Спинальные двигательные рефлексы их классификация и характеристика. Спинальные рефлексы. Виды спинальных рефлексов

Рефлексы спинного мозга:

1) собственные рефлексы мышц - сухожильные и миотатические (рефлексы растяжения) - вызываются сигналами от мышечных веретен, возникающими при растяжении мышц. Сухожильный рефлекс - кратковременное фазное сокращение. Рефлекс растяжения - длительное тоническое напряжение.

Экстензорный (разгибательный) и флексорный (сгибательный) мотонейроны являются представителями популяции многих одноименных клеток. Когда сухожилие четырехглавой мышцы бедра кратковременно растягивается при ударе под коленную чашечку, афферентные (сенсорные) нейроны передают в ЦНС информацию об этих изменениях в мышцах. В спинном мозге сенсорные нейроны прямо связаны с мотонейронами, которые осуществляют сокращение четырехглавой мышцы. Дополнительно они через интернейроны тормозят те мотонейроны, которые приводили бы к сокращению мышцы-антагониста - (двуглавой мышцы бедра). Сигнал о растяжении мышечного веретена по аксонной коллатерали поступает также в продолговатый мозг. Оттуда контрлатерально в составе медиальной петли раздражение поступает в ядра таламуса, а затем в сенсорную и моторную кору больших полушарий. Благодаря этому восходящему пути у человека возникает осознание раздражения. По нисходящему пути, образованному аксонами пирамидных клеток, может осуществляться произвольный контроль движений: 1 - коленная чашечка, 2 - четырехглавая мышца бедра (разгибатель), 3 - мышечное веретено, 4 - афферентное волокно, 5 - тело нейрона в спинно-мозговом ганглии, 6 - восходящая афферентная информация, 7 - продолговатый мозг, 8 - таламус, 9 - соматосенсорная кора, 10 - моторная кора, 11 - нисходящая моторная информация, 12 - спинной мозг, 13 - тормозный интернейрон, 14 - флексорный мотонейрон, 15 - экстензорный мотонейрон, 16 - центральная нервная система, 17 - аксон мотонейрона, 18 - двуглавая мышца бедра (сгибатель).

  • 2) сгибательные рефлексы - дифференцированные, мощные, фазные реакции защитного типа, направленные на удаление животного от сильных повреждающих раздражений (отдергивание конечности) или на сбрасывание с поверхности тела источников таких раздражений. Рецептивное поле этих рефлексов образуют рецепторы кожной поверхности: механо- термо- иноцицепторы.
  • 3) разгибательные рефлексы: собственные рефлексы разгибателей, перекрестный разгибательный рефлекс и разгибательный толчок. Перекрестный разгибательный рефлекс - возрастание тонуса мышц разгибателей противоположной половины тела во время сгибательного рефлекса. Разгибательный толчок возникает при надавливании на узко локализованную область задней конечности (подошвы лапы у животных) в тот момент, когда животное опирается на лапу, и способствует его отталкиванию от земли. Он является одним из рефлекторных компонентов, входящих в локомоторные реакции прыжка и бега.
  • 4) ритмические рефлексы - более или менее правильные чередования противоположных по функциональному значению мышечных сокращений, например, сгибания и разгибания (например, чесательный рефлекс, шагание и т.д.).
  • 5) Позиционные рефлексы (рефлексы положения) - большая группа рефлекторных реакций, объединяемых по принципу длительного поддержания рефлекторного сокращения, необходимого для придания животному определенной позы. Для большинства млекопитающих основой поддержания положения тела является разгибательный рефлекторный тонус. Особенно важную роль играют верхние (1-3) шейные сегменты спинного мозга, соответствующие рефлексы называются шейными тоническими рефлексами положения (рефлексы Магнуса): рефлексы наклонения и рефлексы вращения. Эти рефлексы проявляются в перераспределении мышечного тонуса конечностей при вращении или наклонах (запрокидывании) головы (раздражение проприоцепторов мышц шеи). У человека в естественных условиях рефлексы положения наблюдать трудно из-за сильного супраспинального контроля. Только у маленьких детей и у людей с недоразвитием головного мозга тонус мускулатуры целиком соответствует правилам тонических рефлексов Магнуса.

Наряду с соматическими рефлексами, осуществляемыми с помощью поперечнополосатой (скелетной) мускулатуры, спинной мозг осуществляет обширную рефлекторную регуляцию деятельности внутренних органов -висцеральные рефлексы, осуществляемые через эфферентные структуры вегетативной нервной системы. Наиболее изученные среди рефлексов симпатической нервной системы - сосудодвигательные, приводящие к изменению просвета артериальных сосудов и соответствующему изменению уровня кровяного давления. На уровне последнего шейного и двух первых грудных сегментов спинного мозга в боковых рогах серого вещества расположены группы преганглионарных симпатических нейронов (спиноцилиарный центр). Они иннервируют гладкие мышцы глазного яблока, мышцы третьего века у животных, одну из мышц верхнего века, глазничную часть круговой мышцы глаза, мышцу, расширяющую зрачок. В первых пяти грудных сегментах локализованы преганглионарные симпатические нейроны, имеющие отношение к иннервации сердца и бронхов. Постганглионарные клетки этого пути лежат в основном в звездчатом ганглии или реже в узлах пограничного симпатического ствола. На всем протяжении симпатического ядра от первого грудного до начальных поясничных сегментов расположены скопления клеток, иннервирующих сосуды тела и потовые железы.

В крестцовой части спинного мозга находятся парасимпатические нейроны, образующие в совокупности центры дефекации, мочеиспускания, половых рефлексов - эрекции, эмиссии и эякуляции. Часть структур, которая по морфологическим свойствам и функции относится к парасимпатической нервной системе, расположена в стволовой части головного мозга.

Большинство внутренних органов иннервируются как симпатическим, так и парасимпатическим отделами вегетативной нервной системы, которые оказывают на них противоположное влияние.

text_fields

text_fields

arrow_upward

Функциональное разнообразие нейро­нов спинного мозга, наличие в нем афферентных нейронов, интер­нейронов, моторных и нейронов вегетативной системы, а также многочисленных прямых и обратных сегментарных, межсегментар­ных связей со структурами головного мозга, создает условия для рефлекторной деятельности спинного мозга и позволяет реализовывать все двигательные рефлексы, рефлексы мочеполовой системы, терморегуляции, сосудистые, метаболизма и т.д.

Рефлекторные реакции спинного мозга зависят от силы раздраже­ния, площади раздражаемой рефлексогенной зоны, скорости прове­дения по афферентным и эфферентным волокнам и, наконец, от влияния со стороны головного мозга. Сила и длительность рефлек­сов спинного мозга увеличивается при повторении раздражения (суммация).

Сегментарная рефлекторная дуга

text_fields

text_fields

arrow_upward

Собственная рефлекторная деятельность спинного мозга осущест­вляется сегментарными рефлекторными дугами.

Моносинаптические рефлексы

Из рецептивного поля рефлекса информация о раздражителе по чувствительному во­локну нейрона достигает спинального ганглия. Затем по централь­ному волокну этого же нейрона через задний корешок идет прямо к мотонейрону переднего рога, аксон которого подходит к мышце.

Так образуется моносинаптическая рефлекторная дуга, которая имеет один синапс между афферентным нейроном спинального ганглия и мотонейроном переднего рога. Моносинаптические рефлексы возни­кают только при раздражении рецепторов аннулоспиральных окон­чаний мышечных веретен.

Полисинаптические рефлекторные дуги

Другие спинальные рефлексы реализуются с участием интерней­ронов заднего рога или промежуточной области спинного мозга. В итоге возникают полисинаптические рефлекторные дуги.

Рефлексы спинного мозга

text_fields

text_fields

arrow_upward

Миотатические рефлексы - это рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров, ме­ханическим ударом по ее сухожилию приводит к сокращению всей мышцы и появлению двигательной реакции. Например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени.

Дуга этого рефлекса следующая:

рецеп­торы сухожилия четырехглавой мышцы бедра - спинальный ганглий -задние корешки - задние рога III поясничного сегмента -мото­нейроны передних рогов того же сегмента - экстрафузальные во­локна четырехглавой мышцы бедра.

Реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц раз­гибателей не расслаблялись мышцы сгибателя.

Рефлекс на растяжение свойственен всем мышцам, но у мышц разгибателей, противодействующих силе натяжения, они хорошо выражены и легче воспроизводятся.

Рефлексы с рецепторов кожи и их характер зависят от силы раздражения, вида раздражаемого рецептора, но чаще всего конеч­ная реакция выглядит в виде усиления сокращения мышц сгибате­лей.

Висцеромоторные рефлексы возникают при стимуляции афферент­ных нервов внутренних органов и характеризуются появлением дви­гательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины.

Вегетативные рефлексы обеспечивают реакцию внутренних орга­нов, сосудистой системы на раздражение висцеральных, мышечных, кожных рецепторов.

Эти рефлексы отличаются большим латентным периодом и двумя фазами реакций:

    • Первая - ранняя - возникает с латентным периодом 7-9 мс и реализуется ограниченным числом сегментов,
    • Вторая - поздняя - возникает с большим латентным периодом - до 21 секунды и вовлекает в реакцию практически все сегменты спинного мозга. Поздний компонент вегетативного реф­лекса обусловлен вовлечением в него вегетативных центров голов­ного мозга.

Рефлексы вегетативной нервной системы реализуются через боковые рога грудного (симпатические) и крестцового (парасимпатические) отделов спинного мозга. Афферентные пути вегетативных рефлексов начинаются от различных рецепторов, входят в спинной мозг через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не прямо к органам, а к ганглию симпатической или парасимпатической системы.

Рефлекс, реализующий произвольное движение

text_fields

text_fields

arrow_upward

Сложной формой рефлекторной деятельности спинного мозга яв­ляется рефлекс, реализующий произвольное движение.

В основе ре­ализации произвольного движения лежит гамма-афферентная реф­лекторная система . В нее входят:

    • пирамидная кора,
    • экстрапирамид­ная система,
    • альфа- и гамма- мотонейроны спинного мозга,
    • экстра-и интрафузальные волокна мышечного веретена.

В ряде случаев при травмах у человека происходит полное пере­сечение спинного мозга. В экспериментах на животных это воспро­изводится для исследования влияния вышележащих отделов цент­ральной нервной системы на нижележащие. После полного пересе­чения спинного мозга возникает спинальный шок (шок-удар). Он заключается в том, что все центры ниже перерезки перестают ор­ганизовывать, присущие им, рефлексы. Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через не­сколько суток; у человека первые спинальные рефлексы восстанав­ливаются через несколько недель, а то и месяцев.

Причиной шока является нарушение регуляции рефлексов со сто­роны центральной нервной системы. Это доказывается повторной перерезкой спинного мозга ниже места первой перерезки. В этом случае спинальный шок вновь не возникает, рефлекторная деятель­ность спинного мозга сохраняется.

Большинство двигательных рефлексов осуществляется с участием мотонейронов спинного мозга.

Собственно рефлексы мышц (тонические рефлексы) возникают при раздражении рецепторов растяжения мышечных волокон и сухожильных рецепторов. Они проявляются в длительном напряжении мышц при их растяжении.

Защитные рефлексы представлены большой группой сгибательных рефлексов, предохраняющих организм от повреждающего действия чрезмерно сильных и опасных для жизни раздражителей.

Ритмические рефлексы проявляются в правильном чередовании противоположных движений (сгибание и разгибание), сочетающихся с тоническим сокращением определенных групп мышц (двигательные реакции чесания и шагания).

Рефлексы положения (позные) направлены на длительное поддержание сокращения групп мышц, придающих телу позу и положение в пространстве.

Следствием поперечной перерезки между продолговатым и спинным мозгом является спинальный шок. Онпроявляется резким падением возбудимости и угнетением рефлекторных функций всех нервных центров, расположенных ниже места перерезки.

Лекция № 7. Физиология головного мозга.

План:

Продолговатый мозг.

Задний мозг.

Средний мозг.

Промежуточный мозг.

Ретикулярная формация.

Кора.

Биоэлектрическая активность головного мозга.

Непосредственным продолжением спинного мозга является продолговатый мозг. Продолговатый мозг и мост мозга (варолиев мост) вместе со средним и промежуточным мозгом образуют ствол мозга . В состав ствола мозга входит большое количество ядер, восходящих и нисходящих путей. Важное функциональное значение имеет находящаяся в стволе мозга ретикулярная формация.

В продолговатом мозге нет четкого сегментарного распределения серого и белого вещества. Скопление нервных клеток приводит к образованию ядер, являющихся центрами более или менее сложных рефлексов. Из 12 пар черепных нервов, связывающих головной мозг с периферией организма, восемь пар (V-XII) берут свое начало в продолговатом мозге. Продолговатый мозг выполняет две функции - рефлекторную и проводниковую.



Рефлекторная функция продолговатого мозга. За счет деятельности продолговатого мозга осуществляются:

1) защитные рефлексы (мигание, слезоотделение, чиханье, кашлевой и рвотный рефлексы);

2) установочные рефлексы, обеспечивающие тонус мускулатуры, необходимый для поддержания позы и осуществления рабочих актов;

3) лабиринтные рефлексы, способствующие правильному распределению мышечного тонуса между отдельными группами мышц и установке той или иной позы тела;

4) рефлексы, связанные с функциями систем дыхания, кровообращения, пищеварения.

Проводниковая функция продолговатого мозга. Через продолговатый мозг проходят восходящие пути от спинного мозга к головному и нисходящие пути, связывающие кору больших полушарий со спинным мозгом.

Рефлекторные центры продолговатого мозга. В продолговатом мозге располагается ряд жизненно важных центров: дыхательный, сердечно-сосудистый и пищевой центры. Продолговатый мозг регулирует работу спинного мозга.

Задний мозг состоит из моста и мозжечка.

Мозжечок - непарное образование; располагается позади продолговатого мозга и моста мозга, сверху прикрыт затылочными долями больших полушарий.

Двигательные расстройства при удалении мозжечка:

- атония - исчезновение или ослабление мышечного тонуса;

- астения - снижение силы мышечных сокращений;

- астазия - потеря способности к слитным тетаническим сокращениям,

Атаксия – нарушение координации движения.

Весь комплекс двигательных расстройств, при поражении мозжечка,получил название мозжечковой атаксии.

Средний мозг.

К образованиям среднего мозга относят ножки мозга, ядра III (глазодвигательный) и IV (блоковый) пар черепных нервов, пластинку крыши (четверохолмие), красные ядра и черное вещество. В ножках мозга проходят восходящие и нисходящие нервные пути.

Передние бугры пластинки крыши получают импульсы от сетчатой оболочки глаз. Задние бугры пластинки крыши – от ядер слуховых нервов

Красные ядра участвуют в регуляции мышечного тонуса и в проявлении установочных рефлексов, обеспечивающих сохранение правильного положения тела в пространстве. При отделении заднего мозга от среднего тонус мышц-разгибателей повышается, конечности животного напрягаются и вытягивается, голова запрокидывается.

Черное вещество также регулирует мышечный тонус и поддержание позы, участвует в регуляции актов жевания, глотания, артериального давления и дыхания, т.е. деятельность черного вещества тесно связана с работой продолговатого мозга.

Таким образом, средний мозг регулирует тонус мышц, что является необходимым условием координированных движений.

Тонические рефлексы делят на две группы: статические и статокинетические. Статические рефлексы возникают при изменении положения тела, особенно головы, в пространстве. Статокинетические рефлексы проявляются при перемещении тела в пространстве, при изменении скорости движения (вращательного или прямолинейного).

За счет среднего мозга расширяется рефлекторная деятельность организма (появляются ориентировочные рефлексы на звуковые и зрительные раздражения).

Промежуточный мозг.

Промежуточный мозг - часть переднего отдела ствола мозга. Основными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугровая область (гипоталамус ).

Зрительные бугры - массивное парное образование, они занимают основную массу промежуточного мозга. Через зрительные бугры к коре головного мозга поступает информация от всех рецепторов нашего организма, за исключением обонятельных.

При повреждении зрительных бугров у человека наблюдается полная потеря чувствительности или ее снижение на противоположной стороне, выпадает сокращение мимической мускулатуры, которое сопровождает эмоции, могут возникать расстройства сна, понижение слуха, зрения и т. д.

Гипоталамическая (подбугровая) область участвует в регуляции различных видов обмена веществ (белков, жиров, углеводов, солей, воды), регулирует теплообразование и теплоотдачу, состояние сна и бодрствования. В ядрах гипоталамуса происходит образование ряда гормонов, которые затем депонируются в задней доле гипофиза. Передние отделы гипоталамуса являются высшими центрами парасимпатической нервной системы, задние - симпатической нервной системы. Гипоталамус участвует в регуляции многих вегетативных функций организма.

Базальные ядра.

К подкорковым, или базальным, ядрам относят три парных образования: хвостатое ядро и скорлупу чечевицеобразного ядра (или полосатое тело) и бледный шар. Базальные ядра расположены внутри больших полушарий, в нижней их части, между лобными долями и промежуточным мозгом.

Полосатое тело регулирует сложные двигательные функции, безусловнорефлекторные реакции цепного характера: бег, плавание, прыжки. Кроме того, полосатое тело через гипоталамус регулирует вегетативные функции организма, а также вместе с ядрами промежуточного мозга обеспечивает осуществление сложных безусловных рефлексов цепного характера - инстинктов.

Бледный шар является центром сложных двигательных рефлекторных реакций (ходьба, бег), формирует сложные мимические реакции, участвует в обеспечении правильного распределения мышечного тонуса. При поражении бледного шара движения теряют свою плавность, становятся неуклюжими, скованными.

У каждого человека имеются рефлекторные реакции спинного мозга, другое их название двигательные автоматизмы. Еще с самого рождения ребенок начинает осваивать навыки данных рефлексов. Не стоит вдаваться в медицинские термины, так как информация направлена на широкие массы. Простыми словами руководит всем этим действием человеческий мозг.

Спинномозговые рефлексы

Рефлексы спинального автоматизма осуществляются рефлекторными дугами сегментарного направления.

Спинальные рефлексы делятся на ряд специальных:

  • Миотатические предусматривают виды деятельности человека, направленные на работу и движение мышц. По этой причине сухожилия могут сгибаться и разгибаться. Она предусматривает при напряжении сгибательных мышц, расслабление разгибательных.
  • Кожных рецепторов так же зависит от силы суммации.
  • Висцеромоторные они отвечают за двигательную способность мышц грудины, брюшинной стенки и разгибательных спинных мышц.
  • Вегетативные способствуют двигательной работе человеческих органов и работе сосудов.

Рефлексы произвольных движений

Произвольно-двигательный считается самым сложным в системе спинальных рефлексов.

Основу навыков произвольного движения составляет гамма-афферентная реф­лекторная система.

В некоторых случаях при получении травмы у человека может наступить спинальный шок. Во время этого процесса все рефлекторные центры нарушают свою работу и перестают поставлять сигналы к движению.

Восстанавливаются они после перенесенного шока у всех по-разному, например обезьянам достаточно двух-трех дней, у человека же восстановление занимает несколько недель, а иногда и месяцев.

Рефлексы спинального автоматизма у новорожденных

Рефлекс Робинсона или хватательный рефлекс

Он заключается в том, что если поднять палец вверх малыш ухватится за него своими ручками, это и есть хватательный метод Робинсона.

Данный вид навыка новорожденного постепенно угасает к 3−4 месяца и уже к году ребенок не должен его иметь. В это время появляются сознательные действия.

Метод Робинсона может быть ассиметричным, сниженным или его может вообще не существовать в некоторых случаях, а это:

  • парез двух рук;
  • проблемы опорно-двигательного аппарата связанные;
  • травмирование при родах;
  • заболевания позвоночника в шейном его отделе

Рефлекс Моро у грудных детей

Этот спинальный рефлекс вызывается следующими действиями:

  1. если взять на руки малыша и резко опустить вниз, затем так же быстро поднять вверх.
  2. ребенок лежит на кровати, если с обеих сторон от головы на расстоянии 20−30 см резко стукнуть.
  3. быстро распрямить ножки малыша.

В этих случаях действия грудничка будут исходить из двух фаз:

  • малыш откидывается назад и разводит руки.
  • руки новорожденного возвращаются в первоначальное положение, этот навык так же называют объятьями.

Этот вид может исчезнуть к трем месяцам.

Асимметрия наблюдается при травме рук или при повреждении ключицы. При мозговом кровоизлиянии он может ослабнуть. Отсутствие данного навыка наблюдается при удалении обеих рук, детском параличе или при повреждении мозга.

Рефлекс ползания по Бауэру

Этот рефлекс так же относится к спинальным автоматизмам. Если подставить ладонь к стопам ребенка он начнет отталкиваться и совершать характерные движения, которые помогут ему впоследствии в ползании. Это и есть навык ползания.

Этот вид формируется уже впервые дни жизни малыша. К 4 месяцам он формируется окончательно и пропадает. Но при нарушениях ЦНС данный спинальный рефлекс может не пропадать до 12 месяцев жизни грудничка.

При спинномозговой травме данный навык не может быть выполнен в полной мере.

Рефлекс выпрямления и опоры

При поднятии ребенка и опускании его на твердую поверхность, он станет выпрямлять ноги и отталкиваться от поверхности.

Если у ребенка повышен тонус или имеется паралич, то данный навык не проявляется.

Рефлекс автоматической ходьбы новорожденных

Если создать ребенку опору и наклонить его вперед, он автоматические начнет делать шаги в этом направлении. Если при ходьбе ноги малыша переплетаются это совершенно нормально, так как мышечный тонус в первые 1,5 месяца у ребенка повышен.

Данный навык может отсутствовать при вышеперечисленных заболеваниях.

Защитный рефлекс

При укладывании малыша на животик он автоматически поворачивает свою головку в сторону, так как с прямой головой ему будет трудно дышать. Данный рефлекс спинального автоматизма вырабатывается в самые первые жизненные часы новорожденного.

Отсутствие данного действия свидетельствует о детском церебральном параличе.

Наш организм полон загадок и новых открытий. Это удивительный мир человеческой физиологии.

Важную роль в развитии представлений о рефлекторной деятельности спинного мозга сыграли открытия и обобщения английского физиолога, лауреата Нобелевской премии Чарлза Шеррингтона (1859-1952).

Объем функций, осуществляемых спинным мозгом, чрезвычайно велик. В нем находятся центры всех двигательных рефлексов (за исключением мускулатуры головы), всех рефлексов мочеполовой системы и прямой кишки, рефлексов, обеспечивающих терморегуляцию, регулирующих метаболизм тканей, центры большинства сосудистых рефлексов, центр сокращения диафрагмы и др. В естественных условиях эти рефлексы всегда испытывают влияние высших отделов головного мозга.

Степень проявления рефлексов зависит от того, сохраняются ли связи структур спинного мозга со структурами головного мозга. После децеребрации (удаления головного мозга) или спинализации (отделения спинного мозга от головного посредством перерезки) исчезают многие сложные формы активности, создаваемые спинным мозгом. При этом определенное значение принадлежит уровню организации подопытного животного. Например, спинальная лягушка, представитель низших позвоночных, может сидеть и вырываться, когда ее схватывают. Спинальная же собака сама не может ни стоять, ни ходить. Это объясняется тем, что разобщение спинного мозга и вышележащих структур нарушает рефлекторные дуги, ответственные за осуществление определенных реакций. При этом, в частности, исчезают периодические разряды дыхательных мышц, обеспечивающие дыхательные движения, пропадают тонические разряды симпатических нейронов, поддерживающих сосудистый тонус и соответственно артериальное давление.

Как правило, рефлексы спинальных животных являются координированными. Возбуждение у них каждой группы рецепторов сопровождается своим специфическим ответом. Например, механическое раздражение кожи ступни у лягушки вызывает сгибание раздражаемой конечности и разгибание другой. Раздражение рецепторов мочевого пузыря и прямой кишки сопровождается рефлекторным сокращением их мускулатуры.

В связи с отсутствием тонических влияний структур головного мозга изменяется функциональное состояние и самих спинно-мозговых нейронных систем. К числу таких нарушений относится прекращение сложных локомоторных актов типа шагания. Характерно, что исчезновение этих актов после спинализации удается восстановить введением животному веществ, способствующих выделению медиаторов синаптическими окончаниями перерезанных путей.

В зависимости от числа нейронов, участвующих в проведении возбуждения, рефлекторные дуги спинного мозга делятся на моносинал-тические и полисинаптические. Моносинаптическая дуга состоит из чувствительного нейрона с рецепторами мышечных веретен и эффекторного нейрона, оканчивающегося на мышечных волокнах. Классическим примером моносинаптической дуги может служить рефлекторная дуга коленного рефлекса, в которой возбуждение от рецептора до эффектора проходит всего за 0,5-1,0 мс, т. е. время, необходимое для прохождения возбуждения всего лишь через один синапс.

В полисинаптической дуге на пути возбуждения от рецептора к эффектору помимо чувствительного и эффекторного нейрона находятся еще вставочные нейроны. Таким образом, возбуждение в этой дуге проходит не через один, а через несколько синапсов, определяющих время латентного периода ответа и суммарной синаптической задержки. При осуществлении рефлекторных реакций в моно- и полисинаптических дугах вовлекаются также координирующие рефлекс многочисленные интернейроны.

Подобный анализ периферических воздействий, а также надсст-ментарный контроль за рефлекторной деятельностью спинного мозга происходит с помощью длинных многоэтажных рефлекторных дуг. Их центры локализованы в подкорковых областях и коре головного мозга.

К числу рефлексов спинного мозга относятся защитные рефлексы, рефлексы на растяжение, мышц-антагонистов, висцеромоторные, вегетативные рефлексы. Эта классификация весьма условна, и весь ее смысл в том, что она указывает на многообразие рефлекторных ответов. Даже у спинального животного трудно встретить рефлексы, которые относились бы только к одной из названных групп.

Раздражение в виде укола кожи стопы вызывает у лягушки защитный рефлекс – либо отдергивание лапки при легком уколе, либо вовлечение в реакцию другой лапки и отодвигание от источника при более сильном воздействии, наконец, убегание животного при значительном болевом раздражении, когда в возбуждение вовлекаются многие структуры нервной системы.

Рефлексы растяжения проявляются укорочением мышцы в ответ на ее растяжение. Основными рецепторами в этом случае служат нервно-мышечные веретена, афферентным звеном – чувствительные волокна соматических нервов и дорсальных корешков спинного мозга. Эти рефлекторные дуги чаще всего замыкаются в спинном мозге. Начало и конец рефлекторной дуги связаны с мышцей. Рефлексы наиболее выражены в мышцах-разгибателях. Для того чтобы организм мог противостоять силе земного притяжения, эти мышцы должны находиться в состоянии тонического напряжения. Биологическое значение этих рефлексов состоит в том, что они участвуют в сохранении статики и положения тела, регулируя степень сокращения мышцы в соответствии с падающими на нее раздражениями. Особое значение этот вид рефлексов имеет у копытных животных, хотя и у человека они хорошо развиты.

Рефлексы мышц-антагонистов лежат в основе локомоторных актов и характеризуются тем, что при возбуждении мотонейронов сгибателей одновременно происходит торможение мотонейронов мыщц-разгибателей. При этом в конечности другой стороны наблюдаются обратные явления. В целом это создает правильное чередование противоположных по функциональному значению мышечных сокращений. Механизм, обусловливающий такое чередование активности различных двигательных ядер, например при ходьбе, локализуется в интернейронном аппарате спинного мозга. Вместе с тем для его активации необходимо поступление тонического нисходящего сигнала из двигательных центров головного мозга.

Висцеромоторные рефлексы возникают при возбуждении афферентных волокон внутренних органов и характеризуются появлением двигательных реакций мышц грудной и брюшной стенки, мышц-разгибателей спины. Возникновение этих рефлексов связано с существованием конвергенции висцеральных и соматических афферентных волокон к одним и тем же интернейронам спинного мозга.

Вегетативные рефлексы заключаются, во-первых, в появлении полисинаптических разрядов в преганглионарных симпатических волокнах в ответ на возбуждение симпатических и соматических чувствительных клеток, во-вторых, в возникновении рефлекторных реакций парасимпатических нейронов в ответ на раздражение чувствительных путей. Наряду с выполнением собственных рефлекторных реакций нейронные структуры спинного мозга служат аппаратом для реализации большого числа сложных процессов, осуществляемых различными отделами головного мозга. Это управление может быть прямым, когда нисходящие пути непосредственно связаны с мотонейронами спинного мозга, и непрямым через интернейроны, образующие короткие межсегментарные связи. Свойства последних и особенности связей с нисходящими волокнами и моторными нейронами создают возможность к интеграции поступающих сигналов, их переработке и пространственному перераспределению.

Проводниковые функции спинного мозга

Помимо рефлекторной деятельности еще одной важной функцией спинного мозга является проведение импульсов . Оно осуществляется белым веществом, состоящим из нервных волокон.

В результате эволюционного развития простая рефлекторная дуга, лежащая в основе функции нервной системы, усложняется и в каждой ее части вместо одного нейрона возникают цепи нервных клеток, аксоны которых образуют проводящие пути. Под проводящими путями принято понимать группы нервных волокон, характеризующиеся общностью строения и функций. Они связывают различные отделы спинного мозга или спинной и головной мозг. Все нервные волокна одного пути начинаются от однородных нейронов и заканчиваются на нейронах, выполняющих одинаковую функцию.

В соответствии с функциональными особенностями различают ассоциативные, комиссуральные и проекционные (афферентные и эфферентные) нервные волокна. Ассоциативные волокна или их пучки осуществляют односторонние связи между отдельными частями спинного мозга. Связывая разные сегменты, они образуют собственные пучки, являющиеся частью сегментарного аппарата спинного мозга. Комиссуральные волокна соединяют функционально однородные противоположные участки разных отделов спинного мозга. Проекционные волокна связывают спинной мозг с вышележащими отделами. Эти волокна образуют основные проводящие пути, которые представлены восходящими (центростремительными, афферентными, чувствительными) и нисходящими (центробежными, эфферентными, двигательными) путями.

Восходящие проводящие пути. Эти пути несут импульсы от рецепторов, воспринимающих информацию из внешнего мира и внутренней среды организма. В зависимости от вида чувствительности, которую они проводят, их делят на пути экстеро-, проприо интероцептивной чувствительности . Нисходящие пути передают импульсы от структур головного мозга к двигательным ядрам, осуществляющим ответные реакции на внешние и внутренние раздражения.

Основными восходящими путями спинного мозга являются тонкий пучок, клиновидный пучок, латеральный и вентральный спиноталамические тракты, дорсальный и вентральный спинно-мозжечковые тракты (рис.18.).

Рис. 18. Расположение восходящих проводящих путей

спинного мозга

Тонкий пучок (Голля ) и клиновидный пучок (Бурдаха ) составляют задние столбы спинного мозга. Эти пучки волокон являются отростками чувствительных клеток спинальных ганглиев, проводящих возбуждение от проприоцепторов мышц сухожилий, частично тактильных рецепторов кожи, висцерорецепторов. Волокна тонкого и клиновидного пучков миелинизированные, они проводят возбуждение со скоростью 60-100 м/с. Короткие аксоны обоих пучков устанавливают синаптические связи с мотонейронами и интернейронами своего сегмента, длинные же направляются в продолговатый мозг. По пути они отдают большое число ветвей к нейронам вышележащих сегментов спинного мозга, образуя, таким образом, межсегментарные связи .

По волокнам тонкого пучка проводится возбуждение от каудальной части тела и тазовых конечностей, по волокнам клиновидного пучка – от краниальной части тела и грудных конечностей. В спинном мозгу оба этих пути идут, не прерываясь и не перекрещиваясь, и оканчиваются в продолговатом мозгу у одноименных ядер (Голля и Бурдаха), где образуют синаптическое переключение на второй нейрон. Отростки второго нейрона направляются к специфическим ядрам таламуса противоположной стороны, образуя тем самым, своеобразный перекрест . Здесь они переключаются уже на третий нейрон, аксоны которого достигают нейронов IV слоя коры больших полушарий.

Считают, что по этой системе проводится информация тонко дифференцированной чувствительности, позволяющая определить локализацию, контур периферического раздражения, а также его изменения во времени.

По латеральному спиноталамическому тракту проводится болевая и температурная чувствительность, по вентральному спиноталамическому – тактильная. Существуют сведения, что по этим путям возможна также передача возбуждения от проприо- и висцерорецепторов. Скорость проведения возбуждения в волокнах составляет 1-30 м/с. Спиноталамические тракты прерываются и перекрещиваются либо на уровне сегмента, в который они только что вступили, либо вначале проходят несколько сегментов по своей стороне, а затем переходят на противоположную. Отсюда идут волокна, оканчивающиеся в зрительных буграх. Там они образуют синапсы на нервных клетках, аксоны которых направляются в кору больших полушарий.

Полагают, что по системе волокон этих путей в основном передается информация о качественной природе раздражителей.

Дорсальный спинно-мозжечковый тракт , или пучок Флексига – филогенетически это наиболее древний чувствительный путь спинного мозга. Местом расположения нервных клеток, аксоны которых образуют волокна этого пути, является основание дорсального рога спинного мозга. Не перекрещиваясь, путь достигает мозжечка, где каждое волокно занимает определенную область. Скорость проведения по волокнам спинно-мозжечкового пути около 110 м/с. По ним проводится информация от рецепторов мышц и связок конечностей. Наибольшего развития этот путь достигает у копытных животных.

Вентральный спинно-мозжечковый тракт , или пучок Говерса , также образуется аксонами интернейронов противоположной стороны спинного мозга. Через продолговатый мозг и ножки мозжечка волокна направляются к коре мозжечка, где занимают обширные площади. Импульсы со скоростью проведения до 120 м/с идут от сухожильных, кожных и висцерорецепторов. Они участвуют в поддержании тонуса мышц для выполнения движений и сохранения позы.

Нисходящие пути связывают высшие отделы ЦНС с эффекторными нейронами спинного мозга. Основными из них являются пирамидный, красноядерно-спинномозговой, вестибулоспинальный и ретикулоспинальный тракты.

Пирамидный тракт образован аксонами клеток двигательной зоны коры больших полушарий. Направляясь к продолговатому мозгу, эти аксоны отдают большое число коллатералей структурам промежуточного, среднего, продолговатого мозга и ретикулярной формации. В нижней части продолговатого мозга большая часть волокон пирамидного пути переходит на противоположную сторону (перекрест пирамид), образуя латеральный пирамидный тракт . В спинном мозгу он располагается в боковом столбе. Другая часть волокон идет, не перекрещиваясь, до спинного мозга и только на уровне сегмента, в котором оканчивается, переходит на противоположную сторону. Это прямой пирамидный тракт . Оба они заканчиваются на мотонейронах передних рогов серого вещества спинного мозга. Состав волокон этого пути неоднороден, в нем представлены миелинизированные и немиелинизированные волокна разного диаметра со скоростями проведения возбуждения от 1 до 100 м/с.


Рис. 19. Расположение нисходящих проводящих путей

спинного мозга

Основной функцией пирамидных путей является передача импульсов для выполнения произвольных движений. Надежность в осуществлении этой функции повышается благодаря дублированию связи головного мозга со спинным посредством двух путей - перекрещенного и прямого. В эволюционном ряду пирамидный тракт развивался параллельно с развитием коры больших полушарий и достиг наибольшего совершенства у человека.

Руброспинальный тракт (Монакова ) образован аксонами клеток красного ядра среднего мозга. Выйдя из ядра, волокна полностью переходят на противоположную сторону. Часть из них направляется в мозжечок и ретикулярную формацию, другие – в спинной мозг. В спинном мозгу волокна располагаются в боковых столбах перед перекрещенным пирамидным путем и оканчиваются на интернейронах соответствующих сегментов. Руброспинальный тракт несет импульсы от мозжечка, ядра вестибулярного нерва, полосатого тела.

Основное назначение руброспинального тракта - управление тонусом мышц и непроизвольной координацией движений. В процессе эволюции этот путь возник рано. Большое значение он имеет у животных, слабее развит у человека.

Вестибулоспинальный тракт образован волокнами, которые являются отростками клеток ядра Дейтерса, лежащего в продолговатом мозгу. Этот тракт имеет наиболее древнее эволюционное происхождение. По нему передаются импульсы от вестибулярного аппарата и мозжечка к мотонейронам вентральных рогов спинного мозга, регулирующие тонус мускулатуры, согласованность движений, равновесие. При нарушении целостности этого пути наблюдаются расстройства координации движений и ориентации в пространстве.

В спинном мозгу помимо основных длинных имеются и короткие нисходящие пути, соединяющие между собой его отдельные сегменты.

УчебныЙ вопрос № 3



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...