Когда появляются клетки пуркинье в мозжечке человека. Клетка пуркинье. Зачем они нужны

У млекопитающих мозжечок - крупный вырост моста, состоящий из двух полушарий и непарного отдела - червя. Со стволовой частью мозга мозжечок соединяется тремя парами ножек. Самые толстые средние ножки как бы охватывают продолговатый мозг и, расширяясь, переходят в мост. Ростральные ножки начинаются в зубчатых ядрах мозжечка (см. ниже) и направляются к пластинке крыши среднего мозга. Третья пара ножек (каудальная) спускается вниз, сливаясь с продолговатым мозгом. Афферентные волокна, приходящие в мозжечок, преимущественно входят в состав средних и каудальных ножек, тогда как эфферентные собраны главным образом в ростральных ножках мозжечка.

Вся поверхность мозжечка разделяется глубокими бороздами на доли. В свою очередь, каждая доля параллельными бороздками разделяется на извилины; группы извилин формируют дольки мозжечка. Каждую дольку обозначают как классическим названием (язычок, центральная, вершина и т. д.), так и латинской нумерацией (I -Х) в соответствии с принятой номенклатурой (рис. 3.25).

Согласно О. Ларселу, всю поверхность мозжечка можно разделить на отделы в зависимости от характера поступающих афферентных путей и филогенетического возраста структурных образований. Наиболее изолированная клочково-узелковая доля (X) составляет древнюю часть мозжечка (палеоцеребеллум), гомологичный мозжечку круглоротых. Здесь заканчиваются проекции от вестибулярных ядер продолговатого мозга. Следующий отдел - старая часть мозжечка, или археоцеребеллум, - включает в себя участки червя, соответствующие ростральной доле, а также пирамиду, язычок и околоклочок. В палеоцеребеллуме находятся проекции восходящих спинно-мозжечковых путей, несущих информацию от мышечных рецепторов. И наконец, третий отдел - новая часть мозжечка, или неоцеребеллум, - состоит из появляющихся у млекопитающих полушарий и участков червя, которые расположены каудальнее первой щели. К неоцеребеллуму по путям, переключающимся в ядрах моста, поступает афферентная импульсация от обширных областей коры больших полушарий (лобных, теменных, височных и затылочных долей ).

Полушария и червь мозжечка состоят из лежащего на периферии серого вещества - коры. - и расположенного глубже белого вещества - мозгового тела, в котором заложены скопления нервных клеток, образующие ядра мозжечка. Кора мозжечка представлена тремя слоями, каждый из которых имеет определенный набор клеточных элементов. Самый поверхностный слой - молекулярный - состоит из параллельных волокон и разветвлений дендритов и аксонов нейронов нижележащих слоев. В нижней части молекулярного слоя расположены тела корзинчатых нейронов, аксоны которых оплетают тела и начальные сегменты аксонов клеток Пуркинье (грушевидных нейронов) (рис. 3.25). Здесь же в молекулярном слое имеется некоторое количество звездчатых клеток.

Вентральное молекулярного слоя находится слой грушевидных нейронов, в котором сосредоточены тела клеток Пуркинье (рис. 3.25). Эти крупные клетки ориентированы вертикально по отношению к поверхности коры мозжечка. .Их дендриты поднимаются вверх и широко ветвятся в молекулярном слое. Дендриты клеток Пуркинье содержат множество шипиков, на которых образуют синапсы параллельные волокна молекулярного слоя. Аксоны клеток Пуркинье спускаются к ядрам мозжечка. Часть из них заканчивается на вестибулярных ядрах. Практически аксоны клеток Пуркинье представляют собой единственный выход из коры мозжечка.

Под ганглиозным слоем лежит зернистый слой, который содержит большое число тел клеток-зерен, или гранулярных клеток. По некоторым подсчетам их число может достигать 10 млрд. Аксоны клеток-зерен поднимаются вертикально вверх, в молекулярный слой и там Т-образно ветвятся. Ветви идут параллельно поверхности коры и образуют синапсы на дендритах других клеток. Здесь же в гранулярном слое лежат клетки Гольджи, аксоны которых подходят к клеткам-зернам.

Афферентный вход к нейронному аппарату коры осуществляется по трем системам нервных волокон. Это, во-первых, лазающие, или ползучие, волокна, идущие из нижних олив продолговатого мозга. Нижняя олива получает афференты от нескольких восходящих путей спинного мозга и из центров головного мозга. Лазающие волокна широко ветвятся и подобно лианам оплетают дендриты клеток Пуркинье, формируя на них синапсы. Вторая система афферентных

Рис. 3.25 Морфофункциональная организация мозжечка

А - отделы и доли мозжечка; Б - расположение связей в коре мозжечка: I - X - доли мозжечка по номенклатуре Ларсела; 1 - ростральная доля, 2 - каудальная доля, 3 - околоклочок, 4 - клочково-узелковая доля, 5 - корзинчатая клетка, 6 - клетка Пуркинье, 7 - лазающее волокно, 8 - клетка-зерно, 9 - клетка внутримозжечкового ядра, 10 - клетка Гольджи, 11 - мшистое волокно; на рис. А черным цветом обозначены структуры древней части мозжечка, серым - старой части, светлым - новой части мозжечка.

волокон - это моховидные, или мшистые, волокна, идущие от ядер моста и оканчивающиеся на клетках-зернах. Мшистые волокна многократно ветвятся и образуют синапсы на множестве клеток коры мозжечка. И наконец, третья система афферентных волокон - это также широко ветвящиеся адренергические волокна, поступающие в кору мозжечка из голубоватого пятна в среднем мозгу. Оно представляет собой скопление из нескольких нейронов, аксоны которых способны диффузно выбрасывать норадреналин в межклеточное пространство. Вероятно, эти нейроны выполняют нейромодуляторную функцию и могут изменять возбудимость нейронов, локализованных в коре мозжечка.

Нейрофизиологические исследования Дж. Эклса показали, что корзинчатые и звездчатые клетки, которые заканчиваются синапсами на клетках Пуркинье, вызывают в них тормозные постсинаптические потенциалы (ТПСП) и подавление импульсной активности. Клетки Гольджи тормозят клетки-зерна по принципу обратной связи (рис. 3.25).

Таким образом, большинство связей, опосредованных интернейронами коры мозжечка, являются тормозными. Исключение составляют только клетки-зерна, которые возбуждаются от моховидных волокон и сами через Т-образно ветвящиеся аксоны активируют все остальные интернейроны коры мозжечка. Однако конечный эффект этой активации опять-таки сводится к торможению.

Клетки Пуркинье, которые представляют собой выход функциональной системы, могут возбуждаться прямо через лазащие волокна и опосредованно через моховидные волокна и клетки-зерна. Возникающие под действием этого возбуждения разряды клеток Пуркинье, согласно электрофизиологическим данным, вызывают в конечном счете торможение нейронов ядер мозжечка. Эти факты свидетельствуют о том, что деятельность всей нейрональной системы коры мозжечка сводится к торможению ядер, над которыми кора надстроена. Очевидно, механизм этого торможения можно представить следующим образом.

В покое клетки Пуркинье обладают фоновой электрической активностью, которая вызывает тоническое торможение нейронов в ядрах мозжечка. Возбуждение клеток Пуркинье через систему лазащих или моховидных волокон приводит к увеличению частоты импульсных разрядов этих нейронов и, как следствие, к усилению торможения ядер мозжечка. Напротив, торможение клеток Пуркинье, вызванное звездчатыми или корзинчатыми клетками, сопровождается растормаживанием нейронов в ядрах мозжечка. Сами же ядра мозжечка, обладающие постоянной тонической активностью, через нисходящие пути регулируют уровень возбудимости центров спинного мозга и мышечный тонус.

Согласно гипотезе, высказанной Дж. Эклсом, большое количество тормозных нейронов в коре мозжечка предотвращает длительную циркуляцию возбуждения по нейронным цепям. Любой возбуждающий импульс, приходя в кору мозжечка, превращается в торможение примерно за 100 мс. Так происходит как бы автоматическое стирание предшествующей информации, которое позволяет коре мозжечка участвовать в регуляции быстрых движений.

В белом веществе мозжечка сконцентрированы три пары ядер. В белом веществе червя близко к срединной плоскости находится ядро шатра (Кёлликера). Нейроны этого ядра посылают свои отростки к ЛПЯ и к ретикулярной формации продолговатого мозга и моста, где берет свое начало ретикулярно-спинномозговой путь. Латеральное ядра шатра находятся вставочные, или промежуточные, ядра, которые у человека разделяется на латеральное (пробковидное) и медиальное (шаровидное) вставочные ядра мозжечка.

От вставочного ядра аксоны идут в средний мозг к красному ядру. Менее развитый афферентный путь от вставочного ядра идет в промежуточный мозг к вентролатеральному ядру таламуса (см. разд. 3.7.2) - и оттуда к двигательной коре. Латеральное всех ядер лежит наиболее крупное латеральное (зубчатое) ядро мозжечка, от которого мощные пучки волокон направляются к вентролатеральному ядру таламуса, и далее аксоны нейронов второго порядка проецируются в моторные зоны коры.

К нейронам мозжечковых ядер подходят аксоны клеток Пуркинье. Установлено, что клетки Пуркинье червя образуют прямые связи с ЛПЯ. Это позволяет иногда относить ЛПЯ к внутримозжечковым ядрам по функциональному принципу.

Существует определенная топография связей коры мозжечка с его ядрами. Согласно классификации Бродала, кору мозжечка млекопитающих можно разделить на три продольные зоны: медиальную червячную зону, от которой аксоны клеток Пуркинье проецируются на ядро шатра, промежуточную зону коры, связанную со вставочным ядром, и латеральную зону коры полушарий, дающую проекции к латеральному ядру. Эта классификация, в основу которой положены эфферентные связи мозжечка, свидетельствует о том, что латеральные отделы мозжечка через зубчатое ядро связаны с более высокими уровнями головного мозга.

В целом мозжечок имеет обширные эфферентные связи со всеми двигательными системами стволовой части мозга: кортикоспинальной, руброспинальной, ретикулоспинальной и вестибулоспинальной. Не менее разнообразными являются и афферентные входы мозжечка.

Афферентная информация в мозжечок от спинного мозга приходит по спинно-мозжечковым путям (дорсальному и вентральному), ростральному спинно-мозжечковому и клиновидно-мозжечковому путям, по спинно-оливо-мозжечковым путям. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются корково-ретикулярно-мозжечковый и корково-мосто-мозжечковый пути.

Мозжечок, или малый мозг, представляет собой надсегментарную структуру, расположенную над продолговатым мозгом и мостом, позади больших полушарий мозга. Мозжечок состоит из нескольких частей, различных по происхождению в эволюции позвоночных животных.

У человека мозжечок состоит из двух полушарий, находящихся по бокам от червя. К филогенетически более древней части мозжечка млекопитающих относят переднюю долю и флоккулонодулярную часть задней доли. Эти структуры мозжечка преимущественно связаны со спинным мозгом и вестибулярным аппаратом, тогда как полушария в основном получают информацию от мышечных и суставных рецепторов, а также от зрительного и слухового анализаторов. На рис. 5.16 представлена схема мозжечка млекопитающего (см. приложение 6), отражающая плотность вестибулярных, проприоцептивных (от мышц, сухожилий и суставов) и корковых афферентных проекций в различные зоны мозжечка. Согласно этой классификации кора мозжечка делится на три области:

1) архицеребеллум (старый мозжечок) - флоккулонодулярная доля (долька X); в ней оканчиваются преимущественно вестибулярные афференты и волокна от вестибулярных ядер; вестибулярные волокна проецируются также частично в язычок (lingula - долька I) и каудальную часть втулочки (uvula - долька IX), которые обычно относят также к архицеребеллуму;

2) палеоцеребеллум (древний мозжечок) включает переднюю долю (дольки II - V), простую дольку (долька VI) и заднюю часть корпуса мозжечка (дольки VIII-IX); палеоцеребеллум тесно связан со спинным мозгом, а также имеет двусторонние связи с сенсомоторной областью коры больших полушарий;

3) неоцеребеллум (новый мозжечок) включает среднюю часть корпуса мозжечка (долька VII и частично дольки VI и VIII), которая получает информацию от коры больших полушарий, а также от слуховых и зрительных рецепторов. Обратите внимание, что основная часть полушарий мозжечка принадлежит новому мозжечку, который лучше всего развит у человека.

В толще мозжечка находятся три пары ядер: зубчатое, расположенное латерально; ядро шатра - медиально; пробковидное и округлое ядра - между ними.

Единственным эфферентным выходом из коры мозжечка являются аксоны клеток Пуркинье, образующие синапсы с нейронами внутримозжечковых ядер и нейронами латерального вестибулярного ядра (рис. 5.17). Тесная связь ядра Дейтерса с корой мозжечка дает основание рассматривать его функционально как внутримозжечковое ядро. Все остальные образования головного и спинного мозга не получают прямых эфферентов из коры мозжечка. Ядра шатра посылают волокна к ядрам Дейтерса и к ретикулярной формации продолговатого мозга. Из области ретикулярной формации, где оканчиваются пути от мозжечка, берет начало ретикулоспинальный путь. Промежуточные ядра посылают аксоны в средний мозг, в том числе к красному ядру. Мощные пучки волокон, образованные преимущественно аксонами нейронов зубчатого ядра, направляются к вентролатеральному ядру таламуса, где происходит синаптическое переключение, и аксоны постсинаптических нейронов идут в моторную область коры больших полушарий; часть аксонов направляется к базальным ядрам. Таким образом, мозжечок не имеет самостоятельных двигательных систем, но образует обширные связи со всеми моторными системами: кортикоспинальной (пирамидной), руброспинальной, ретику-лоспинальной, вестибулоспинальной, а также с полосатым телом.


Афферентные и эфферентные волокна мозжечка собраны в три пары массивных волокнистых пучков, известных как мозжечковые ножки. Афферентные волокна входят в мозжечок в основном через нижние и средние ножки мозжечка. Эфферентные волокна проходят преимущественно через верхние ножки. Однако имеются исключения: некоторая часть спинно-мозжечковых путей входит через верхние ножки, а некоторые эфферентные волокна от флоккулонодулярной доли и ядра шатра проходят через нижние ножки.

Ядра шатра направляют волокна через нижние ножки к вестибулярным ядрам и ретикулярной формации продолговатого мозга и моста. Промежуточные и зубчатые ядра посылают волокна через верхние ножки преимущественно к среднему мозгу и таламусу, особенно к красному ядру. Основная часть церебелло-таламических волокон отходит от зубчатых ядер. Эти волокна проецируются также к красному ядру, полосатому телу. Таким образом, влияния мозжечка на спинальные мотонейроны осуществляются через вестибулоспинальные и ретикулоспинальные пути, а на прецентральную область коры - через вентролатеральное ядро таламуса.

Строение коры мозжечка. Кора мозжечка различных представителей позвоночных, включая человека, построена по единому плану и состоит из трех слоев (см. приложение 6). Поверхностный, или молекулярный, слой содержит разветвления дендритов клеток Пуркинье и параллельные волокна. Клетки Пуркинье имеют уплощенный дендрит, ориентированный параллельно сагиттальным зонам долек (folia) мозжечка. Дендриты и аксоны звездчатых клеток в молекулярном слое расположены таким же образом, тогда как параллельные волокна ориентированы строго трансверзально (перпендикулярно) по отношению к фоллиуму и сагиттальному направлению мшистых волокон. У кошки, например, параллельные волокна, имеют среднюю длину 2 мм (диапазон до 5-7 мм). Одно параллельное волокно пересекает около 700 дендритов клеток Пуркинье.

Проекции мшистых и лазающих волокон в коре мозжечка организованы в виде сагиттальных полосок. В нижней части молекулярного слоя находятся также тела корзинчатых клеток, аксоны которых идут перпендикулярно направлению листка коры мозжечка и оплетают тела и начальные сегменты аксонов клеток Пуркинье. В молекулярном слое имеется также небольшое число звездчатых клеток.

Самый нижний, гранулярный слой содержит клетки-зерна, или гранулярные клетки. От тела клетки-зерна отходит 4-7 коротких дендритных отростков, с которыми мшистые волокна образуют синапсы. Аксон клетки-зерна поднимается вертикально вверх и в молекулярном слое Т-образно ветвится, образуя параллельные волокна. Плоскость его ветвления перпендикулярна плоскости ветвления дендритов клеток Пуркинье. В гранулярном слое находятся клетки Гольджи, аксоны которых восходят в молекулярный слой. Ганглиозный слой находится между описанными выше молекулярным и гранулярным слоями и содержит тела клеток Пуркинье.

Афферентный вход в кору мозжечка осуществляется в основном через две системы волокон: лазающие и моховидные, или мшистые. Каждая клетка Пуркинье получает вход только от одного лазающего волокна (медиатор - аспартат), которое заканчивается на начальной (проксимальной) части дендрита. Лазающие волокна представляют собой аксоны нейронов, тела которых находятся в нижних оливах. По этому входу оказывается мощное возбуждающее действие: клетка Пуркинье деполяризуется на 10-15 мс, и в ней развиваются кальцийзависимые потенциалы действия. За потенциалом действия наступает следовая деполяризация, которая возникает вследствие активации кальцийзависимой калиевой проводимости соматической мембраны. После следовой деполяризации наступает следовая гиперполяризация. По этой причине клетка Пуркинье может возбуждаться по этому входу не более 1-2 раз в 1 с.

Моховидные волокна характеризуются обширной дивергенцией (одно волокно образует синапсы примерно на 20 клетках-зернах) и оказывают как тормозное, так и возбуждающее действие на клетки Пуркинье. Возбудительные влияния на клетки Пуркинье от моховидных волокон переключаются через клетки-зерна, аксоны которых поднимаются к поверхности коры мозжечка и, разветвляясь в молекулярном слое, образуют параллельные волокна. Последние оканчиваются возбудительными синапсами (медиатор - глутамат) на дистальных участках дендритов клеток Пуркинье. По этому входу клетка Пуркинье может активироваться в среднем 30-40 раз в 1 с. Важным свойством этого пути является то, что активные клетки-зерна преимущественно активируют клетки Пуркинье, лежащие непосредственно над ними, т.е. эта активность незначительно распространяется по системе параллельных волокон. Отсюда можно сделать вывод о двойственной функции аксонов клеток-зерен. С одной стороны, их восходящая часть образует радиальную организацию, благодаря которой может осуществляться локальное возбудительное влияние на клетки Пуркинье. Другая функция – модулирующая - связана собственно с параллельными волокнами. Стимуляция мшистых волокон вызывает через аксоны клеток-зерен кортикальные ВПСП в клетках Пуркинье; они характеризуются градуальностью и последующими ТПСП. Показано, что эти ТПСП генерируются за счет активации тормозных интернейронов в молекулярном слое. Синаптическая активация через параллельные волокна вызывает генерацию натриевых ПД в соме, а при большой амплитуде - генерацию дендритных кальциевых ПД.

На рис. 5.18 представлена упрощенная морфофункциональная схема коры мозжечка (нейроны, оказывающие тормозное действие, закрашены черным). Видно, что все входы в кору превращаются в тормозные в большинстве случаев через два переключения. Возбуждающее действие оказывают только два типа нейронов: клетки-зерна и нейроны внутримозжечковых ядер. Оба типа входных волокон (моховидные и лазающие) также являются возбуждающими. Предполагают, что такое большое количество тормозных нейронов в коре мозжечка необходимо для предотвращения длительной циркуляции импульсов по нервным цепям. Благодаря этому свойству мозжечок может участвовать в оперативном управлении движениями.

Функция клеток Гольджи состоит в подавлении разряда всех гранулярных клеток, которые слабо возбуждены. За счет этого осуществляется своего рода «фокусирование» ответа на те гранулярные клетки, которые сильно возбуждены через моховидные волокна. Контроль ответа гранулярной клетки осуществляется как за счет отрицательной обратной связи через клетки Гольджи, так и через синаптический вход на когтевидные дендриты гранулярной клетки. Как правило, каждый «коготок» дендрита активируется отдельным моховидным волокном. Чтобы гранулярная клетка возбудилась, необходима суммация по крайней мере двух «коготков». Следовательно, только при «концентрированной» активности в моховидных волокнах можно вызвать разряд в гранулярной клетке. Аксоны клеток Пуркинье образуют единственный выход из коры мозжечка.

Афферентные связи мозжечка. Афферентные связи мозжечка делят на следующие группы: восходящие от спинного мозга, вестибулярные - от нижней оливы, ретикулярной формации и ядер моста. В кору мозжечка проецируются также зрительные, слуховые и вегетативные афференты. Все эти пути заканчиваются мшистыми и лазающими волокнами в коре мозжечка. Основная часть этих путей передает информацию о состоянии интернейронного аппарата спинного мозга.

Кора больших полушарий, особенно кора вокруг центральной борозды, образует многочисленные прямые проекции на нейроны, залегающие в толще моста (так называемые мостовые ядра). Аксоны этих нейронов проецируются на кору мозжечка. Эти проекции у человека очень обширны, что выражается в образовании валика на вентральной стороне моста (см. приложение 6). Эта система является основным каналом, по которому импульсация от коры больших полушарий достигает коры мозжечка, образуя проекцию как к червю, так и к полушариям мозжечка.

Келликер в 1850 году открыл, что миокард имеет клеточную структуру.

Миокард имеет клеточную структуру, но благодаря межклеточным структурам все клетки возбуждаются практически одновременно. В составе миокарда выделяют:

Клетки рабочего миокарда

Клетки проводящей системы

а. Р-клетки

б. Переходные клетки

в. Клетки Пуркинье

Клетки рабочего миокарда имеют вытянутую форму длинной до 50 мкм. D=10-15 мкм. В них содежатся миофибриллы, митохондрии, имеют одно центрально расположенное ядро. В клетках рабочего миокарда имеются Т-трубочки и L-трубочки саркоплазматического ретиккулума.

Контакт между отдельными кардиомиоцитами называется вставочным диском . Вставочный диск имеет неоднородную структуру. В нем можно выделить 3 морфологические зоны :

- область щели

- область десмосом . В области десмосом мембраны утолщены и достигают 20 нм. Между мембранами обнаруживаются тонофибриллы, протеженность достигает 400 нм. Десмосомы служат для механического сцепления кардиомиоцитов и для осуществления обменных процессов.

- Область плотного контакта (нексусы). В нексусах происходит частичное перекрытие наружных слоев мембран кардиомиоцитов. Поэтому суммарная толщина мембран составляет 12-15 нм. Здесь происходит слияние соседних мембран. Протяженность нексуса составляет 1 мкм. Нексусы занимают во вставочном диске 10-13%. Такое плотное слияние мембран кардиомиоцитов приводит к изменению электрических свойств в этих участках. Электическое сопротивление составляет 1,4 Ом/см2. Именно эти зоны нексусов способствуют тому, что кардиомиоциты возбуждаются практически одновременно.

Нексусы очень чувствительны к недостатку кислорода, действию катехоламинов, к большой физической нагрузке, стрессовым ситуациям.

Для возникновения возбуждения в сердце и его проведения большую роль играет проводящая система сердца. В этой системе существует 3 типа клеток.

Наиболее важными будут являться Р-клетки (пеймейкеры). Это мелкие клетки, которые содержат мало миофибрилл и митохондрий, Т-система в этих клетках отсутствует, L-система развита слабо. Основной функцией Р-клеток является генерация потенциала действия, что связано с медленной диастолической деполяризацией мембран этих клеток. В Р-клетках происходит снижение мембранного потенциала и это вызывает процесс самовозбуждения.

Переходные клетки осуществляют передачу возбуждения с Р-клеток на клетки Пуркинье, а клетки Пуркинье передают возбуждение на клетки миокарда.

Это вытянутые клетки. В них отсутствует саркоплазматический ретикулум. Скорость проведения в этих клетках замедленна . В них так же более снижен потенциал действия.

Клетки Пуркинье - широкие, короткие. Лучше развит саркоплазматический ретикулум, большее количество миофибрилл. Но при этом отсутствует Т-система.

Автоматия - способность сердца сокращаться под действием импульсов, возникших в самом органе .

Автоматия имеет миогенную форму, так как клетки, выполняющие функции создания и проведения импульса, произошли из миоцитов.

Способность сердца сокращаться возникает раньше, чем в него вплетаются нервные клетки.

Первоначально процесс возбуждения возникает в синоатриальном узле . Именно в нем возникают превоначальные изменения эклектического потенциала. Локальное согревание синусного узла увеличивает частоту автоматии. А охлаждение приводит к урежению ритма. Повреждение синусного узла может приводить к полной остановке работы сердца.

В проводящей системе сердца наблюдается постепенное снижение способности к автоматии. Это явление получило название убывающего градиента автоматии . Если водителем ритма становится атриовентрикулярный узел, то импульс идет и к предсердиям и к желудочкам, из-за чего происходит одновременное сокращение и предсердий и желудочков.

Электрические свойства клеток миокарда . Мембранный потенциал клеток рабочего миокарда равен 80-80 мВ. В клетках проводящей системы составляет всего 50-70 мВ.

Внутри кардиомиоцитов содержится больше ионов калия (в 30 больше), натрия в 20-25 раз больше снаружи, чем внутри. Внутри кардиомиоцитов больше органических кардиомиоцитов. Поскольку мембраны кардиомиоцитов проницаемы для калия, то он стремится выйти из клетки, образуя положительный заряд.

При возбуждении возникает потенциал действия, который отличается от потенциала действия в скелетных мышцах и нервах.

Потенциал в рабочих клетках имеет 5 фаз:

1. Фаза 0 . Эта фаза начинается из-за повышения проницаемости мембраны. Натрий входит внутрь клетки, что вызывает процесс деполяризации. Потенциал начинает быстро понижаться до исчезновения. Далее натрий продолжает поступать в клетку и деполяризует мембрану до 3- мВ. Суммарное значение будет равно 110-120 мВ. Было отмечено, что происходит открытие кальциевых каналов с медленной скоростью проведения. Ход положительно заряженных ионов кальция будет влиять на процессы деполяризации. В кардиомиоцитах есть еще одна особенность: снижение калиевой проницаемости по сравнению с покоем в 5 раз.

2. Фаза 1 . Начальная реполяризация. Увеличивается проницаемость для хлора.

3. Фаза 2 . Фаза Плато. Она связана с проникновением в кардиомиоцитов ионов кальция.

4. Фаза 3 . Фаза быстрой реполяризация. Связана с увеличением калиевой проницаемости. Калий выходит из кардиомиоцитов, восстанавливая заряд на мембране.

5. Фаза 4 . Фаза стабильного мембранного потенциала. В этот момент начинают кардиомиоциты в системе активного транспорта ионов (натриево-калиевый насос). Он начинает качать ионы против градиента концентрации и таким образом восстанавливает ионные концентрации внутри клеток.

В Р-клетках потенциал будет отличаться от клеток рабочего миокрада. В этих клетках имеется сниженный исходный уровень. И он не является стабильным, а имеет тенденцию к постепенному снижению. 4 фаза нестабильно, а постепенно снижается. Происходит деполярицация мембраны. Эта фазу называют медленной деастолической деполяризацией.

Это связано с тем, что в Р-клетках снижается проницаемость для ионов калия и повышается проницаемость для ионов кальция. Сниженная калиевая проницаемость уменьшает заряд на мембране. Депляризация мембраны достигает порогового уровня и приводит к самовозбужедению Р-клеток. И они генерируют потенциал, в котором фаза плато выражена слабо, но вовзникший потенциал в Р-клетках передается на другие отделы проводящей системы. Таким образом синусный узел будет являться водителем ритма. На степень частоты возбуждения будет влиять 2 фактора:

Велечина исходного мембранного потенциала (чем он ниже, тем чаще и скорее будут возбуждаться Р-клетки)

Скорость снижения заряда на мембране. Если скорость деполяризации возрастает, то частота возбуждений будет тоже выше.

Эти 2 параметра ялвяются объектом для управления частотой возбуждения со стороны нервных и гуморальных факторов.

Возбудимость.

Особенностью реакции сердца является то, что клетки работают по закону все или ничего. Во время возбуждения сердечная мышца утрачивает возбудимость. Как только осуществляется систола, возбудимость падает до 0 (абсолютная рефрактерная фаза, длится,25-0,27 с). Когда начинается расслабление, возбудимость начинает восстанавливаться (относительная рефрактерность 0,03-0,05). После относительной рефратерности идет недлительный период супернормальной возбудимости, что дает реакцию на допороговые рздражители. Сердце не может во время систолы отвечать на другие раздражители и не сбивается с ритма. Но наличие небольшой фазы повышенной раздражимости дает возможность повышенного возбуждения и возможность дополнительных сокращений и нарушение ритма. Внеочередные сокращения классифицируются по тому, где возникает дополнительный очаг возбуждения, а он может возникать практически в любых участках. Экстрасистола может носить названия: атриовентрикулярная, синусная и т.д.

Признаки: сокращение паузы. Если возникает в желудочке, то пауза наоборот становится больше.

Причины возникновения компенсаторной паузы . Нормальное сокращение сердца возникает под действием импульсов из синусного узла. Если дополнительное возбуждение происходит в стадии диастолы, то появляется дополнительное сокращение. В экстрасистолу сердце утрачивает свойство возбудимости и попадает в состояние рефрактерности. Оно пропускает нормальное сокращение. Вслед за экстрасистолой возникает дополнительная пауза.

Основная функция - эта пауза позволяет вернуться сердцу к исходному ритму.

Возникшее возбуждение в сердечной мышце проводится по проводящей системе и кардиомиоцитам.

Скорость проведения возбуждения в разных отделах сердца неодинакова.

Суммарная задержка равна 0,107 с. Миокард желудочка начнет сокращаться через 0,107 с после возникновения в узле. В это время идет систола предсердий. Поэтому желудочки будут возбуждаться вслед за сокращением предсердий.

Нарушение свойства проводимости сопровождается появлением блокады в сердце.

Синусные блокады возникают довольно редко. Чаще возникают атриовентрикулярные блокад. На первой стадии возникает замеделние, На воторой наблюдает выпадение оттдельных импульсов до желудочка. Может быть полная атривентрикулярная блокада, когда сердце работает в своем ретме, а желудочки в своем.

Кроме того могут возникать блокады в ножках и пучках Гисса.

Свойства сократимости миокарда .

Это способности кардиомиоцитов менять напряжение и длину. Как и в скелетных мышцах в миокарде имеется система Т-трубочек, которая проникает вглубь миоцитов. Имеется сеть саркоплазматического ретикулумма (система проведения возбуждения). Для сокращения необходим кальций, ибо процесс сокращения связан с взаимодействием тонких нитей миозина с толстыми. Без возбуждения этого не происходит, так как тонкие нити актина содержат на себе активные белки. Снятие торможения связано с освобождением кальция. Он связывается с тропонином, происходит смещение регуляторных белков. Сократимость сердечной мышцы подвергается двум законам:

1. Закон "все или ничего"

2. Закон Франка-старлинга. Было установлено, что сила сокращения зависит от исходной длины мышечных клеток (от исходной длины саркомера). При растяжении кардиомиоцитов сила сокращения возрастает.

Систола - есть функция диастолы (чем более длительно идет диастоличесоке наполнение, тем систельне будет диастолическое сокращения). Таким образом сердце способно регулировать силу сокращения в зависимости от притока крови.

Мозжечок относится к заднему мозгу (вместе с Варолиевым мостом) и расположен над продолговатым мозгом. Мозжечок связан с продолговатым мозгом, Варолиевым мостом, а также средним мозгом тремя парами ножек, по которым идут проводящие пути от мозжечка и к мозжечку.

Функции мозжечка разнообразны. Прежде всего мозжечок выполняет роль центра равновесия и контроля сложных и автоматических движений. Мозжечок поддерживает мышечный тонус. Мозжечок является таким автоматом, при помощи которого преодолевается в моторике влияние двух основных свойств массы- тяжести и инерции. Мозжечок автоматически регулирует перемещение центра тяжести в прямо противоположном направлении. Так, например, при сгибании туловища назад, перемещающим центр тяжести назад, мозжечок переносит его вперед посредством сгибания в голеностопных и коленных суставах. Эта синергия утрачивается при поражении мозжечка.

Мозжечок непрерывно посылает свои поправки на влияние тяжести и инерции в виде импульсов к моторным клеткам передних рогов спинного мозга и к двигательным черепным ядрам. Поток этих непрерывных импульсов мозжечка является определенной частью суммы импульсов, получаемых периферическими двигательными нейронами как с периферии, так и из вышестоящих центров. Таким образом, мозжечок участвует в создании определенного тонуса поперечно-полосатой мускулатуры и при его выключении тонус понижается.

Мозжечок состоит из двух полушарий с большим количеством извилин и средней части- червя. Если сделать разрез через любую часть мозжечка, проходящий перпендикулярно извилинам, то мы увидим картину, известную у анатомов под названием albor vitae – дерево жизни. Это зависит от того, что извилины отделены друг от друга очень грубыми бороздами. Благодаря многочисленным извилинам, общая поверхность мозжечка увеличивается и достигает 1500 см.В каждую извилину входит очень узкая полоска белого вещества. С поверхности извилины покрыты серым веществом- корой мозжечка. В коре мозжечка различают три слоя: наружный- молекулярный, средний- ганглиозный и внутренний- зернистый слой. Белое вещество состоит из многочисленных нервных волокон, идущих от коры мозжечка и направляющихся в кору из нижележащих отделов нервной системы. В белом веществе имеются скопления серого вещества, т.е. мультиполярных нервных клеток, которые образуют внутренние ядра мозжечка в количестве трех.

Основными клеточными элементами коры мозжечка являются клетки Пуркинье. Они названы в честь чешского гистолога Пуркинье. Тела клеток Пуркинье образуют средний слой (ганглиозный) коры мозжечка . Эти клетки являются крупными клеточными элементами коры мозжечка и имеют своеобразное строение: тело Пуркинье имеет грушевидную форму. В молекулярный слой от этих клеток отходят два или три верхушечных дендрита, которые сильно ветвятся и образуют фигуру густого дерева. Установлено, что чем выше организация животного, тем ветвления становятся богаче. Наибольшей степени ветвления достигают у человека. Все разветвления дендритов клеток Пуркинье находятся в одной плоскости перпендикулярной к направлению извилины. Поэтому, только на поперечных срезах, проходящих через извилины можно видеть все разветвления дендритов. На продольном разрезе к извилине клетки имеют вид кипариса или пирамидального тополя. На поверхности одной клетки Пуркинье находится около 40000 шипиков, которые представляют собой синапсы клеток молекулярного и зернистого слоев. От тела отходит один аксон, идущий через зернистый слой в белое вещество. Уже в зернистом слое он покрывается миелиновой оболочкой. От аксона отходят коллатерали, которые направляются обратно в ганглиозный слой и в глубокие части молекулярного слоя, где заканчиваются на телах и ветвях дендритов соседних клеток Пуркинье. Сами аксоны клеток Пуркинье заканчиваются на ядрах мозжечка. Клетки Пуркинье являются тормозными: они подавляют функцию нейронов ядер мозжечка, что способствует регуляции двигательных актов. Возбуждение клеток Пуркинье вызывает торможение нейронов ядер мозжечка.

Самый поверхностный слой мозжечка- молекулярный слой. В этом слое лежат параллельные нервные волокна, образованные Т- образными разветвлениями аксонов клеток зерен зернистого слоя, а также разветвлениями дендритов и аксонов нейронов других слоев. В этом слое располагаются два клеток: корзинчатые и звездчатые. Наиболее интересными являются корзинчатые клетки. Эти клетки лежат в нижней трети молекулярного слоя. Их тела имеют неправильную звездчатую форму. Дендриты многочисленны и мало разветвлены. Аксон длинный и тянется параллельно поверхности и заканчивается многочисленными разветвлениями, охватывающими тела клеток Пуркинье в виде корзинок (синапсов). За пределы коры аксоны клеток Пуркинье не выходят. Одна корзинчатая клетка может установить за счет коллатералей связи с 240 грушевидными клетками. Корзинчатые клетки играют роль интернейронов и являются тормозными. Выше корзинчатых клеток лежат звездчатые клетки двух типов: с длинными и короткими аксонами. Звездчатые клетки с короткими аксонами образуют синапсы с дендритами грушевидных клеток, а звездчатые клетки с длинными аксонами образуют синапсы не только с дендритами грушевидных клеток, но и участвуют в образовании корзинок. Дендриты корзинчатых и звездчатых клеток образуют синапсы с аксонами клеток зерен. Звездчатые клетки также являются тормозными.

Зернистый слой состоит из мелких клеток- зерен . Это наиболее многочисленная популяция клеток мозжечка. Клетка почти полностью занято ядром. От тела отходит 3-6 дендритов, которые ветвятся и образуют подобие птичье лапки. Аксон зернистой клетки направляется в молекулярный слой, где Т- образно делится. Образовавшиеся ветви идут параллельно извилине и образуют многочисленные связи с дендритами грушевидных клеток, а также с дендритами звездчатых и корзинчатых клеток молекулярного слоя. Эти клетки стимулируют деятельность грушевидных клеток. Кроме того, здесь в зернистом слое находятся клетки Гольджи с короткими и длинными аксонами. Дендриты клеток с короткими аксонами идут в молекулярный слой, где образуют синапсы с аксонами клеток зерен. Аксоны этих клеток образуют синаптическую связь с дендритами клеток зерен. Дендриты клеток с длинными аксонами образуют синапсы с клетками зернистого слоя, а аксоны идут в белое вещество, а затем возвращаются в кору. Все клетки Гольджи являются тормозными, то есть подавляют возбуждение клеток Пуркинье.

Из различных отделов нервной системы в мозжечок приходят волокна. Различают афферентные и эфферентные волокна мозжечка. Афферентные волокна бывают двух типов: моховидные и лиановидные (лазящие). Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового проводящих путей и заканчиваются на дендритах клеток-зерен, образуя клубочки мозжечка. Лиановидные волокна идут в составе спиномозжечкового и вестибуломозжечкового путей и образуют синапсы с телами и дендритами грушевидных нейронов.

Эфферентные волокна представлены аксонами грушевидных клеток, которые направляются в белое вещество и заканчиваются в ядрах мозжечка.

Глиальный остов мозжечка представлен бергмановскими волокнами (видоизмененными эпителиальными клетками), волокнистой астроцитной глией, олигодендроглией и микроглией.

и другие страшные аббревиатуры. Однако, в этом наборе совершенно точно не хватает ещё одной, самой толстой колоды карт: клеточно-анатомической. Ведь нервная система состоит из большого количества типов клеток, а мозг имеет много различных отделов, которые постоянно упоминаются в наших новостях и статьях. Поэтому мы начинаем и третий цикл статей, который мы условно назвали «Детали». И первая статья этого цикла будет посвящена одному из самых известных типов клеток в мозжечке (структуре, статья о которой еще впереди): клеткам Пуркинье .

Клетки Пуркинье (красный). Фото Yinghua Ma and Timothy Vartanian, Cornell University, Ithaca, N.Y. Part of the exhibit Life:Magnified by ASCB and NIGM

История

Впервые, как несложно догадаться, клетки Пуркинье увидел человек по фамилии Пуркинье. Или Пуркине, как любят говорить пуристы. Чех был потрясающим человеком, учёным-энциклопедистом, переписывался с Гёте, состоял в ордене иллюминатов, открыл сумеречное зрение, стал одним из родоначальников дактилоскопии и создал прототип киноаппарата, несмотря на то, что был старшим современником Пушкина. Он прожил долгую жизнь, и анатомией занимался чуть более двух десятков лет. В 1837 году он описал «ганглиозные тельца» - клетки Пуркинье.

Ян Эвангелиста Пуркинье

Самое известное изображение этих ветвистых клеток получил другой великий учёный - нобелевский лауреат 1906 года, Сантьяго Рамон-и-Кахаль. На его знаменитом рисунке, растиражированном во всех учебниках, изображены клетки Пуркинье и более глубокие гранулярные клетки в мозжечке голубя.

Клетки Пуркинье (А) и гранулярные клетки (В) мозжечка голубя. Рисунок Сантьяго Рамон-и-Кахаля

Только факты

Клетки Пуркинье - это ГАМК-эргические (передающие сигнал при помощи нейромедиатора ) униполярные нейроны (с одним аксоном). Длина аксона у мышей – 2 миллиметра, у крыс - 3 миллиметра. Толщина дендритов 2-5 мкм - толстые ветви, 0.5-1 мкм - тонкие. у клеток Пуркинье очень развита, плотность дендритных шипиков тоже высокая. В итоге, каждая клетка Пуркинье способна образовать до двухсот тысяч синапсов! Это очень много для нейрона.

Клетки Пуркинье мозжечка мыши

Credit: Jakob Jankowski
University of Bonn
Department of Anatomy and Cell Biology
Bonn, Germany

Клетки Пуркинье - одни из самых крупных нейронов (если не считать длину аксонов) в человеческом мозге. Крупнее только клетки Беца, о которых речь ещё впереди.

Мозжечок. Credit: Anatomography maintained by Life Science Databases(LSDB).

Всего клеток Пуркинье в мозжечке 26 миллионов. Они, вместе с особыми глиальными клетками, так называемой глией Бергманна, образуют слой Пуркинье в мозжечке. Удивительно, что разветвлённая дендритная сеть каждой клетки почти двумерна, подобно опахалу или кораллу, и в слое Пуркинье одноименные клетки ориентированы параллельно, как костяшки домино в различных фокусах с падением последних. Сквозь эти двумерные слои дендритов проходят перпендикулярно им волокна аксонов гранулярных клеток из более глубоких слоев мозжечка и образуют с дендритами клеток Пуркинье синапсы (так называемые gcPc-cинапсы, от Granule-cell to Purkinje-cell synapses). Соединение гранулярных клеток и клеток Пуркинье изображено на том самом известном рисунке с клетками Пуркинье, выполненным Рамон-и-Кахалем.

Глия Бергманна

«Разрез» дольки мозжечка с типами клеток

Тело клетки Пуркинье - грушевидное, а длинный аксон уходит сквозь белое вещество к ядрам мозжечка и вестибулярным ядрам.

Происхождение

Если говорить о происхождении клеток Пуркинье во время формирования организма (у нас есть отдельная про то, как формируется нервная система), то есть данные, что эти клетки происходят от общего стволового «предка» вместе с совершенно непохожими на них B-лимфоцитами и альдостерон-продуцирующими клетками коры надпочечника (!).

B-лимфоцит

Зачем они нужны

Роль клеток Пуркинье в том, как мы двигаемся, очень сложно переоценить. Они получают возбуждающие импульсы от лиановидного волокна и моховидных (мшистых) волокон мозжечка и отправляют тормозные импульсы (мы же помним, что ГАМК – основной «тормоз» головного мозга) в глубокие слои мозжечка – его ядра. Если перевести эту активность на простой язык, то клетки Пуркинье играют важнейшую роль в двигательном обучении, в равновесии и коодинации движений. Убедиться в этом просто, зная два факта: во-первых, у человека клетки Пуркинье вызревают сравнительно поздно, к восьми годам жизни человека, а во-вторых, они очень чувствительны к воздействию алкоголя. И именно поэтому дети и пьяные движутся так неуклюже. Кстати, самые развитые клетки Пуркинье - именно у людей, с детства занимающихся сложнокоординированным движением: акробатикой, гимнастикой, фигурным катанием или танцами.

Одиночная клетка Пуркинье

Текст: Алексей Паевский

Читайте материалы нашего сайта в



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...