Митохондриальные заболевания у детей. Митохондриальные заболевания (цитопатии). Прогноз митохондриальных нарушений

Митохондриальные болезни - большая гетерогенная группа наследственных заболеваний и патологических состояний, обусловленных нарушениями структуры, функций митохондрий и тканевого дыхания. По данным зарубежных исследователей, частота этих заболеваний у новорождённых составляет 1:5000.

Код по МКБ-10

Нарушения обмена веществ, класс IV, Е70-Е90.

Изучение природы этих патологических состояний было начато в 1962 г., когда группа исследователей описала больную 30 лет с нетиреоидным гиперметаболизмом, мышечной слабостью и высоким уровнем основного обмена. Было высказано предположение о связи этих изменений с нарушением процессов окислительного фосфорилирования в митохондриях мышечной ткани. В 1988 г. другие учёные впервые сообщили об обнаружении мутации в митохондриальной ДНК (мтДНК) у больных с миопатией и оптической нейропатией. Спустя 10 лет были найдены мутации ядерных генов, кодирующих комплексы дыхательной цепи у детей раннего возраста. Таким образом, сформировалось новое направление в структуре детских болезней - митохондриальная патология, митохондриальные миопатии, митохондриальные энцефаломиопатии.

Митохондрии - внутриклеточные органеллы, присутствующие в виде нескольких сотен копий во всех клетках (кроме эритроцитов) и продуцирующие АТФ. Длина митохондрии 1,5 мкм, ширина 0,5 мкм. Их обновление происходит непрерывно на протяжении всего клеточного цикла. Органелла имеет 2 мембраны - внешнюю и внутреннюю. От внутренней мембраны внутрь отходят складки, называемые кристами. Внутреннее пространство заполняет матрикс - основное гомогенное или тонкозернистое вещество клетки. В нём содержатся кольцевая молекула ДНК, специфические РНК, гранулы солей кальция и магния. На внутренней мембране фиксированы ферменты, участвующие в окислительном фосфорилировании (комплекс цитохромов b, с, а и аЗ) и переносе электронов. Это энергопреобразующая мембрана, которая превращает химическую энергию окисления субстратов в энергию, которая накапливается в виде АТФ, креатинфосфата и др. На наружной мембране сосредоточены ферменты, участвующие в транспорте и окислении жирных кислот. Митохондрии способны к самовоспроизведению.

Основная функция митохондрий - аэробное биологическое окисление (тканевое дыхание с использованием клеткой кислорода) - система использования энергии органических веществ с поэтапным её высвобождением в клетке. В процессе тканевого дыхания происходит последовательный перенос ионов водорода (протонов) и электронов через различные соединения (акцепторы и доноры) на кислород.

В процессе катаболизма аминокислот, углеводов, жиров, глицерола образуются углекислый газ, вода, ацетил-коэнзим А, пируват, оксалоацетат, кетоглутарат, которые затем вступают в цикл Кребса. Образовавшиеся ионы водорода акцептируются адениннуклеотидами - адениновыми (NAD +) и флавиновыми (FAD +) нуклеотидами. Восстановленные коферменты NADH и FADH окисляются в дыхательной цепи, которая представлена 5 дыхательными комплексами.

В процессе переноса электронов накапливается энергия в виде АТФ, креатин-фосфата и других макроэргических соединений.

Дыхательная цепь представлена 5 белковыми комплексами, которые осуществляют весь сложный процесс биологического окисления (табл. 10-1):

  • 1-й комплекс - NADH-убихинон-редуктаза (этот комплекс состоит из 25 полипетидов, синтез 6 из которых кодируется мтДНК);
  • 2-й комплекс - сукцинат-убихинон-оксидоредуктаза (состоит из 5-6 полипептидов, включая сукцинатдегидрогеназу, кодируется только мтДНК);
  • 3-й комплекс - цитохром С-оксидоредуктаза (переносит электроны от коэнзима Q на комплекс 4, состоит из 9-10 белков, синтез одного из них кодируется мтДНК);
  • 4-й комплекс - цитохромоксидаза [состоит из 2 цитохромов (а и аЗ), кодируется мтДНК];
  • 5-й комплекс - митохондриальная Н + -АТФаза (состоит из 12-14 субъединиц, осуществляет синтез АТФ).

Кроме того, электроны 4 жирных кислот, подвергающихся бета-окислению, переносит электронпереносящий белок.

В митохондриях осуществляется ещё один важный процесс - бета-окисление жирных кислот, в результате которого образуется ацетил-КоА и эфиры карнитина. В каждом цикле окисления жирных кислот происходят 4 энзиматические реакции.

Первый этап обеспечивают ацил-КоА-дегидрогеназы (коротко-, средне- и длинноцепочечные) и 2 переносчика электронов.

В 1963 г. было установлено, что митохондрии имеют собственный уникальный геном, наследуемый по материнской линии. Он представлен единственной небольшой кольцевой хромосомой длиной 16 569 п.н., кодирующей 2 рибосомальные РНК, 22 транспортные РНК и 13 субъединиц ферментных комплексов электронно-транспортной цепи (семь из них относятся к комплексу 1, один - к комплексу 3, три - к комплексу 4, два - к комплексу 5). Большинство митохондриальных белков, участвующих в процессах окислительного фосфорилирования (около 70), кодируются ядерной ДНК и лишь 2% (13 полипетидов) синтезируются в митохондриальном матриксе под контролем структурных генов.

Строение и функционирование мтДНК отличается от ядерного генома. Во-первых, она не содержит интронов, что обеспечивает высокую плотность генов по сравнению с ядерной ДНК. Во-вторых, большинство мРНК не содержит 5"-3"-нетранслируемые последовательности. В-третьих, мтДНК имеет D-петлю, которая представляет собой её регуляторную область. Репликация представляет собой двухступенчатый процесс. Выявлены также отличия генетического кода мтДНК от ядерной. Особо следует отметить, что существует большое число копий первой. Каждая митохондрия содержит от 2 до 10 копий и более. Учитывая тот факт, что клетки могут иметь в своём составе сотни и тысячи митохондрий, возможно существование до 10 тыс. копий мтДНК. Она весьма чувствительна к мутациям и в настоящее время идентифицировано 3 типа таких изменений: точковые мутации белков, кодирующих мтДНК-гены (mit- мутации), точковые мутации мтДНК-тРНК-генов (sy/7-мутации) и крупные перестройки мтДНК (р-мутации).

В норме весь клеточный генотип митохондриального генома идентичен (гомоплазмия), однако при возникновении мутаций часть генома остаётся идентичной, а другая - изменённой. Такое явление называется гетероплазмиеи. Проявление мутантного гена происходит тогда, когда количество мутаций достигает определённого критического уровня (порога), после чего наступает нарушение процессов клеточной биоэнергетики. Это объясняет то, что при минимальных нарушениях в первую очередь будут страдать наиболее энергозависмые органы и ткани (нервная система, головной мозг, глаза, мышцы).

Возникновение этих заболеваний связано с изменением ДНК митохондрий. Геном митохондриальной ДНК полностью расшифрован. В нем есть гены рибосомальных РНК, 22 тр-РНК и 13 полипептидов, участвующих в реакциях окислительного фосфорилирования. Большинство митохондриальных белков кодируются генами ядерной ДНК, транслируются в цитоплазме, а затем поступают в митохондрии. ДНК митохондрий наследуется по материнской линии. В цитоплазме яйцеклетки содержатся тысячи митохондрий, в то время как митохондрии сперматозоида не оказываются в зиготе. Поэтому мужчины наследуют мт-ДНК от своих матерей, но не передают е своим потомкам.

В каждой митохондрии содержится 10 и более молекул ДНК. Обычно все копии мт-ДНК идентичны. Иногда, однако, в мт-ДНК возникают мутации, которые могут передаваться как дочерним митохондриям, так и дочерним клеткам.

Клинически мутации могут проявить себя в виде различных симптомов в любом органе или ткани и в любом возрасте. Наиболее энергозависимыми, а поэтому уязвимыми являются мозг, сердце, скелетные мышцы, эндокринная системы, печень. Поражения нервной системы обычно сопровождаются судорогами, нарушение координации (атаксия), снижением интеллекта, нейросенсорной глухотой.

Примеры наследственных болезней: атрофия дисков зрительных нервов Лебера (острая потеря центрального зрения, может проявиться в любом возрасте), митохондриальная энцефаломиопатия, синдром миоклонической эпилепсии и рваных мышечных волокон.

Мультифакторные заболевания

Возникают у лиц с соответствующим сочетанием предрасполагающих аллелей, имеет место полиморфизм клинических признаков, заболевания проявляются в любом возрасте, в патологический процесс может быть вовлечена любая система или орган. Примеры: гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, эпилепсия, глаукома, псориаз, бронхиальная астма и др.

Особенности :

    Высокая частота встречаемости в популяции

    Существование различных клинических форм

    Зависимость степени риска для родственников больного:

Чем реже болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственника

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник.

Медико-генетическое консультирование

Это один из видов специализированной медицинской помощи населению. В консультации работают врачи-генетики, а также другие специалисты (акушеры, педиатры, эндокринологи, невропатологи). Основные задачи консультации:

Оказание помощи врачам в постановке диагноза наследственного заболевания

Определение вероятности рождения ребенка с наследственной патологией

Объяснения родителям смысла генетического риска

Этапы консультирования:

1.Обследование больного и постановка диагноза наследственного заболевания . Для этого используются различные методы: цитогенетический, биохимический, ДНК-диагностики. Показаниями для консультирования являются:

Установленная или подозреваемая наследственная болезнь в семье

Рождение ребенка с пороками развития

Повторные спонтанные аборты, мертворождения, бесплодие

Отставание детей в психическом и физическом развитии

Нарушение полового развития

Кровнородственные браки

Возможное воздействие тератогенов в первые 3 месяца беременности

2. Определение риска рождения больного ребенка . При определении риска возможны следующие ситуации:

а) при моногенно наследуемых заболеваниях расчет риска основывается на законах Г.Менделя. При этом учитываются генотип родителей и особенности проявление гена (пенентрантность и экспрессивность).

б) при полигенно наследуемых заболеваниях (болезни с наследственной предрасположенностью) для расчета риска используют специальные таблицы и при этом учитываются следующие особенности:

Чем реже встречается болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственников

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник

в) спорадические случаи заболевания: у фенотипически здоровых родителей рождается больной ребенок, при этом отсутствуют данные в сходной патологии у родственников. Причины:

Генеративные мутации у кого-то из родителей или соматические мутации на ранних стадиях эмбрионального развития

Переход рецессивного гена в гомозиготное состояние

Сокрытие одним из родителей семейной патологии.

3. Заключение консультации и советы родителям. Генетический риск до 5% рассматривается как низкий и не является противопоказанием для деторождения. Риск от 6 до 20 % - определяется как средний и расценивается как противопоказание к зачатию или как показание к прерыванию беременности. Независимо от степени риска целесообразно проведение пренатальной диагностики.

Пренатальная (дородовая) диагностика.

Многие болезни можно выявит еще до рождения ребенка. При обнаружении тяжелых заболеваний у плода, врач предлагает семье искусственное прерывание беременности. Окончательное решение вопроса об этом должна принять семья. К методам дородовой диагностики относятся:

1. Биопсия ворсин хориона. Производится на 7-9 неделе беременности. Служит для выявления хромосомных дефектов, активности ферментов с целью диагностики наследственных болезней обмена и ДНК- диагностики.

2. Амниоцентез (взятие околоплодной жидкости с содержащимися в ней клетками). Производится начиная с 12-14 недель беременности.

3. Кордоцентез (взятие крови из пупочных сосудов) производится на 20-25 неделе беременности и используется для тех же целей.

4. Анализ крови матери. Выявление α-фетопротеина (белок, который вырабатывается печенью плода и проникает через плацентарный барьер в кровь матери). Увеличение его в несколько раз на 16 неделе беременности может указывать на дефекты нервной трубки. Снижение его концентрации по отношении к норме может указывать на синдром Дауна.

5. Ультразвуковое исследование плода производится на всех сроках беременности. УЗИ исследование – главный метод визуального определения пороков развития плода и состояния плаценты. УЗИ исследование рекомендуется проводить всем женщинам не менее 2 раз в течение беременности.


Описание:

Митохондриальные заболевания - группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках эукариот, в частности, человека.
Митохондриальные заболевания обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениям тканевого дыхания. Они передаются только по женской линии к детям обоих полов, так как сперматозоиды передают зиготе половину ядерного генома, а яйцеклетка поставляет и вторую половину генома, и митохондрии. Патологические нарушения клеточного энергетического обмена могут проявляться в виде дефектов различных звеньев в цикле Кребса, в дыхательной цепи, процессах бета-окисления и т. д.

Не все ферменты и другие регуляторы, необходимые для эффективного функционирования митохондрий, кодируются митохондриальной ДНК. Большая часть митохондриальных функций контролируется ядерной.

Можно выделить две группы митохондриальных заболеваний:

Ярко выраженные наследственные синдромы, обусловленные мутациями генов, ответственных за митохондриальные белки (синдром Барта, синдром Кернса-Сейра, синдром Пирсона, синдром MELAS, синдром MERRF и другие).

Вторичные митохондриальные заболевания, включающие нарушение клеточного энергообмена как важное звено формирования патогенеза (болезни соединительной ткани, гликогеноз, печёночная недостаточность, панцитопения, а также , диабет, и другие).


Причины митохондриальных заболеваний:

Повреждение митохондрий в основном возникает   из-за воздействия реактивных форм кислорода (РФК). В настоящее время считают, что большинство РФК образуется комплексами I и III, вероятно, вследствие высвобождения электронов под воздействием НАД-Н и ФАД-Н в ЦПЭ. Митохондрии используют приблизительно 85% кислорода, потребляемого клеткой, в процессе образования АТФ.   В ходе нормального процесса   ОФ от 0.4% до 4.0% всего употребляемого кислорода преобразуется в митохондриях в супероксидные радикалы (О2-). Супероксид трансформируется до пероксида водорода (Н2О2) с помощью ферментов детоксикации-   марганцевой супероксиддисмутазы (Mn-СОД) или цинк/медь- супероксиддисмутазы (Cu/Zn СОД),- а затем до воды с помощью глутатионпероксидазы (ГП) или пероксидредоксина III (ПР III). Однако, если эти ферменты не способны достаточно быстро   конвертировать РФК, такие как супероксид-радикал, до воды, происходит оксидативное повреждение и аккумулируется в митохондриях.   Глутатион в ПР является одним из основных антиоксидантов в организме. Глутатион представляет собой трипептид, содержащий глутамин, глицин и цистеин. ГП требует селен в качестве кофактора.

Показано, сто супероксид in vitro повреждает железо-серный кластер, находящийся в в активном центре аконитазы, фертента цикла ТКК. Из-за этого железо вступает в реакцию с Н2О2 с образованием гидроксильных радикалов через реакцию Фентона (Fenton). Кроме того, оксид азота (NO) образуется в митохондриях с помощью митохондриальной синтазы оксида азота (МтСОА), а также свободно диффундирует в митохондрии из цитозоля. NO реагирует с O2 с образованием другого радикала- пероксинитрита (ONOO-). Вместе эти два радикала и другие радикалы могут нанести существенное повреждение митохондриям и другим компонентам клетки.

В митохондриях элементами, которые особенно подвержены воздействию свободных радикалов, являются липиды, белки, окислительно-восстановительные ферменты и мтДНК. Прямое повреждение митохондриальных белков снижает их аффинность к субстратам или коферментам и таким образом нарушают их функцию. Проблема осложняется тем, что если повреждение митохондрии произошло, то функция митохондрии может быть скомпрометирована увеличением потребностей клетки для процессов репарации энергии. Митохондриальная дисфункция может привести к цепному процессу, при котором митохондриальное повреждение влечет за собой дополнительное повреждение.

Комплекс I особенно чувствителен к воздействию оксида азота (NO). У животных, которым вводили природные и синтетические антагонисты комплекса I, как правило, наблюдается гибель нейронов. Нарушение функции комплекса I было ассоциировано с наследственной оптической нейропатией Лебера, болезнью Паркинсона и другими нейродегенеративными состояниями.
индуцирует образование супероксида в митохондриях эндотелиальными клетками, который является важным медиатором диабетических осложнений, таких как сердечно- сосудистые заболевания. Образование супероксида в эндотелии также способствует развитию , гипертензии, старения, ишемически- реперфузионных повреждений и .

Медиаторы воспаления, такие как фактор опухолей α (ФНОα) in vitro были связаны с митохондриальной дисфункцией   и повышали образование ФРК. В модели застойной сердечной недостаточности   добавление ФНОα к культуре кардиомиоцитов повышало образование РФК и гипертрофию миоцитов. ФНОα вызывает митохондриальную дисфункцию   путем восстановления активности комплекса III в ЦПЭ, увеличивая образование РФК и повреждение мтДНК.

Дефицит питательных веществ или их избыток также может привести к митохондриальной дисфункции. Витамины, минералы и другие метаболиты работают как необходимые кофакторы для синтеза и функционирования митохондриальных ферментов и других составляющих, которые поддерживают функцию митохондрий, и диета с недостатком микрокомпонентов может   ускорять старение митохондрий и способствовать нейродегенерации. Например, ферменты участвующие в цепи синтеза гемма, требуют достаточных количеств пиридоксина, железа, меди, цинка и рибофлавина. Недостаток питательных веществ, необходимых для каких- либо компонентов цикла ТКК или ЦПЭ, может привести к увеличению образования свободных радикалов и повреждению мтДНК.

Хорошо известно, что недостаток питательных веществ является широко распространенной причиной патогенеза многих заболеваний и является главным предметом спора в здравоохранении.   Недостаток железа главным посредником в развитии общего груза заболеваний, затрагивающих приблизительно 2 миллиарда людей, преимущественно женщин и детей. Это наиболее распространенный тип дефицита питательных веществ. Низкий статус содержания железа снижает активность митохондрий   путем выключения комплекса IV и увеличения   оксидативного стресса. Механизмы, лежащие в основе процесса влияния дефицита питательных веществ (и в некоторых случаях избыток, как при перегрузке железом) на возникновение, развитие и прогрессирование заболеваний, возникающих вследствие нарушения митохондриальных функций, к настоящему времени уже изучены.


Наследование митохондриальных болезней:

Митохондрии наследуются иначе, чем ядерные гены. Ядерные гены в каждой соматической клетке обычно представлены двумя аллелями (за исключением большинства сцепленных с полом генов у гетерогаметного пола). Один аллель унаследован от отца, другой от матери. Однако митохондрии содержат собственную ДНК, причем в каждой митохондрии человека обычно содержится от 5 до 10 копий кольцевой молекулы ДНК (см. Гетероплазмия), и все митохондрии наследуются от матери. Когда митохондрия делится, копии ДНК случайным образом распределяются между ее потомками. Если только одна из исходных молекул ДНК содержит мутацию, в результате случайного распределения такие мутантные молекулы могут накопиться в некоторых митохондриях. Митохондриальная болезнь начинает проявляться в тот момент, когда заметное число митохондрий во многих клетках данной ткани приобретают мутантные копии ДНК (пороговая экспрессия).

Мутации в митохондриальной ДНК происходят, по разным причинам, намного чаще, чем в ядерной. Это означает, что митохондриальные болезни достаточно часто проявляются из-за спонтанных вновь возникающих мутаций. Иногда темп мутирования увеличивается из-за мутаций в ядерных генах, кодирующих ферменты, которые контролируют репликацию ДНК митохондрий.


Симптомы митохондриальных заболеваний:

Эффекты митохондриальных заболеваний очень разнообразны. Из-за различного распределения дефектных митохондрий в разных органах мутация у одного человека может привести к заболеванию печени, а у другого - к заболеванию мозга. Величина проявления дефекта может быть большой или малой, и она может существенно изменяться, медленно нарастая во времени. Некоторые небольшие дефекты приводят лишь к неспособности пациента выдерживать физическую нагрузку, соответствующую его возрасту, и не сопровождаются серьёзными болезненными проявлениями. Другие дефекты могут быть более опасны, приводя к серьёзной патологии.

В общем случае митохондриальные заболевания проявляются сильнее при локализации дефектных митохондрий в мышцах, мозге, нервной ткани, поскольку эти органы требуют больше всего энергии для выполнения соответствующих функций.

Несмотря на то, что протекание митохондриальных заболеваний сильно отличаются у разных пациентов, на основании общих симптомов и конкретных мутаций, вызывающих болезнь, выделено несколько основных классов этих заболеваний.

Помимо относительно распространённой митохондриальной , встречаются:

7. Митохондриальная нейрогастроинтенстинальная : гастроинтестинальная псевдообструкция и кахексией, нейропатия, энцефалопатия с изменениями белого вещества головного мозга.


Лечение митохондриальных заболеваний:

Для лечения назначают:


В настоящее время лечение митохондриальных заболеваний находится в стадии разработки, но распространённым терапевтическим методом служит симптоматическая профилактика с помощью витаминов. В частности, в лечении синдрома MELAS у ряда пациентов оказались эффективными кофермент Q, который применяется как цитопротектор и антиоксидант при кардиомиопатиях и , рибофлавин и никотинамид. Также в качестве одного из методов применяются пируваты.

В настоящее время проводятся экспериментальные работы по изучению возможности экстракорпорального (in vitro) оплодотворения с использованием химерной яйцеклетки, ядро которой получено из яйцеклетки пациентки с митохондриальным заболеванием, а цитоплазму из другой яйцеклетки от женщины с нормально функционирующими митохондриями (замена ядра).


Митохондриальные заболевания — неоднородная группа наследственных заболеваний, которые вызваны структурными, генетическими или биохимическими дефектами митохондрий, приводящих к нарушениям энергетических функций в клетках эукариотических организмов. У человека при митохондриальных заболеваниях в первую очередь поражается мышечная и нервная система.

МКБ-9 277.87
MeSH D028361
DiseasesDB 28840

Общие сведения

Митохондриальные заболевания как отдельный тип патологий выделены в конце ХХ века после выявления мутации генов, которые ответственны за синтез митохондриальных белков.

Открытые в 1960-х годах мутации митохондриальной ДНК и вызванные этими мутациями болезни более изучены, чем заболевания, вызванные нарушениями ядерно-митохондриальных взаимодействий (мутации ядерной ДНК).

По имеющимся на сегодняшний день данным не менее 50 известных медицине заболеваний связано с митохондриальными нарушениями. Распространенность этих заболеваний составляет 1:5000.

Виды

Митохондрии являются уникальными клеточными структурами, которые обладают собственным ДНК.

Согласно мнению многих исследователей, митохондрии – потомки архебактерий, превратившиеся в эндосимбионтов (микроорганизмы, которые живут в организме «хозяина» и приносят ему пользу). В результате внедрения в эукариотические клетки они постепенно утратили или передали ядру эукариотического хозяина большую часть генома, и это учитывается при классификации. Также принимается во внимание и участие дефектного белка в биохимических реакциях окислительного фосфорилирования, которое позволяет запасать энергию в виде АТФ в митохондриях.

Единой общепринятой классификации не существует.

Обобщенная современная классификация митохондриальных заболеваний выделяет:

  • Заболевания, которые возникают при мутациях митохондриальной ДНК. Дефекты могут быть вызваны точечными мутациями белков, тРНК или рРНК (обычно наследуются по материнской линии), или структурными перестановками – спорадическими (нерегулярными) дупликациями и делециями. Это первичные митохондриальные заболевания, к которым относятся наследственные ярко выраженные синдромы — синдром Кернса — Сейра, синдром Лебера, синдром Пирсона, синдром NAPR, синдром MERRF и др.
  • Заболевания, которые вызваны дефектами ядерной ДНК. Ядерные мутации могут нарушать функции митохондрий – окислительное фосфолирование, работу электронтранспортной цепи, утилизацию или транспорт субстратов. Также мутации ядерной ДНК вызывают дефекты ферментов, которые необходимы для обеспечения циклического биохимического процесса — цикла Кребса, являющегося ключевым этапом дыхания всех использующих кислород клеток и центром пересечения в организме метаболических путей. К данной группе относят гастроинтестинальное митохондриальное заболевание, синдром Люфта, атаксию Фридриха, синдром Альперса, болезни соединительной ткани, диабет и др.
  • Заболевания, которые возникают в результате нарушений в ядерной ДНК и вызванных этими нарушениями вторичных изменений в митохондриальной ДНК. Вторичными дефектами являются тканеспецифические делеции или дупликации митохондриальной ДНК и уменьшение количества копий митохондриальной ДНК или их отсутствие в тканях. В данную группу входят печеночная недостаточность, синдром Де Тони-Дебре-Фанкони и др.

Причины развития

Митохондриальные заболевания вызываются дефектами находящихся в клеточной цитоплазме органелл — митохондрий. Основной функцией этих органелл является выработка энергии из поступающих в цитоплазму продуктов клеточного обмена веществ, которая происходит благодаря участию около 80 ферментов. Выделяющаяся энергия запасается в виде молекул АТФ, а затем преобразуется в механическую или биоэлектрическую энергию и т.д.

Причины митохондриальных заболеваний – нарушение выработки и аккумуляции энергии из-за дефекта одного из ферментов. В первую очередь при хроническом дефиците энергии страдают самые энергозависимые органы и ткани – ЦНС, сердечная мышца и скелетные мышцы, печень, почки и эндокринные железы. Хронический дефицит энергии вызывает патологические изменения в данных органах и провоцирует развитие митохондриальных заболеваний.

Этиология митохондриальных заболеваний имеет свою специфику – большинство мутаций происходит в генах митохондрий, поскольку в этих органеллах интенсивно протекают окислительно-восстановительные процессы и образуются повреждающие ДНК свободные радикалы. У митохондриальной ДНК механизмы восстановления повреждений несовершенны, так как ее не защищают белки-гистоны. В результате дефектные гены накапливаются быстрее в 10-20 раз, чем в ядерной ДНК.

Мутировавшие гены передаются при делении митохондрий, поэтому даже в одной клетке находятся органеллы с разным вариантом генома (гетероплазмия). При мутации митохондриального гена у человека наблюдается смесь мутантной и нормальной ДНК в любом соотношении, поэтому даже при наличии одинаковой мутации митохондриальные заболевания у людей выражены в разной степени. Наличие 10% дефектных митохондрий не оказывает патологического влияния.

Мутация может длительное время не проявляться, так как нормальные митохондрии компенсируют на начальном этапе недостаточность функции дефектных митохондрий. Со временем дефектные органеллы накапливаются, и проявляются патологические признаки заболевания. При раннем манифесте течение болезни более тяжелое, прогноз может быть негативным.

Митохондриальные гены передаются только от матери, так как содержащая эти органеллы цитоплазма присутствует в яйцеклетке и практически отсутствует в сперматозоидах.

Митохондриальные заболевания, которые вызваны дефектами ядерной ДНК, передаются благодаря аутосомно-рецессивному, аутосомно-доминантному или Х-сцепленному типу наследования.

Патогенез

Геном митохондрий отличается от генетического кода ядра и больше напоминает код бактерий. У человека геном митохондрий представлен копиями небольшой кольцевой молекулы ДНК (их число колеблется от 1 до 8). Каждая митохондриальная хромосома кодирует:

  • 13 белков, которые отвечают за синтез АТФ;
  • рРНК и тРНК, которые участвуют в происходящем в митохондриях синтезе белка.

Около 70 генов белков митохондрий кодируются генами ядерной ДНК, благодаря чему осуществляется централизованная регуляция функций митохондрий.

Патогенез митохондриальных заболеваний связан с процессами, которые происходят в митохондриях:

  • С транспортом субстратов (органической кетокислоты пирувата, которая является конечным продуктом метаболизма глюкозы, и жирных кислот). Происходит под воздействием карнитин-пальмитоил-трансферазы и карнитина.
  • С окислением субстратов, которое происходит под влиянием трех ферментов (пируватдегидрогеназы, липоат-ацетилтрансферазы и липоамид-дегидрогеназы). В результате процесса окисления образуется ацетил-КоА, участвующий в цикле Кребса.
  • С циклом трикарбоновых кислот (цикл Кребса), который не только занимает центральное место в энергетическом обмене, но и поставляет промежуточные соединения для синтеза аминокислот, углеводов и других соединений. Половина стадий цикла является окислительными процессами, в результате которых выделяется энергия. Эта энергия аккумулируется в виде восстановленных коферментов (молекул небелковой природы).
  • С окислительным фосфорилированием. В результате полного разложения пирувата в цикле Кребса образуются коферменты NAD и FAD, участвующие в переносе электронов в дыхательную цепь переноса электронов (ЭТЦ). ЭТЦ контролируется митохондриальным и ядерным геномом и осуществляет транспорт электронов при помощи четырех мультиферментных комплексов. Пятый мультиферментный комплекс (АТФ-синтаза) катализирует синтез АТФ.

Патология может возникать как при мутациях генов ядерной ДНК, так и при мутациях генов митохондрий.

Симптомы

Митохондриальные заболевания отличаются значительным разнообразием симптомов, поскольку в патологический процесс вовлекаются разные органы и системы.

Нервная и мышечная системы являются самыми энергозависимыми, поэтому от дефицита энергии они страдают в первую очередь.

К симптомам поражения мышечной системы относятся:

  • снижение или потеря возможности выполнять двигательные функции в связи со слабостью мышц (миопатический синдром);
  • гипотония;
  • боли и болезненные спазмы мышц (крампи).

Митохондриальные заболевания у детей проявляются в головной боли, рвоте и слабости мышц после физической нагрузки.

Поражение нервной системы проявляется в:

  • задержке психомоторного развития;
  • утрате приобретенных ранее навыков;
  • наличии судорог;
  • наличии периодического появления апноэ и ;
  • повторных коматозных состояниях и смещении кислотно-щелочного баланса организма (ацидоз);
  • нарушениях походки.

У подростков наблюдаются головные боли, периферические нейропатии (онемение, утрата чувствительности, паралич и др.), инсультоподобные эпизоды, патологические непроизвольные движения, головокружение.

Для митохондриальных заболеваний также характерны поражения органов чувств, которые проявляются в:

  • атрофии зрительных нервов;
  • птозе и наружной офтальмоплегии;
  • катаракте, помутнении роговицы, пигментной дегенерации сетчатки;
  • дефекте поля зрения, которое наблюдается у подростков;
  • снижении слуха или нейросенсорной глухоте.

Признаками митохондриальных заболеваний являются и поражения внутренних органов:

  • кардиомиопатия и блокады сердца;
  • патологическое увеличение печени, нарушения ее функций, печеночная недостаточность;
  • поражения проксимальных почечных канальцев, сопровождающиеся повышенным выведением глюкозы, аминокислот и фосфатов;
  • приступы рвоты, дисфункция поджелудочной железы, диарея, целиакоподобный синдром.

Наблюдается также макроцитарная анемия, при которой увеличен средний размер эритроцитов, и панцитопения, для которой характерно снижение количества всех видов клеток крови.

Поражение эндокринной системы сопровождается:

  • задержкой роста и нарушением полового развития;
  • гипогликемией и диабетом;
  • гипоталамо-гипофизарным синдромом с дефицитом СТГ;
  • дисфункцией щитовидной железы;
  • гипотиреозом, нарушением обмена фосфора и кальция и .

Диагностика

Диагностика митохондриальных заболеваний основывается на:

  • Изучении анамнеза. Поскольку все симптомы митохондриальных заболеваний не являются специфическими, диагноз предполагается при комбинации трех и более симптомов.
  • Физикальном обследовании, которое включает тесты на выносливость и силу.
  • Неврологическом обследовании, включающем проверку зрения, рефлексов, речи и познавательных способностей.
  • Специализированных пробах, которые включают наиболее информативный тест – мышечную биопсию, а также фосфорную магнитно-резонансную спектроскопию и др. неинвазивные методы.
  • КТ и МРТ, которые позволяют выявить признаки повреждения головного мозга.
  • ДНК-диагностике, которая позволяет выявить митохондриальные заболевания. Не описанные ранее мутации определяются методом прямого секвенирования мтДНК.

Лечение

Эффективное лечение митохондриальных заболеваний активно разрабатывается. Внимание уделяется:

  • Увеличению эффективности энергетического обмена при помощи тиамина, рибофлавина, никотинамида, коэнзима Q10 (показывает хороший результат при синдроме MELAS), витамина С, цитохрома С и т.д.
  • Профилактике повреждения мембран митохондрий свободными радикалами, для которой используются a-липоевая кислота и витамин Е (антиоксиданты), а также мембранопротекторы (цитиколин, метионин и др.).

Лечение также включает применение креатина моногидрата как альтернативного источника энергии, снижение уровня молочной кислоты и физические упражнения.

Нашли ошибку? Выделите ее и нажмите Ctrl + Enter

Версия для печати

Явление гетероплазмии определяет существование в одной клетке нормальных митохондрий и митохондрий с нарушенной функцией. За счет первых клетка может функционировать какое-то время. Если продукция энергии в ней падает ниже определенного порога, то происходит компенсаторная пролиферация всех митохондрий, включая дефектные. В худшем положении оказываются клетки, которые потребляют много энергии: нейроны, мышечные волокна, кардиомиоциты.

Из-за утечки в дыхательной цепи митохондрии постоянно продуцируют свободные радикалы на уровне 1–2 % поглощенного кислорода. Количество продукции радикалов зависит от мембранного потенциала митохондрий, на изменения которого влияет состояние АТФ-зависимых калиевых каналов митохондрий. Открытие этих каналов влечет за собой возрастание образования свободных радикалов, повреждение других белков митохондриальных мембран и мтДНК. ДНК митохондрий не защищена гистонами и хорошо доступна для радикалов, что проявляется в изменении уровня гетероплазмии. Принято считать, что наличие 10 % митохондрий с измененной ДНК не оказывает влияния на фенотип.

4. КЛАССИФИКАЦИЯ И ОБЩАЯ ХАРАКТЕРИСТИКА

МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Единой этиологической классификации МЗ в настоящее время не существует из-за неопределенности вклада мутаций ядерного генома в их этиологию и патогенез. Существующие классификации основаны на 2-х принципах : локализации мутантного гена в мтДНК или яДНК и участии мутантного белка в реакциях окислительного фосфорилирования.

Этиологическая классификация (по, 2006) включает митохондриальные болезни, связанные с дефектами:


· мтДНК;

· яДНК;

· интергеномных взаимодействий.

Патогенетическая классификация (по, 2000) подразделяет митохондриальные болезни на обусловленные нарушением:

· карнитинового цикла;

· окисления жирных кислот;

· метаболизма пирувата;

· цикла Кребса;

· работы дыхательной цепи;

· сопряжения окисления и фосфорилирования.

В клинической практике объединяют комбинации часто встречающихся симптомов МЗ в синдромы.

Митохондриальные заболевания - гетерогенная группа заболеваний, характеризующихся генетическими и структурно-биохимическими дефектами митохондрий, нарушением тканевого дыхания. По происхождению МЗ делятся на первичные (наследственные) и вторичные.

Причинами наследственных МЗ являются мутации митохондриального и (или) ядерного генома.

К настоящему времени известно более 200 заболеваний, вызванных мутацией мтДНК.

По мере накопления клинико-диагностических данных в разных странах было установлено, что у детей примерно каждое третье наследственное метаболическое заболевание связано с митохондриями. По данным Н. Г. Даниленко, (2007) в популяциях частота митохондриальных болезней варьирует от 1:5000 до 1:35000. Минимальная частота МЗ в популяции взрослых жителей Великобритании оценивается как (1–3):10000.

Характеристика клинических особенностей МЗ представлена в таблице 2.

Таблица 2 - Клинические особенности митохондриальных заболеваний (по, 2007)

Клинические особенности

Патофизиологическое значение

Полисистемность, полиорганность, «необъяснимость» сочетания симптомов со стороны органов, не связанных по происхождению

Поражение органов, имеющих близкий «порог» чувствительности к нарушению окислительного фосфорилирования

Наличие острых эпизодов в дебюте заболевания или в его развернутой стадии

«Метаболический криз», связанный со срывом баланса между потребностями ткани в энергообеспечении и уровнем анаэробного дыхания

Вариабельный возраст начала симптоматики (от 1 до 7-го десятилетия жизни)

Вариабельный уровень мутантной мтДНК в разных тканях в различный момент времени

Усугубление симптоматики с возрастом

Нарастание числа мутаций мтДНК и ослабление интенсивности окислительного фосфорилирования по мере старения

Поражение большинства систем и органов при МЗ можно объяснить тем, что многие процессы, протекающие в организме энергозависимы. Относительная энергозависимость органов и тканей в порядке убывания: ЦНС, скелетные мышцы, миокарда, орган зрения, почки, печень, костный мозг, эндокринная система.

Нейронам необходимо большое количество АТФ для синтеза нейромедиаторов, регенерации, поддержания необходимого градиента Na + и К+, проведения нервного импульса. Скелетные мышцы в покое потребляют незначительные количества АТФ, но при физической нагрузке эти потребности возрастают в десятки раз. В миокарде постоянно совершается механическая работа, необходимая для циркуляции крови. Почки используют АТФ в процессе реабсорбции веществ при образовании мочи. В печени происходит синтез гликогена, жиров, белков и других соединений.

5. ДИАГНОСТИКА МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Митохондриальные болезни трудны для диагностики. Определяется это отсутствием строгой связи между сайтом мутации и клиническим фенотипом. Это значит, что одна и та же мутация может вызывать разные симптомы, а один и тот же клинический фенотип могут формировать разные мутации.

Поэтому для постановки диагноза митохондриального заболевания важен комплексный подход, основанный на генеалогическом, клиническом, биохимическом , морфологическом (гистологическом), генетическом анализах.

Генеалогический анализ

Наличие в семейном анамнезе синдрома внезапной младенческой смерти, кардиомиопатий, деменций, раннего инсульта, ретинопатий, диабета, задержки развития может указывать на митохондриальную природу имеющегося заболевания.

Клинические проявления митохондриальных заболеваний

Миопатический синдром : слабость и атрофия мышц, снижение миотонического тонуса, мышечные боли, непереносимость физической нагрузки (усиление мышечной слабости, появление рвоты и головной боли).


Центральная нервная система и органы чувств: летаргия, кома, задержка психомоторного развития, деменция, нарушение сознания, атаксия, дистония, эпилепсия, миоклонические судороги, «метаболический инсульт», слепота центрального происхождения, пигментный ретинит, атрофия зрительных нервов, нистагм, катаракта, офтальмоплегия, птоз, нарушение остроты зрения, гипоакузия, дизартрия, сенсорные нарушения, сухость слизистой рта, гипотония, снижение глубоких сухожильных рефлексов, инсультоподобные эпизоды, гемианопсия.

Периферическая нервная система: аксональная нейропатия, нарушение двигательной функции гастроинтестинального тракта.

Сердечно-сосудистая система: кардиомиопатия (обычно гипертрофическая), аритмия, нарушение проводимости.

Желудочно-кишечный тракт: частые диспептические явления (рвота, диарея), атрофия ворсинок кишечника, экзокринная недостаточность поджелудочной железы.

Печень: прогрессирующая печеночная недостаточность (особенно у младенцев), гепатомегалия.

Почки: тубулопатия (по типу синдрома Де Тони-Дебре-Фанкони: фосфатурия, глюкозурия, аминацидурия), нефрит, почечная недостаточность.

Эндокринная система: задержка роста, нарушение полового развития, гипогликемия, сахарный и несахарный диабет, гипотиреоз, гипопаратиреоидизм, гипоталамо-гипофизарная недостаточность, гиперальдостеронизм.

Система кроветворения: панцитопения, макроцитарная анемия .

Основные биохимические проявления митохондриальных заболеваний

Повышение уровня:

· лактата и пирувата в крови (ликворе);

· 3-гидроксимасляной и ацетоуксусной кислот в крови;

· аммиака в крови;

· аминокислот;

· жирных кислот с разной длиной цепи;

· миоглобина;

· продуктов перекисного окисления липидов;

· мочевой экскреции органических кислот.

Снижение:

· активности некоторых ферментов энергетического обмена в митохондриях;

· содержания общего карнитина в крови.

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней, но проявляется и при других формах патологии. Поэтому более эффективным является измерение уровня лактата в венозной крови после умеренной физической нагрузки на велоэргометре.

Основные изменения структуры скелетной мышцы при митохондриальной недостаточности

Морфологическое исследование позволяет с помощью световой и электронной микроскопии в сочетании с гистохимическими методами выявить нарушения количества и строения митохондрий, признаки их дисфункций и снижения активности митохондриальных ферментов.

C ветовая микроскопия с применением различных видов специальной окраски, в т. ч. и для определения активности митохондриальных ферментов выявляет:

· феномен «рваных» (шероховатых) красных волокон (RRF - « ragged » red fibres ) в количестве более 5 % (при окраске по Гомори, Альтману напоминает разрыв волокон по периферии и обусловлен скоплением пролиферирующих генетически измененных митохондрий под сарколеммой);

· гистохимические признаки недостаточности митохондриальных ферментов (цикла Кребса, респираторной цепи), особенно цитратсинтетазы, сукцинатдегидрогеназы и цитохром-С-оксидазы;

· субсарколеммальное накопление гликогена, липидов, кальция (считают, что накопление жировых капель в различных тканях, в т. ч. в мышечных волокнах, происходит в результате нарушения окисления жирных кислот в митохондриях).

При электронной микроскопии определяют:

· пролиферацию митохондрий;

· скопления аномальных митохондрий под сарколеммой;

· полиморфизм митохондрий с нарушением формы и размера, дезорганизацией крист;

· наличие в митохондриях паракристаллических включений;

· наличие митохондриально-липидных комплексов.

Генетический анализ для подтверждения диагноза митохондриального заболевания

Обнаружение любого вида митохондриальной мутации с достаточно высоким соотношением аномальной и нормальной мтДНК подтверждает диагноз митохондриального заболевания или синдрома. Отсутствие митохондриальной мутации позволяет предполагать у пациента наличие патологии, связанной с мутацией яДНК.

Известно, что уровень гетероплазмии во многом определяет фенотипическое проявление мутации. Поэтому, при проведении молекулярного анализа необходимо оценивать количество мутантных мтДНК. Оценка уровня гетероплазмии включает детекцию мутации, однако методы обнаружения мутации не всегда учитывают уровень ее гетероплазмии.

1. Метод клонирования дает достоверные количественные результаты (наиболее трудоемкий и продолжительный).

2. Флуоресцентная ПЦР предоставляет более точные результаты при меньшей трудоемкости (не позволяет выявлять мелкие делеции и вставки).

3. Денатурирующая высокоразрешающая жидкостная хроматография дает воспроизводимые результаты при любых видах мутаций (делеции, вставки, точковые мутации), находящихся в состоянии гетероплазмии (оценка уровня гетероплазмии более точна по сравнению с 2-мя предыдущими).

4. ПЦР в реальном времени используется для обнаружения и количественной оценки мутаций мтДНК. Используют: гидролизуемые зонды (TaqMan ), интеркалирующий краситель SYBR .

Наиболее точные оценки дают 3 метода:

· минисеквенирование ( SNaP - shot ) - определение однонуклеотидных замен, делеций и инсерций короткими зондами (15–30 нуклеотидов). Участок ДНК несущий мутацию, например C T выделяется и аплифицируется с помощью ПЦР. Этот участок является матрицей. Зонд имеет идентичную структуру, массу 5485 Да, но короче матрицы на один нуклеотид. К смеси зонда и матрицы добавляют нуклеотиды Т и С. Если к зонду присоединится нуклеотид С, то матрица «дикого» типа и ее масса составит 5758 Да. Если нуклеотид Т - матрица была мутантного типа с массой 6102 Да. Затем массу полученных образцов определяют с помощью масс-спектрометра.

· Пиросеквенирование - сочетание секвенирования и синтеза. Матрицу инкубируют в смеси из 4-х ферментов, 4-х дезоксинуклеотидтрифосфатов (dATP , d СТ P , dG Т P , d ТТ P ) и 4-х терминаторов транскрипции dNTP . Присоединение комплементарного нуклеотида сопровождается флуоресцентной биохимической реакцией.

· Biplex Invader - позволяет обнаруживать сразу 2 мутации .

Однако, при сопоставимой точности Biplex Invader оказался наиболее простым в использовании, а SNaPshot - наиболее дорогостоящим.

В настоящее время предпочтение отдается чиповым технологиям , позволяющим анализировать основные патогенные мутации мтДНК сразу во множестве образцов, устанавливая при этом уровень гетероплазмии каждой отдельной мутации.

Алгоритм диагностики митохондриальных заболеваний (по , 2007)

1. Необходимо доказательное клиническое подозрение на наличие митохондриальной болезни. В типичных случаях это может быть выявление клинической картины, характерной для той или иной формы митохондриальной энцефаломиопатии (MELAS, MERRF и т. д.), однако «классические» варианты этих фенотипов встречаются сравнительно редко.

Выявление общепринятых лабораторных маркеров митохондриальной дисфункции, мультисистемного, полиорганного поражения (для этого необходим соответствующий целенаправленный поиск), а также материнского типа наследования указывают на митохондриальную природу болезни.

2. Исследование мтДНК в лимфоцитах (у пациентов с четкими фенотипами MELAS, MERRF, атрофией зрительных нервов Лебера). При выявлении искомой мутации диагноз конкретной митохондриальной болезни может считаться подтвержденным.

3. При отсутствии выявляемых мутаций в лимфоцитах проводят биопсию скелетной мышцы (обычно четырехглавой или дельтовидной), т. к. скелетная мышца является более надежным источником мтДНК (отсутствие клеточных делений в мышце способствует «удержанию» митохондрий, содержащих мутантную мтДНК). Образцы мышечных биоптатов делят на 3 части: одна - для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая - для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи), третья - для молекулярно-генетического анализа.

4. При отсутствии известных мутаций мтДНК в мышечной ткани проводят развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

5. Идентификация конкретного биохимического дефекта в том или ином звене дыхательной цепи митохондрий является альтернативой изучения скелетной мускулатуры.

6. ЛЕЧЕНИЕ МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

В настоящее времени митохондриальные забо­левания практически не излечимы. Однако возможно либо отсрочить развитие заболевания, либо избежать наследования патогенной митохондриальной мутации.

Принципы терапии митохондриальных заболеваний

1. Симптоматическое лечение:

Диета составляется в зависимости от патогенеза.

· При патологии транспорта и окисления жирных кислот рекомендуется частое и дробное питание со снижением калорийности пищи.

· При нарушении обмена пировиноградной кислоты для восполнения дефицита ацетил-Ко-А используется кетогенная диета.

· При дефиците ферментов ЦТК применяется частое кормление.

· При дефиците дыхательной цепи и окислительного фосфорилирования снижают количество углеводов.

Медикаментозная терапия.

· Препараты, активизирующие перенос электронов в дыхательной цепи (коэнзим Q 10 , витамины К1 и К3, препараты янтарной кислоты, цитохром С).

· Кофакторы энзимных реакций энергетического обмена (никотинамид, рибофлавин, карнитин, липоевая кислота и тиамин).

· Средства, уменьшающие степень лактат-ацидоза (дихлорацетат, димефосфон).

· Антиоксиданты (убихинон, витамин С и Е).

Исключение препаратов, ингибирующих энергообмен (барбитураты, хлорамфеникол).

ИВЛ, противосудорожные препараты, ферменты поджелудочной железы, переливание компонентов крови.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...