Химический состав воздуха атмосферы. Все об атмосферном воздухе

Кандидат химических наук О. БЕЛОКОНЕВА.

Как часто после утомительного рабочего дня нас вдруг охватывает непреодолимая усталость, голова становится тяжелой, мысли путаются, наваливается сонливость… Такое недомогание болезнью не считается, но тем не менее очень мешает нормально жить и работать. Многие спешат принять таблетку от головной боли и идут на кухню, чтобы заварить чашку крепкого кофе. А может быть, вам просто не хватает кислорода?

Получение воздуха, обогащенного кислородом.

Как известно, земная атмосфера на 78% состоит из химически нейтрального газа - азота, почти 21% составляет основа всего живого - кислород. Но так было не всегда. Как показывают современные исследования, 150 лет назад содержание кислорода в воздухе достигало 26%, а в доисторические времена динозавры дышали воздухом, в котором кислорода было больше трети. Сегодня все жители земного шара страдают от хронической нехватки кислорода - гипоксии. Особенно нелегко горожанам. Так, под землей (в метро, в переходах и подземных торговых центрах) концентрация кислорода в воздухе составляет 20,4%, в высотных зданиях - 20,3%, а в битком набитом вагоне наземного транспорта - всего лишь 20,2%.

Давно известно, что повышение концентрации кислорода во вдыхаемом воздухе до уровня, установленного природой (около 30%), благотворно сказывается на здоровье человека. Не зря космонавты на Международной космической станции дышат воздухом, содержащим 33% кислорода.

Как уберечься от гипоксии? В Японии у жителей больших городов недавно стали популярными так называемые "кислородные бары". Это своего рода кафе - каждый желающий может заглянуть в них и за небольшую плату в течение 20 минут подышать воздухом, обогащенным кислородом. Клиентов у "кислородных баров" - хоть отбавляй, и их число продолжает расти. Среди них много молодых женщин, но есть и пожилые люди.

До последнего времени у россиян не было возможности побывать в роли посетителя японского кислородного бара. Но в 2004 году на российский рынок выходит японский прибор для обогащения воздуха кислородом "Oxycool-32" фирмы "YMUP/Yamaha Motors group". Поскольку технология, использованная при создании прибора, действительно нова и уникальна (сейчас на нее оформляется международный патент), читателям наверняка интересно узнать о ней подробнее.

В основе работы нового японского прибора лежит принцип мембранного разделения газов. Атмосферный воздух при обычном давлении подается на полимерную мембрану. Толщина газоразделительного слоя - 0,1 микрометра. Мембрана сделана из высокомолекулярного материала: при высоком давлении она адсорбирует молекулы газов, а при низком - выделяет. Молекулы газов проникают в промежутки между полимерными цепочками. "Медленный газ" азот проникает через мембрану с меньшей скоростью, чем "быстрый" кислород. Величина "запаздывания" азота зависит от разницы парциальных давлений на внешней и внутренней поверхностях мембраны и скорости воздушного потока. На внутренней стороне мембраны давление понижено: 560 мм рт. ст. Соотношение давлений и скорость потока подобраны таким образом, что концентрация азота и кислорода на выходе составляет 69% и 30% соответственно. Обогащенный кислородом воздух выходит со скоростью 3 л/мин.

Газоразделительная мембрана улавливает микроорганизмы и цветочную пыльцу в воздухе. Кроме того, воздушный поток можно пропустить через раствор ароматической эссенции, так что человек будет дышать воздухом не только очищенным от бактерий, вирусов и пыльцы, но и имеющим приятный мягкий аромат.

В прибор "Oxycool-32" встроен ионизатор воздуха, похожий на широко известную в России "люстру Чижевского". Под действием ультрафиолетового излучения происходит эмиссия электронов с титанового наконечника. Электроны ионизуют молекулы кислорода, образуя отрицательно заряженные "аэроионы" в количестве 30 000-50 000 ионов на кубический сантиметр. "Аэроионы" нормализуют потенциал клеточной мембраны, оказывая тем самым на организм общеукрепляющее действие. Кроме того, они заряжают пыль и грязь, взвешенную в городском воздухе в виде мелкодисперсного аэрозоля. В результате пыль оседает, и воздух в помещении становится намного чище.

Кстати, этот малогабаритный прибор можно подключить и к автомобильному источнику питания, что позволит водителю наслаждаться свежим воздухом, даже стоя в многокилометровой "пробке" на московском Садовом кольце.

Основной переносчик кислорода в организме - гемоглобин, который находится в красных кровяных клетках - эритроцитах. Чем больше кислорода эритроциты "доставляют" клеткам организма, тем интенсивнее идет обмен веществ в целом: "сгорают" жиры, а также вещества, вредные для организма; окисляется молочная кислота, накопление которой в мышцах вызывает симптомы усталости; в клетках кожи синтезируется новый коллаген; улучшаются кровообращение и дыхание. Поэтому повышение концентрации кислорода во вдыхаемом воздухе снимает усталость, сонливость и головокружение, ослабляет боль в мышцах и пояснице, стабилизирует кровяное давление, уменьшает одышку, улучшает память и внимательность, налаживает сон, снимает синдром похмелья. Регулярное использование прибора поможет сбросить лишний вес и омолодить кожу. Кислородная терапия также пригодится астматикам, больным, страдающим хроническим бронхитом, тяжелыми формами пневмонии.

Регулярное вдыхание воздуха, обогащенного кислородом, позволит предотвратить гипертонию, атеросклероз, инсульт, импотенцию, а у пожилых людей - остановку дыхания во сне, которая иногда приводит к смертельному исходу. Дополнительный кислород сослужит хорошую службу и больным диабетом - даст возможность уменьшить количество ежедневных инъекций инсулина.

"Oxycool-32", несомненно, найдет применение в спортивных клубах, гостиницах, косметических салонах, офисах, развлекательных комплексах. Но это вовсе не означает, что новый прибор не пригоден для индивидуального применения. Совсем наоборот: в домашних условиях его могут использовать даже дети и пожилые люди. Врачебный контроль при такой восстанавливающей кислородной терапии необязателен. Очень полезно подышать кислородом до или после занятий физкультурой и спортом, после тяжелого рабочего дня или просто для восстановления сил и поддержания тонуса: 15-30 минут утром и 30-45 - вечером.

"Oxycool-32" повышает концентрацию кислорода во вдыхаемом воздухе до уровня, установленного природой. Поэтому прибор безопасен для здоровья. Но, если вы страдаете каким-либо тяжелым хроническим заболеванием, перед началом процедур все же стоит посоветоваться с лечащим врачом.

Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

Менее чем 200 лет назад земная атмосфера содержала 40% кислорода. Сегодня кислорода в воздухе содержится только 21%

В городском парке 20,8%

В лесу 21,6%

На берегу моря 21,9%

В квартире и офисе менее 20%

Учёные доказали, что снижение кислорода на 1% приводит к снижению работоспособности на 30%.

Недостаток кислорода является результатом работы автомобилей, промышленных выбросов и загрязнений. В городе кислорода на 1% меньше, чем в лесу.

Но самым большим виновником в недостатке кислорода являемся мы сами. Построив тёплые и герметичные дома, живя в квартирах с пластиковыми окнами мы оградили себя от поступления свежего воздуха. При каждом выдохе снижая концентрацию кислорода и увеличивая количество углекислого газа. Нередко содержание кислорода в офисе 18%, в квартире 19%.

Качество воздуха, необходимого для поддержания жизненных процессов всех живых организмов на Земле,

определяется содержанием в нем кислорода.

Зависимость качества воздуха от процентного содержания в нем кислорода.


Уровень комфортного содержания кислорода в воздухе

Зона 3-4: ограничена законодательно утвержденным стандартом минимального содержания кислорода в воздухе для помещений (20,5%) и "эталоном" свежего воздуха (21%). Для городского воздуха нормальным считается содержание кислорода 20,8%.

Благоприятный уровень содержания кислорода в воздухе

Зона 1-2: такой уровень содержания кислорода характерен для экологически чистых районов, лесных массивов. Содержание кислорода в воздухе на берегу океана может достигать 21,9%

Недостаточный уровень содержания кислорода в воздухе

Зано 5-6: ограничена минимально допустимым уровнем содержания кислорода, когда человек может находиться без дыхательного аппарата (18%).

Пребывание человека в помещениях с таким воздухом сопровождается быстрой утомляемостью, сонливостью, снижением умственной активности, головными болями.

Длительное пребывание в помещениях с такой атмосферой опасно для здоровья.

Опасно низкий уровень содержания кислорода в воздухе

Зона 7 и далее: при содержании кислорода 16% наблюдается головокружение, учащенное дыхание, 13% - потеря сознания, 12% - необратимые изменения функционирования организма, 7% - смерть.

Внешние признаки кислородного голодания (гипоксии)

- ухудшение цвета кожи

- быстрая утомляемость, снижение умственной, физической и сексуальной активности

- депрессия, раздражительность,нарушение сна

- головные боли

Длительное пребывание в помещении с недостаточным уровнем содержания кислорода может привести к более серьезным проблемам со здоровьем, т.к. кислород отвечает за все обменные процессы организма, то следствием его недостатка становятся:

Нарушение обмена веществ

Снижение иммунитета

Правильно организованная система вентиляции жилых и рабочих помещений может стать залогом хорошего здоровья.

Роль кислорода для здоровья человека. Кислород:

Повышает умственную работоспособность;

Повышает устойчивость организма к стрессам и повышенным нервным нагрузкам;

Поддерживает уровень кислорода в крови;

Улучшает согласованность работы внутренних органов;

Повышает иммунитет;

Способствует снижению веса. Регулярное потребление кислорода в сочетании с двигательной активностью, приводит к активному расщеплению жиров;

Нормализуется сон: он становится более глубоким и продолжительным, уменьшается период засыпания и двигательной активности

Выводы:

Кислород влияет на нашу жизнь, и чем его больше, тем наша жизнь полна красок и разнообразна.

Можно купить кислородный баллон или бросить всё и уехать жить в лес. Если Вам это недоступно, проветривайте каждый час квартиру, офис. Мешают сквозняки, пыль, шум установите вентиляцию, которая будет снабжать Вас свежим воздухом, очищать от выхлопных газов.

Сделайте всё, чтобы свежий воздух был в Вашем доме и Вы увидите изменения в Вашей жизни.

Газовый состав атмосферного воздуха

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N 2 78,09 75,50
O 2 20,95 23,15
Ar 0,933 1,292
CO 2 0,03 0,046
Ne 1,8 10 -3 1,4 10 -3
He 4,6 10 -4 6,4 10 -5
CH 4 1,52 10 -4 8,4 10 -5
Kr 1,14 10 -4 3 10 -4
H 2 5 10 -5 8 10 -5
N 2 O 5 10 -5 8 10 -5
Xe 8,6 10 -6 4 10 -5
O 3 3 10 -7 - 3 10 -6 5 10 -7 - 5 10 -6
Rn 6 10 -18 4,5 10 -17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO 2 . Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N 2 O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O 3 ® ® NO 2 + O 2 , затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO 2 + O ® NO + O 2 , тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO 2 окисляется до азотной кислоты HNO 3 , хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O 3 ® ClO + O 2 и ClO + O ® Cl + O 2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.

Как свеж для вдоха зимний воздух. Как же легко и приятно дышать полной грудью в лесу, возле моря или в горах. Именно в таких местах мы стремимся провести свои выходные или очередной отпуск. А ведь процентное содержание воздуха в райских уголках нашей планеты такой же, как и в городах, где мы с вами живем. Так в чем же дело? Почему мы не ощущаем такую же чистоту воздуха у себя дома, вдалеке от мечтаемых лесов, гор и морей? Поговорим о составе воздуха в процентном соотношении и о его качестве.

21% кислорода (O2), 0,03% углекислого газа (CO2), все остальное – это 79% азота (N2) и незначительное количество примесей.

Как говорил один из моих школьных учителей: «Собака зарыта в примесях». Дело в том, что за последние 150 лет в атмосферу попало просто громаднейшее количество мышьяка, кобальта, кремния, окислов серы, азота, углерода и других, вредных для здоровья примесей.

Очевидно, что концентрация этих примесей в воздухе сельской местности намного ниже, чем в больших и малых городах. А все, в первую очередь, из-за автотранспорта, который своими выхлопами затуманивает все вокруг. Степень загрязнения драгоценного воздуха определяется в основном географическими условиями.

Такой вот состав воздуха в процентах, друзья. Очевидно, что человек должен задуматься о его качестве и не загрязнять атмосферу. Далее обсудим некоторые интересные факты.

Почему становится плохо в душном помещении?

Человек вдыхает воздух, а выдыхает углекислый газ и что-то там еще в виде газообразных веществ – так нас учили в школе. Там же мы изучали и состав воздуха. Вспомните случай, когда вам, ни с того ни с сего, становилось плохо в закрытом помещении (если таков случай был). Как думаете, из-за чего? Вы будете правы, если предположите, что это помещение давно не проветривалось.

Вам стало нехорошо из-за высокой концентрации все тех же газообразных веществ, которые вы же, вместе с окружающими вас людьми, и надышали. В составе смеси, выдыхаемой человеком, не более 16-18 процентов кислорода и 4-6 процентов углекислого газа. А это в 130-200 раз больше, чем во вдыхаемом вами воздухе.

Также там присутствуют и другие нехорошие соединения. Так что совет регулярно проветривать свои жилища и офисы не должен показаться неуместным. Здоровее будете. Раз уж , то он в ответе за их чистоту и порядок.

Природная очистка воздуха

Летом мы подметаем и обдаем водой асфальт улиц для того, чтобы не дышать мелкодисперсными пылинками. А вот зимой состав воздуха чище хотя бы потому, что эта самая пыль и грязь зависает под сугробами снегопадов.

Деревья, так интенсивно высаживаемые в населенных пунктах, выступают в роли фильтров, очищая атмосферу от избыточного углекислого газа. Так они меняют состав воздуха нам во благо. Зеленые растения поглощают его и насыщают городской воздух кислородом. Все в тех же школах нас учили, что процесс этот называется фотосинтезом.

5 тысяч кубометров воздуха очищается одним деревом, и от 200 тонн пыли нас освобождает небольшой парк. То есть, чем больше будет посажено зелени на Земле, тем качественнее будет вдыхаемый нами воздух. Не зря же растения называют легкими этой планеты.

А про ионизацию когда-нибудь слыхали? Так вот, высокая концентрация в воздухе негативно заряженных частичек (ионов) благотворно влияет на наши с вами организмы. Высокоионизированным воздухом славятся горные приморские курорты и сосновые леса.

Также, если вам посчастливилось жить вблизи водопада или быстротечной горной реки, то воздушные ионы подарят вам крепкое здоровье.

Целебный климат таких мест делает свое дело. Поэтому люди, живущие в этих районах или неподалеку от них, реже болеют и славятся своим долголетием. И да, чуть не забыл, до необходимого уровня. Особенно в зимнюю пору. Дышите вкусно, друзья!

Я тут недавно начал изучать английский язык и наткнулся на один классный сервис. Зарегистрируйтесь на LinguaLeo , если хотите без проблем общаться на английском. Очень интересный и нестандартный подход к обучению.

Делитесь статьей в соц.сетях и подпишитесь на рассылку моего блога.

С вами был Денис Стаценко. Увидимся



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...