Конвективная часть котла птвм 100. Котел птвм от котельного завода г. бийска

Описание котлоагрегата, характеристика оборудования

Пиковый теплофикационный водогрейный котел типа ПТВМ-100 тепловой производительностью 100 Гкал/час, рабочее давление от 10 до 16 ата, предназначен для покрытия тепловых теплофикационных нагрузок ТЭЦ.

(В случае необходимости, пиковый котел может быть использован в качестве основного источника тепла)

Котел башенный, всас трубный, радиационного типа, прямоточный с принудительной циркуляцией. (циркуляционными насосами служат сетевые насосы) Тип насоса 18-СД-13.

Изменение теплопроизводительности котла осуществляется изменением количества работающих горелок, при постоянном расходе сетевой воды, в зависимости от расхода воды котел может работать по 2-х ходовой, либо по 4-х ходовой схеме.

Переключение котла с двухходовой схемы на 4-ходовую осуществляется путем установок заглушек на линиях соединяющих котел с прямой и обратной магистралями.

Описание двухходовой схемы (пиковый режим)

Пиковые теплофикационные водогрейные котлы ПТВМ-100 ТЭЦ в настоящее время работают по 2-х ходовой схеме, при этом вода по циркуляционному контуру проходит следующим образом:

Вода, подогретая в основных бойлерах турбин, по трубопроводу  600 через входную задвижку № 1640 поступает к котлу от трубопровода  600, двумя магистралями  400 вода подводится во входные камеры котла, на которых по двум трубопроводам  250 направляется в нижние коллектора боковых экранов.

Из нижних коллекторов боковых экранов по экранным трубам вода поднимается в верхний кольцевой коллектор, который посредине боковых экранов разделен глухими перегородками.

По кольцевому коллектору вода подается в коллекторы конвективной секции, проходит через них в верхние коллекторы фронтового и заднего экранов, и оттуда по экранным трубам поступает в нижние коллектора. Из нижних коллекторов по 4-м трубопроводам 250 вода поступает в выходные камеры котла, а из них 2-мя трубопроводами400, соединяющихся далее в один трубопровод600, через выходные задвижки № 1641 направляется в теплосеть.

Температура воды

а) при пиковом режиме (2-х ходовая схема) - Т­ вх = 104 0 С

Т вых = 150 0 С

б) при основном режиме (4х-ходовая схема) - Т­ вх = 70 0 С

Т вых = 150 0 С

Расход воды

а) при пиковом режиме D макс – 2140т/час, D мин – 1650 т/час;

б) при основном режиме D макс – 1235 т/час, D мин – 800т/час.

Гидравлическое сопротивление котла

а) при пиковом режиме – 0,96 ата

б) при основном режиме – 2,15 ата

При работе котла в пиковом режиме вода проходит вначале через основные бойлера турбинного цеха, где подогревается до 104 0 С и после их направляется в пиковый водогрейный котел, где догревается до более высоких температур (но не свыше 150 0 С).

При работе котла в основном режиме (4-х ходовая схема) обратная сетевая вода, минуя основные бойлера, направляется сразу в водогрейный котел, где и подогревается от температуры 70 0 С до необходимой, но не свыше 150 0 С.

При работе на газе минимальная тепловая нагрузка допускается не ниже 25 Гкал/час (в работе 4 газовые горелки).

Котел работает на естественной тяге, создаваемой дымовой трубой высотой 120 м.

Котел оборудован 16-ю газомазутными горелками и 16-ю дутьевыми вентиляторами типа «ЭВР-6».

Схема расположения горелок

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

Горелки: 1,2,3,4,13,14,15,16 - дистанционные;

7,8,9,10 – автоматизированные;

5,6,11,12 – растопочные;

Для каждой растопочной горелки устанавливается:

А) на мазутопровод – задвижка с электроприводом;

Б) на воздухопроводе – шибер с электрическим исполнительным механизмом, ручной шибер.

Для остальных горелок устанавливаются:

А) на мазутопроводе – задвижка с электроприводом;

Б) на газе и воздухопроводах – кран и шибер, сочлененные между собой механически с общим электроприводом.

Для реконструкции был взят водогрейный котел ПТВМ-100 (рис. 1), теплопроизводительность которого при работе на природном газе составляет 90-95, при работе на мазуте – 60-70 ГКал/ч. Среди основных недостатков котла можно выделить следующие:

  • - относительно маленькая камера сгорания с высоким коэфициентом объемной тепловой нагрузки;
  • - высокие адиабатные температуры в камере сгорания, обусловливающие повышенную концентрацию NOx в уходящих газах (при использовании природного газа – 500-600, мазута – 800-900 мг/м³);
  • - неполное сгорание топлива при сжигании мазута;
  • - высокая температура продуктов сгорания на выходе из камеры сгорания, обуславливающая перегрев труб первого конвективного пакета;
  • - недостаточная регулировка соотношения «воздух-топливо»;
  • - низкие производительность и КПД;
  • - низкая скорость воды на элементах высокого давления, ведущая к их перегреванию;
  • - ненадежное конструкционное выполнение блокировки и защиты

Для анализа работы котла и разработки плана его реконструкции было применено математическое (компьютерное) моделирование с использованием вычислительной гидродинамики. Цель исследований – расчет гидродинамических параметров, давления, температуры в выбранной геометрии. Стоит отметить, что применение вычислительной гидродинамики значительно уменьшает потребность в пробных испытаниях и делает возможным оптимизацию и стимуляцию различных процессов. Следовательно, экономятся значительные средства и, что немаловажно, время.

Современная вычислительная гидродинамика занимается разработкой таких актуальных направлений, как расчет движений вязкой жидкости, численное исследование течений газа с физико-химическими превращениями, изучением распространения ударных волн в различных средах, решение газодинамических задач при наличии излучения. Наиболее важный объект в исследовании вычислительной гидродинамики – применение горелочной техники для сжигания жидкого и газообразного топлива. С большой точностью можно рассчитать внутренний реактивный турбулентный поток в большом котле, что делает возможным подробное сравнение различных вариантов установки горелок.

При создании горелок больших мощностей роль метода вычислительной гидродинамики значительно возрастает по причине невозможности проведения испытаний в реальном топочном объеме и с использованием дурнопахнущих газов. Проведение исследований в производственных помещениях заказчика также является трудной задачей. В этих случаях моделирование практически незаменимо.

На основании результатов математического моделирования разработано подробное конструктивное решение для каждой специфической проблемы. Так, например, проблему так называемой холодной воронки (непрогретой области Б нижней части котла) решили исключить за счет правильного распределения конвективных потоков при замене горелок.

В конструкцию котла добавлены дополнительные конвективные поверхности (пакеты). Кроме того, угол наклона горелок был изменен - принят как 10° вниз по горизонтали.

Результаты моделирования приведены на рис. 2 и 3.


При замене были использованы низкоэмисионные мазутно-газовые горелки Lenox GRT фирмы Oilon с современной автоматикой на базе микропроцессорных контроллеров. Принцип работы горелок (рис. 4) основан на фазовом сжигании топлива, которое подается в разные зоны факела. Воздух для горения распределяется в разных частях воздушного короба и направляется на факел фазировано, в несколько этапов. Таким образом, достигается регулируемое смешивание топлива и воздуха, низкая температура горения и минимальные выбросы вредных веществ в атмосферу. С помощью горелки Lenox реализована также циркуляция дымовых газов. При реконструкции котла применена автоматика BMS (Burner Management System), обеспечивающая безопасность, контроль и оптимизацию горения.

В результате применения новых устройств, а также внесения изменений в конструкцию котла (рис.5) количество горелок было сокращено с 16 до 6. Кроме того, увеличена скорость воды в поверхностях нагрева, что повысило эксплуатационную надежность установки. В целом, в результате реконструкции котла ПТВМ-100, удалось добиться следующих результатов:

  • ♦ увеличения КПД котла на 9-10 % (экономия горючего – 5168 т мазута или 6,25 млн м³ газа за один сезон);
  • ♦ уменьшения ремонтных часов приблизительно на 30 %;
  • ♦ увеличения производительности (на мазуте – до 122, на природном газе – до 128ГКал/ч).

Кроме того, по итогам проведенной работы увеличен (до 99 %) уровень безопасности и снижены выбросы вредных веществ в атмосферу: при использовании газа эмиссия NOx составила менее 120, при использовании мазута – менее 340 мг/м³.

К другим достоинствам реконструкции котла ПТВМ
– 100 с использованием современных горелочных устройств можно отнести:

  • ♦ низкие капиталовложения (приблизительно 30 % стоимости нового котла);
  • ♦ короткое (1,5 года) время окупаемости вложенных средств за счет уменьшения эксплуатационных и ремонтных расходов, энергоэффективности;
  • ♦ увеличение периода безремонтной эксплуатации трубной системы котла (трубы старой системы меняются каждые три года, новая же гарантирует срок эксплуатации от восьми до десяти лет).

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА
ВОДОГРЕЙНОГО КОТЛА ПТВМ-100
ПРИ СЖИГАНИИ ПРИРОДНОГО ГАЗА

ТХ 34-70-014-85

Москва

1986

СОСТАВЛЕНО предприятием «Уралтехэнерго» Производственного объединения по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «Союзтехэнерго»

ИСПОЛНИТЕЛИ Н.Ф. ОВСЯННИКОВ, В.Д. СОЛОМОНОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 17.07.85 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

Типовая энергетическая характеристика котла ПТВМ-100 составлена на основании результатов испытаний и фактических показателей работы котлов, на которых не внедрялись реконструктивные мероприятия по повышению надежности и экономичности, и отражает технически достижимую экономичность котла.

Типовая энергетическая характеристика может служить основой для составления нормативных характеристик котлов ПТВМ-100 при сжигании природного газа.

Топливо: природный газ.

(7950 ккал/м 3).

Показатель

1. на входе в дутьевые вентиляторы t х.в, °С

2. Расход воды через котел G к, т/ч

3. Температура воды на входе t вх, °C

t вых, °C

t ух, °C

q 2 , %

q 3 , %

q 4 , %

q 5 , %

Показатель

← ± 0,37 →

← ± 0,40 →

← ± 0,39 →

3.1. мощность, потребляемая дутьевыми вентиляторами N дв, кВт

3.2. удельный расход электроэнергии на дутье Э дв, кВт · ч/Гкал

Показатель

Характеристика

Заводской расчет

Q к, Гкал/ч

t х.в, °C

3. Расход воды через котел G к, т/ч

t вх, °C

t вых, °C

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2 , %

9. Потери тепла с химической неполнотой сгорания q 3 , %

10. Потери тепла с механической неполнотой сгорания q 4 , %

11. Потери тепла в окружающую среду q 5 , %

12. Коэффициент полезного действия брутто %

13. Температура уходящих газов, приведенная к условиям теплового заводского расчета 1

14. Коэффициент полезного действия брутто, приведенный к условиям теплового заводского расчета 1

1 Без учета изменения коэффициентов избытка воздуха.

Топливо: природный газ.

Характеристика топлива на рабочую массу:

(7950 ккал/м 3).

Показатель

1. Температура холодного воздуха на входе в дутьевые вентиляторы t х.в, °С

2. Расход воды через котел G к, т/ч

3. Температура воды на входе t вх, °C

4. Температура воды на выходе t вых, °C

5. Коэффициент избытка воздуха за котлом a ух

6. Присосы воздуха в котел Da к

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2 , %

9. Потери тепла с химической неполнотой сгорания q 3 , %

10. Потери тепла с механической неполнотой сгорания q 4 , %

11. Потери тепла в окружающую среду q 5 , %

12. Коэффициент полезного действия брутто %

Показатель

1. Поправки к (%) на отклонение:

1.1. температуры холодного воздуха на ± 10 °C

1.2. температуры воды на входе на ± 10 °C

1.3. расхода воды через котел на +100 т/ч

1.4. расхода воды через котел на -100 т/ч

2. Поправки к температуре уходящих газов (°C) на отклонение:

2.1. температуры воды на входе на ± 10 °C

2.2. расхода воды через котел на +100 т/ч

2.3. расхода воды через котел на -100 т/ч

2.4. коэффициента избытка воздуха на +0,1

3. Вспомогательные зависимости:

3.1. мощность, потребляемая дутьевыми вентиляторами N дв, кВт

3.2. удельный расход электроэнергии на дутье Э дв, кВт · ч/Гкал

Показатель

Характеристика

Заводской расчет

1. Теплопроизводительность котла Q к, Гкал/ч

2. Температура холодного воздуха t х.в, °C

3. Расход воды через котел G к, т/ч

4. Температура воды на входе t вх, °C

5. Температура воды на выходе t вых, °C

6. Коэффициент избытка воздуха за котлом a ух

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2 , %

9. Потери тепла с химической неполнотой сгорания q 3 , %

10. Потери тепла с механической неполнотой сгорания q 4 , %

11. Потери тепла в окружающую среду q 5 , %

12. Коэффициент полезного действия брутто %

13. Коэффициент полезного действия брутто, приведенный к условиям заводского теплового расчета 1

1 Без учета изменения коэффициентов избытка воздуха.

t вх = 70 °C

G к = 1235 т/ч

а) на отклонение температуры воды на входе от t вх = 104 °C

б) на отклонение расхода воды через котел от G к = 2140 т/ч

в) на отклонение избытка воздуха от принятого в расчете

Приложение

1. КРАТКАЯ ХАРАКТЕРИСТИКА ОБОРУДОВАНИЯ КОТЕЛЬНОЙ УСТАНОВКИ

1.1. Газомазутный водогрейный котел ПТВМ-100 теплопроизводительностью 100 Гкал/ч предназначен для покрытия теплофикационной нагрузки.

Основные расчетные параметры котла приведены в табл. 3.6.

1.2. Котел башенный, водотрубный, радиационного типа, прямоточный с принудительной циркуляцией.

Котел выполнен в блочной поставке. Топочная камера котла полностью экранирована трубами диаметром 60´3 мм. Потолком камеры является конвективная часть котла. Объем топочной камеры 245 м 3 . В нижней части трубы фронтового и заднего экранов образуют холодную воронку с углом наклона скатов 45°. Высота топки от осей нижних камер фронтового и заднего экрана до осей нижнего ряда труб конвективной части составляет 8110 мм.

Топочная камера в плане представляет собой квадрат с размерами по осям экранных труб 6230´6230 мм.

Над топочной камерой расположена конвективная поверхность нагрева. Конвективная часть состоит из двух пакетов, разделенных по ходу газов ремонтным проемом высотой 600 мм. Каждый пакет имеет 96 секций флажкового типа, набранных из U-образных змеевиков с диаметром труб 28´3 мм и расположенных параллельно фронту котла.

Обмуровка котла натрубная. Трубная система с обмуровкой подвешена на верхних коллекторах к несущим балкам каркаса.

1.3. Котел ПТВМ-100 оборудован 16 комбинированными газомазутными горелками, расположенными в два яруса по 8 на фронтовой и задней стенах. Конструкция горелки предусматривает периферийный подвод газа, закрутка воздуха осуществляется осевыми регистрами. Производительность горелки по газу 0,25 м 3 /с (900 м 3 /ч). Каждая газомазутная горелка оборудована индивидуальным дутьевым вентилятором.

1.4. Регулирование производительности котла осуществляется включением и отключением горелок при постоянном расходе сетевой воды, пределы регулирования производительности 25 - 100 % номинальной. Котел ПТВМ-100 может работать в основном и пиковом режимах. Ниже представлена характеристика основного и вспомогательного оборудования.

Наименование

Значение характеристики

1. Котел ПТВМ-100:

площадь поверхности нагрева, м 2:

конвективной

радиационной

водяной объем, м 3

номинальная теплопроизводительности, Гкал/ч

пределы регулирования производительности, %

температура воды на входе, °C:

в основном режиме

в пиковом режиме

температура воды на выходе, °C

расход воды, т/ч:

в основном режиме

в пиковом режиме

гидравлическое сопротивление котла, кПа (кгс/см 2):

в основном режиме

в пиковом режиме

2. Комбинированная газомазутная горелка:

количество, шт.

3. Дутьевой вентилятор Ц9-57:

количество, шт.

производительность по газу, м 3 /с (м 3 /ч)

давление, МПа (кгс/см 2)

мощность электродвигателя, квт

частота вращения, об/мин

2. ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА КОТЛА ПТВМ-100

2.1. При составлении характеристики использовались материалы испытаний, проведенных в разное время Уралтехэнерго, Южтехэнерго, МГП Союзтехэнерго, а также фактические показатели работы котлов ПТВМ-100 в 1983 - 1984 гг.

Характеристика соответствует руководящим документам и методическим указаниям по нормированию технико-экономических показателей котлов и отражает технически достижимую экономичность котла при нижеприведенных условиях, принятых за исходные.

2.2. Исходные условия составления характеристики:

2.2.1. Котел работает в основном режиме по четырехходовой схеме и в пиковом режиме по двухходовой схеме без предварительного подогрева воздуха.

2.2.2. Котел работает на естественной тяге (без дымососа) на индивидуальную дымовую трубу.

2.2.3. Топливо - природный газ. Низшая теплота сгорания МДж/м 3 (7950 ккал/м 3).

2.2.4. Температура холодного воздуха (t х.в) на входе в дутьевые вентиляторы 5 °C.

2.2.5. Температура сетевой воды (t вх) на входе в котел:

В основном режиме 70 °C;

В пиковом режиме 104 °C.

2.2.6. Общая площадь конвективных поверхностей нагрева равна проектной. Отглушенные змеевики отсутствуют.

2.2.7. Состояние внутренних поверхностей нагрева котла эксплуатационно чистое.

2.2.8. Коэффициент избытка воздуха в режимном сечении (за конвективной частью) a ух на основании результатов испытаний принят равным 1,07 при номинальной нагрузке и постоянным в диапазоне нагрузок 40 - 100 % номинальной; при нагрузках 30 и 25 % номинальной - соответственно равным 1,09 и 1,10.

2.2.9. Суммарные присосы воздуха в топочную камеру и конвективные поверхности нагрева для номинальной нагрузки по результатам испытаний приняты равными 12 %.

С изменением нагрузки значение присосов (%) в котел определялось по формуле

2.2.10. Потери тепла от химической неполноты сгорания топлива (q 3) приняты равными нулю на основании результатов испытаний.

2.2.11. Потери тепла от механической неполноты сгорания топлива (q 4) приняты равными нулю.

2.2.12. Потери тепла в окружающую среду (q 5) приняты равными 0,05 для диапазона нагрузок 25 - 100 % номинальной по данным результатов измерений тепловых потоков с обмуровки и изоляции водогрейных котлов ПТВМ-100, проведенных МГП Союзтехэнерго и Уралтехэнерго.

2.3. Расчет Типовой энергетической характеристики выполнен в соответствии с указаниями «Теплового расчета котельных агрегатов (нормативный метод)» (М.: Энергия, 1973).

2.4. Коэффициент полезного действия брутто котла () потери тепла с уходящими газами (q 2) подсчитаны в соответствии с методикой, изложенной в книге Я.Л. Пеккера «Теплотехнические расчеты по приведенным характеристикам топлива» (М.: Энергия, 1977):

a ух - коэффициент избытка воздуха за конвективной частью;

t ух - температура уходящих газов за конвективной частью;

t х.в - температура холодного воздуха на стороне всасывания дутьевых вентиляторов.

2.5. Удельный расход электроэнергии на собственные нужды котельной установки рассчитан по мощности, потребляемой дутьевыми вентиляторами.

2.6. Типовая энергетическая характеристика и приложения к ней для основного и пикового режима работы котла даны в виде графиков (рис. 1, 2 и 3, 4).

3. ПОПРАВКИ К НОРМАТИВНЫМ ПОКАЗАТЕЛЯМ

3.1. Для приведения основных нормативных показателей работ котла к измененным условиям его эксплуатации даны поправки в виде графиков (рис. 5 - 8) и цифровых значений (табл. 2 и 5).

Поправки рассчитаны в соответствии с методикой, изложенной в «Положении о согласовании нормативных характеристик оборудования и расчетных удельных расходов топлива» (М.: СЦНТИ ОРГРЭС, 1975).

Типовая характеристика построена при условии, что t х.в = 5 °C t вх = 70 °C (основной режим), t вх = 104 °C (пиковый режим), расход воды через котел расчетный.

Влияние изменения этих параметров на показатели работы котла учитывается тремя отдельными поправками:

отклонение температуры холодного воздуха - поправкой к q 2 и (расчетная поправка);

отклонение температуры воды на входе в котел - поправкой к t ух, q 2 и (экспериментальная поправка);

отклонение расхода воды через котел - поправкой к t ух, q 2 и (экспериментальная поправка).

Отклонение избытка воздуха учитывается поправкой к t ух (экспериментальная поправка).

3.2. Поправка (%) на отклонение температуры холодного воздуха рассчитана по формуле

3.3. Пользование системой поправок поясняется следующими примерами.

Котел работает в основном режиме при нагрузке 60 Гкал/ч и следующих измененных условиях эксплуатации:

температура холодного воздуха - 15 °C;

расход воды через котел 1335 т/ч;

температура сетевой воды на входе в котел 60 °C;

коэффициент избытка воздуха за котлом 1,17.

Котел работает в пиковом режиме при нагрузке 80 Гкал/ч и следующих измененных условиях эксплуатации;

температура холодного воздуха - 25 °C;

расход воды через котел 2040 т/ч;

температура сетевой воды на входе в котел 94 °C;

коэффициент избытка воздуха за котлом 1,27.

Из значений параметров, указанных выше, вычитают значения тех же параметров, приведенных в Типовой характеристике для основного или пикового режима работы котла, и подсчитывают их разность. Знак разности указывает направление изменения значения каждого параметра.

Поправки находятся по графикам рис. 5, 6 и 7, 8. Результаты расчета поправок приведены соответственно в табл. П1 и П2.

Таблица П1

Показатель

Значение показателя

Разность значений

Поправка

Dt ух °C

фактическое

из типовой характеристики

Q к, Гкал/ч

Температура холодного воздуха t х.в, °C

Расход воды через котел G к, т/ч

t вх, °C

Суммарное значение

Таблица П2

Показатель

Значение показателя

Разность значений

Поправка

Dt ух °C

фактическое

из типовой характеристики

Теплопроизводительность котла Q к , Гкал/ч

Температура холодного воздуха t х.в, °C

Расход воды через котел G к, т/ч

Температура сетевой воды, на входе в котел t вх, °C

Суммарное значение

Нормативное значение t ух, q 2 , для измененных условий эксплуатации составит:

где, - значения показателей при условиях Типовой энергетической характеристики.

Для примера 1 Для примера 2

Отклонение коэффициента избытка воздуха в режимном сечении от оптимального значения обусловит отклонение от нормативных значений температуры уходящих газов, потери тепла с уходящими газами, КПД брутто котла и вызовет перерасход топлива, эквивалентный значению отклонения q 2:

Для примера 1 Для примера 2

Da ух = +0,1; Da ух = +0,2;

Dt ух = +3,6 °C; Dt ух = +9,2 °C;

Dq 2 = +0,60 %; Dq 2 = +1,58 %;

0,60 %; = 1,5 %;

Журавов А.А.- Генеральный директор МГП «Мостеплоэнерго»

В последние годы развитие теплоснабжения г. Москвы происходит, в основном, за счет строительства новых районных тепловых станций и реконструкции действующих РТС МГП «Мостеплоэнерго». При этом, в связи с ростом жилищного строительства и увеличения теплопотребления в городе, наиболее остро встала задача увеличения единичной тепловой мощности водогрейных котлов.

Принятая в середине 90-х годов ориентация на установку котлов КВГМ-100 не оправдала себя прежде всего из-за их низкой ремонтопригодности, большой энергоемкости и трудностей с достижением проектной мощности после их наладки.

В начале 1996 года МГП «Мостеплоэнерго» совместно с котельным заводом «Дорогобужкотломаш» разработали проект и выполнили реконструкцию водонагревательного котла ПТВМ-100 РТС «Коломенская», которая заключалась в изменении конфигурации топки, снижении на 1400 мм верхнего и нижнего яруса горелочных устройств, увеличении мощности индивидуальных вентиляторов, установке дымовой трубы высотой 69 метров, заключенной в трубный каркас. Новый котел целиком вписывался в существующую котельную ячейку котла ПТВМ-100, что позволило максимально использовать каркасные конструкции, а увеличение объема топки позволило сохранить прежние значения температурных напряжений при общем росте тепловой мощности котла на 20Гкал/час. В марте 1997 года новый котел ПТВМ-120 был принят междуведомственной комиссией для промышленного производства.

В следующем году была проведена реконструкция котлаПТВМ-50 РТС«Чертаново», которая заключалась в увеличении высоты дымовой трубы до70 метров, увеличении высоты топочной камеры, увеличении конвективной поверхности нагрева котла и монтаже новой конструкции в существующих старых котельных габаритах.

При пусконаладочных испытаниях котла ПТВМ-60 РТС «Чертаново» достигнута тепловая мощность - 63 Гкал/час (73,2 МВт/ч), т.е. прирост, как и у котла ПТВМ-120, составил -20%. Кроме отмеченного выше, внедрение новых котлов позволяет:

  • существенно снизить приземные концентрации вредных выбросов в атмосферу (более высокая дымовая труба);
  • снизить, в среднем, выбросыNOx на 20 мг/м 3 ;
  • получить максимальный КПД при работе на газе - 93%;
  • снизить, за счет реконструкции, теплонапряженность топки;
  • продолжить модернизацию оборудования в условиях недостатка финансовых средств.

На 01.01.2001 года в МГП «Мостеплоэнерго» будет эксплуатироваться 32 единицы реконструированных котлов ПТВМ-120 и ПТВМ-60. Учитывая положительный опыт работы этих котлов МГП «Мостеплоэнерго» при поддержке Управления топливно-энергетического хозяйства г. Москвы, при строительстве новых РТС, ориентируется сегодня исключительно на их установку.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...