаемость различна для разных сред и зависит от ее свойств, поэтому принято говорить о магнитной проницаемости конкретной среды (имея вввиду ее состав, состояние, температуру и т. д.).

В случае однородной изотропной среды магнитная проницаемость μ:

μ = В/(μ o Н),

В анизотропных кристаллах магнитная проницаемость - тензор.

Большинство веществ по значению магнитной проницаемости делятся на три класа:

  • диамагнетики (μ < 1 ),
  • парамагнетики (μ > 1 )
  • ферромагнетики (обладающие более выраженными магнитными свойствами, например железо).

Магнитная проницаемость сверхпроводников равна нулю.

Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчетах принимается равной 4π · 10 -7 Гн/м

μ = 1 + χ (в единицах СИ);

μ = 1 + 4πχ (в единицах СГС).

Магнитная проницаемость физического вакуума μ =1, так как χ=0.

Магнитная проницаемость показывает, во сколько раз абсолютная магнитная проницаемость данного материала больше магнитной постоянной, т.е., во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды. Магнитная проницаемость воздуха и большинства веществ, за исключением ферромагнитных материалов, близка к единице.

В технике используется несколько видов магнитной проницаемости в зависимости от конкретных применений магнитного материала. Относительная магнитная проницаемость показывает, во сколько раз в данной среде сила взаимодействия между проводами с током изменяется по сравнению с вакуумом. Численно равна отношению абсолютной магнитной проницаемости к магнитной постоянной. Абсолютная магнитная проницаемость равна произведению магнитной проницаемости на магнитную постоянную.

У диамагнетиков χμχ>0 и μ > 1. В зависимости от того, измеряется ли μ ферромагнетиков в статическом или переменном магнитном поле, ее называют соответственно статической или динамической магнитной проницаемостью.

Магнитная проницаемость ферромагнетиков сложным образом зависит от Н . Из кривой намагничивания ферромагнетика можно построить зависимость магнитной проницаемости от Н.

Магнитную проницаемость, определенную по формуле:

μ = В/(μ o Н),

называют статической магнитной проницаемостью.

Она пропорциональна тангенсу угла наклона секущей, проведенной из начала координат через соответствующую точку на основной кривой намагничивания. Предельное значение магнитной проницаемости μ н при напряженности магнитного поля, стремящейся к нулю, называют начальной магнитной проницаемостью. Эта характеристика имеет важнейшее значение при техническом использовании многих магнитных материалов. Экспериментально ее определяют в слабых магнитных полях с напряженностью порядка 0, 1 А/м.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...