Передвижение воды по растению, общее понятие о восходящем потоке. Роль сил межмолекулярного сцепления воды. Исследовательская работа:движение воды в растениях

Поданная корнем вода быстро перемеща-ется по растению к листьям. Возникает вопрос, как передвигается вода по растению ? Поглощенная корневыми волосками вода проходит рас-стояние в несколько миллиметров по живым клеткам, а затем уже поступает в мертвые сосуды ксилемы.

Передвижение воды по живым клеткам возмож-но благодаря наличию сосущей силы , возрастающей от корневого волоска к живым клеткам, прилегающим к сосудам ксилемы. Такое же распределение сосущей силы имеется и в живых клетках листа (рис. 124).

При передвижении воды по живым клеткам лис-та сосущая сила каждой последующей клетки должна отличаться на 0,1 атм. В одном из опы-тов удалось установить, что в листе плюща в третьей клетке от жилки имелась сосущая сила, равная 12,1 атм, а в 210-й клетке — 32,6 атм. Та-ким образом, на преодоление сопротивления 207 клеток разница в сосущей силе составила 20,5 атм, т. е. как раз около 0,1 атм на каж-дую клетку. Из этих данных следует, что сопро-тивление осмотическому передвижению воды по живым клеткам равняется около 1 атм на 1 мм проходимого водой пути. Отсюда становится понят-ным, почему растения, не имеющие сосудов (мхи, лишайники), не достигают больших размеров. Только в связи с появлением трахеид (папоротникообразные и голосеменные) и сосудов (по-крытосеменные) в процессе эволюции создалась возможность для растения достигать высоты в несколько десятков и даже свыше сотни метров (эвкалип-ты , секвойи).

Только небольшую часть своего пути в растении вода проходит по живым клеткам — в корнях, а затем в листьях. Большую часть пути вода проходит по сосудам корня, стебля и листа. Испарение воды с поверх-ности листьев создает наличие сосущей силы в клетках листа и корня и поддерживает постоянное передвижение воды по растению. Поэтому листья растений и получили название верхнего концевого двигате-ля , в отличие от корневой системы растения, — нижнего конце-вого двигателя , который нагнетает воду в растение.

О значении передвижения воды по мертвым клеткам древесины — сосу-дам и трахеидам — можно судить по такому опыту.

Если мы срежем ветку какого-либо травянистого растения и поставим ее в воду, то вода будет поступать к листьям, передвигаясь по сосудам бла-годаря испарению с их поверхности. Если закупорить полости сосудов погружением ветви в расплавленную желатину, а затем, когда желатина втянется в сосуды и застынет, соскоблить ее с поверхности среза и опустить ветку в воду, то листья быстро завянут. Этот опыт показывает, что по жи-вым клеткам паренхимы вода не может быстро перемещаться к листьям.

Испаряя воду с поверхности своих листьев, растения автоматически тянут воду по сосудам. Чем интенсивнее транспирация, тем сильнее сосет воду растение. Присасывающее действие транспирации легко обнаружить, если срезанную ветку герметически укрепить в верхнем конце стеклянной трубки, наполненной водой, нижний конец которой погружен в чашку со ртутью. По мере испарения воды на ее место в трубку будет втягиваться ртуть (рис. 125). Конец поднятию ртути кладет воздух, выделяющийся из межклетников, который прерывает сообщение сосудов с водой. Обычно, однако, в подобном опыте удается поднять ртуть на значительную высоту. Работа верхнего концевого двигателя играет значительно большую роль для растения по сравнению с нижним, так как она идет автоматически, за счет энергии солнечных лучей, нагре-вающих лист и повышающих испарение. Работа нижнего концевого двигателя связана с затратой энергии за счет расходования накопленных в процессе фотосинтеза ассимилятов. Однако вес-ной, когда еще не распустилась листва, или во влажных тенистых местообитани-ях, где транспирация очень невелика, основную роль в передвижении воды играет корневая система, нагнетающая воду в растение. Материал с сайта

Присасывающая сила листьев настолько велика, что если перерезать облиственную ветку, то наблюдается не вытекание, а заса-сывание воды. В высоких деревьях это сосание воды листьями передается вниз на десятки метров. В то же вре-мя известно, что любой всасывающий насос не может поднять воду на вы-соту, превышающую 10 м, так как вес этого водяного столба будет соответ-ствовать атмосферному давлению и им уравновешиваться. Наблюдаемое раз-личие между всасывающим насосом и стеблем растения зависит от сцепле-ния воды со стенками сосудов. Опыты с кольцом спорангия папоротника показали, что сила сцепления воды здесь составляет 300—350 атм. Как известно, кольцо на спорангии папоротника состоит из мертвых клеток, у которых внутренние и боковые стенки утолще-ны, а наружные тонки. При созревании спорангиев клетки эти, наполнен-ные водой, теряют ее и уменьшаются в размерах. При этом происходит втягивание внутрь тонкой стенки и сближение концов толстых стенок меж-ду собой. Получается как бы натянутая пружина, стремящаяся оторвать от стенок воду. Когда происходит отрыв воды, то пружина распрямляется и споры с силой разбрасываются из спорангия, как из метательной машины. Вызвать этот отрыв воды можно погружением спорангиев в концентрирован-ные растворы некоторых солей. Измерения показали, что сила, производя-щая отрыв воды, оказалась равной примерно 350 атм. Из изложенного понятно, что сплошные водяные столбы, заполняющие сосуды, крепко спа-яны благодаря силе сцепления. Вес столба воды в 100 м высоты соответству-ет всего лишь 10 атм. Таким образом, огромная сила сцепления позволяет воде в стеблях растений подниматься на высоту, значительно превышающую барометрическую. Корневое давление и присасывающее действие листьев двигают водяной ток на значительную высоту. Большое значение при этом имеют также поперечные перегородки в сосудах, так как воздух, попадая в сосуды, изолируется и из общей системы водоснабжения исключаются лишь небольшие участки.

Скорость движения воды по сосудам сравнительно невелика. Для лиственных древес-ных пород она составляет в среднем 20 см 3 в час на 1 см 2 поперечного се-чения древесины, а для хвойных всего 5 см 3 в час. В то же время кровь по артериям движется со скоростью 40—50 см 3 в секунду, а вода по водопровод-ным магистралям 100 см 3 на 1 см 2 сечения в секунду.

§ 1 Особенности корневого строения

Одной из главных функций корня растения является всасывание из почвы воды и растворенных в ней минеральных веществ. В связи с этой функций корень имеет особенности как внешнего, так и внутреннего строения. Рассмотрим подробнее. Все типы корней в корневой системе: главные, боковые, придаточные имеют сходство в строении.

Все корни ветвятся, нарастают верхушкой и на них никогда не встречаются листья. Верхушка корня защищена колпачком из нескольких слоев мертвых клеток - корневым чехликом. Его функция состоит в защите зоны деления корня от механических повреждений. Клетки чехлика постоянно обновляются за счёт деления, это клетки образовательной ткани - меристемы. Некоторые клетки меристемы добавляют новые слои как к корню, так и к корневому чехлику.

За зоной деления расположена зона растяжения, где клетки уже не нарастают, а только вытягиваются. В этой зоне корень удлиняется и проталкивает зону деления вперед. Далее от зоны растяжения находится зона всасывания. Она представляет собой участок корня, густо покрытый корневыми волосками. Корневой волосок - это вырост клетки эпидермы корня, то есть покровного слоя. Данные клетки увеличивают поверхность всасывания почвенных растворов. Зона всасывания может постепенно перемещаться по корню: на переднем крае этой зоны появляются новые корневые волоски, а на заднем - постепенно отмирают старые. В результате этого процесса зона всасывания медленно продвигается вглубь почвы. На корне также выделяют еще две зоны: ветвления, где образуются боковые корни, и зону проведения - расположенную выше. Зона проведения отвечает за транспорт воды и минеральных веществ в надземные органы растения и транспорт органических веществ из стебля в корень, а также выполняет функцию опоры.

§ 2 Движение воды по растению

Как каждая клетка растения получает воду из почвы? Вода впитывается из почвы корневыми волосками, благодаря нагнетанию давления внутри этих клеток. Данное явление называют корневым давлением. Далее из клеток с корневыми волосками водный раствор просачивается в клетки корня и, перемещаясь из клетки в клетку попадает в сосуды. По сосудам корня вода поднимается сначала в стебель, а по сосудам стебля — к листьям растения.

Вода движется вверх по сосудам проводящей ткани (ксилеме), благодаря не только корневому давлению, но и за счет испарения воды в листьях. Недостаток воды в листьях, вызывает поверхностное натяжение в сосудах ксилемы, которое способно тянуть вверх весь столб воды, создавая массовый поток. Далее по ксилеме вода расходится по всему растению и расходуется для процессов обмена, веществ, фотосинтеза и испарения.

§ 3 Корни влаголюбивых и засухоустойчивых растений

Корни влаголюбивых и засухоустойчивых растений различаются по длине, толщине и расположению в почве. Корни некоторых растений могут достигать глубины до 15 метров, тем самым достигая выхода грунтовых вод в засушливых районах. Например, у подсолнечника, корни достигают 3 метров. Благодаря быстро внедряющемуся вглубь главному корню и сильной ветвистой системе боковых корней и корешков, подсолнечник может выдерживать засуху и хорошо усваивать питательные вещества и почвенную влагу. А вот у огурца глубина корня нередко остается на глубине не более полуметра и корень располагается «вширь», занимая определенную площадь.

Как все клетки, клетки корня нуждаются в дыхании. Они поглощают кислород из почвы и выделяют в нее углекислый газ. Поэтому для многих культурных растений применяют приемы обогащения почвы кислородом - рыхление, вспашка, боронование.

В теплой почве корни лучше усваивают влагу, чем в холодной. Поэтому для теплолюбивых растений нашего огорода мы используем укрытия для грядок - торф или пленку.

А замечали ли вы, что многие садоводы, выращивающие томаты, весной пересаживают саженцы, отщипывая верхушку корня. Зачем они так делают? Чтобы растение быстрее развивалось, необходимо много воды и питания.

Эти процессы обеспечит мощная корневая система. А возникает развитие ветвления корня тогда, когда главный корень не нарастает в длину, поэтому его и прищипывают.

§ 4 Краткие итоги по теме урока

1. Строение корня взаимосвязано с его основной функцией - всасыванием воды и проведением ее к побегу растения.

2. Во внешнем строении корня можно выделить следующие зоны: зона деления (с корневым чехликом), зона растяжения, зона всасывания, зона ветвления и зона проведения.

3. Корень всасывает воду за счет корневого давления и силы испарения с поверхности листьев.

4. Для развития корня необходимы: почвенная влага, кислород и тепло.

Использованные изображения:

Без воды ни одно растение не смогло бы существовать. Как вода попадает в растение и за счет какой силы проникает в каждую клетку организма?

Наука не стоит на месте, поэтому данные о водном обмене растений постоянно дополняются новыми фактами. Л.Г. Емельянов на основании имеющихся данных разработал ключевой подход к пониманию водного обмена растений.

Он поделил все процессы на 5 этапов:

  1. Осмотический
  2. Коллоидно-химический
  3. Теромодинамический
  4. Биохимический
  5. Биофизический

Данный вопрос продолжается активно изучаться, поскольку водный обмен непосредственно связан с водным статусом клеток. Последнее в свою очередь является показателем нормальной жизнедеятельности растения . Некоторые растительные организмы на 95% состоят из воды. В высушенном семени и спорах содержится 10% воды, в этом случае происходит минимальный метаболизм.

Без воды в живой организме не будет протекать ни одной реакции обмена, вода необходима для связи всех частей растения и координации работы организма.

Вода находится во всех частях клетки, в частности, в клеточных стенках и мембранах, составляет большую часть цитоплазмы. Без воды не могли быть существовать коллоиды и молекулы белка. Подвижность цитоплазмы осуществляется за счет большого содержания воды. Также жидкая среда способствует растворению веществ, которые попадают в растение, и разносит их во все части организма.

Вода необходима для следующих процессов:

  • Гидролиз
  • Дыхание
  • Фотосинтез
  • Другие окислительно-восстановительные реакции

Именно вода помогает растению адаптироваться к внешней среде, сдерживает негативное воздействие перепадов температуры. Кроме того, без воды травянистые растения не могли бы поддерживать вертикальное положение.

Вода поступает в растение из почвы, ее поглощение осуществляется с помощью корневой системы. Чтобы произошел водный ток, в работу вступают нижний и верхний двигатели.

Энергия, которая тратится на передвижение воды равняется сосущей силе. Чем больше растение поглотило жидкости, тем выше по значению будет водный потенциал. Если воды недостаточно, то клетки живого организма обезвоживаются, водный потенциал уменьшается, а сосущая сила увеличивается. Когда появляется градиент водного потенциала, вода начинает циркулировать по растению. Его возникновению способствует сила верхнего двигателя.

Верхний концевой двигатель работает независимо от корневой системы. Механизм работы нижнего концевого двигателя можно можно увидеть рассмотрев процесс гуттации.

Если лист растения насыщен водой , а влажность воздуха окружающей среды повышена, то испарение происходить не будет. При этом с поверхности будет выделяться жидкость с растворенными в ней веществами, будет происходить процесс гуттации. Такое возможно, если корнями воды поглощается больше, чем успевает испаряться листьями. Гуттацию видел каждый человек, она зачастую происходит ночью или утром, при высокой влажности воздуха.

Гуттация характерна для молодых растений, корневая система которых развивается быстрей, чем надземная часть.

Капли выходят наружу через водяные устьица, чему способствует корневое давление. При гуттации растение теряет минеральные вещества. При этом оно избавляется от лишних солей или кальция.

Второе подобное явление – плач растений. Если к свежему срезу побега приложить стеклянную трубку, по ней будет двигаться жидкость с растворенными минеральными веществами. Происходит это, поскольку от корневой системы вода движется только в одну сторону, такое явление называется корневым давлением.

На первом этапе корневая система поглощает воду из почвы. Водные потенциалы действуют под разными знаками, что приводит к движению воды в определенном направлении. К разности потенциалов приводит транспирация и корневое давление.

В корнях растений есть два пространства, которые не зависят друг от друга. Называются они апопласта и симпласта.

Апопласт – свободное место в корне, которое состоит из сосудов ксилемы, оболочек клеток и межклеточного пространства. Апопласт в свою очередь разделен еще на два пространства, первое располагается до эндодермы, второе после нее и состоит из сосудов ксилемы. Эндодрема выполняет роль барьера, чтобы воды не переходила на пределы своего пространства. Симпласт – протопласты всех клеток объединенные частично проницаемой мембраной.

Вода проходит следующие этапы:

  1. Полупроницаемая мембрана
  2. Апопласт, частично сипласт
  3. Сосуды ксилемы
  4. Сосудистая система всех частей растений
  5. Черешки и листовые влагалища

По листу воды двигается по жилкам, они имеют ветвистую систему. Чем больше жилок имеется на листе, тем легче воды двигается по направлению к клеткам мезофилла. в данном случае количество воды в клетке уравновешено. Сосущая сила позволяет передвигаться воде от одной клетки к другой.

Растение погибнет, если ей будет недоставать жидкости и связано это не с тем, что в ней протекают биохимические реакции. Имеет значение физико-химический состав воды, в которой происходят жизненно важные процессы. Жидкость способствует появлению цитоплазматических структур, которые не могут существовать вне этой среды.

Вода образует тургор растений, поддерживает постоянную форму органов, тканей и клеток. Вода является основой внутренней среды растения и других живых организмов.

Больше информации можно узнать из видео.

Вода поступает в растение из почвы через корневые волоски и по сосудам разносится по всей его надземной части. В вакуолях растительных клеток растворены различные вещества. Частицы этих веществ давят на протоплазму, которая хорошо пропускает воду, но препятствует прохождению через нее растворенных в воде частиц. Давление растворенных веществ на протоплазму называется осмотическим давлением. Вода, поглощенная растворенными веществами, растягивает до известного предела эластичную оболочку клетки. Как только растворенных веществ становится меньше в растворе, содержание воды уменьшается, оболочка сокращается и принимает минимальный размер. Осмотическое давление постоянно поддерживает растительную ткань в напряженном состоянии, и лишь при большой потере воды, при завядании, это напряжение - тургор - в растении прекращается.

Когда осмотическое давление уравновешено растянувшейся оболочкой, вода не может поступать в клетку. Но стоит клетке потерять часть воды, как оболочка сокращается, находящийся в клетке клеточный сок становится более концентрированным, а вода начинает поступать в клетку, пока оболочка снова не растянется и не уравновесит осмотическое давление. Чем больше воды потеряло растение, тем с большей силой вода поступает в клетки. Осмотическое давление в растительных клетках довольно велико, и его измеряют, подобно давлению в паровых котлах, атмосферами. Силу, с которой растение всасывает воду, - сосущую силу - также выражают в атмосферах. Сосущая сила у растений часто достигает 15 атмосфер и выше.

Растение непрерывно испаряет воду через находящиеся в листьях устьица. Устьица могут раскрываться и закрываться, образовывать то широкую, то узкую щель. На свету устьица раскрываются, а в темноте и при слишком большой потере воды закрываются. В зависимости от этого испарение воды идет то - интенсивно, то почти совсем прекращается.

Если срезать растение под корень, из пенька начинает сочиться сок. Это показывает, что корень и сам нагнетает воду в стебель. Следовательно, поступление воды в растение зависит не только от испарения воды через листья, но и от корневого давления. Оно перегоняет воду из живых клеток корня в полые трубки омертвевших сосудов. Так как в клетках этих сосудов нет живой протоплазмы, вода беспрепятственно движется по ним к листьям, где испаряется через устьица.

Испарение очень важно для растения. С передвигающейся водой разносятся по всему растению поглощенные корнем минеральные вещества.

Испарение снижает температуру тела растения и тем самым предохраняет его от перегрева. Растение усваивает лишь 2-3 части поглощенной им из почвы воды, остальные 997 - 998 частей испаряются в атмосферу. Чтобы образовать один грамм сухого вещества, растение в нашем климате испаряет от 300 г до килограмма воды.

Вода, поступившая в клетки корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации и корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта.

Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам. Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Передвижение воды по коре корня идет главным образом по апопласту, где она встречает меньшее сопротивление, и лишь частично по симпласту.

Однако, для того, чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану клеток эндодермы. Таким образом, мы имеем дело как бы с осмометром, у которого полупроницаемая мембрана расположена в клетках эндодермы. Вода устремляется через эту мембрану в сторону меньшего (более отрицательного) водного потенциала. Далее вода поступает в сосуды ксилемы. Как уже упоминалось, по вопросу о причинах, вызывающих секрецию воды в сосуды ксилемы, имеются различные суждения. Согласно гипотезе Крафтса, это следствие выброса солей в сосуды ксилемы, в результате чего там создается повышенная их концентрация, и водный потенциал становится более отрицательным. Предполагается, что в результате активного (с затратой энергии) поступления соли накапливаются в клетках корня. Однако интенсивность дыхания в клетках, окружающих сосуды ксилемы (перицикла), очень низкая, и они не удерживают соли, которые благодаря этому десорбируются в сосуды. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов и трахеид.

Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В проводящих элементах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротивление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движется всего от 1 до 10% общего потока воды. Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно поэтому густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал которой падает. Вода передвигается от клетки к клетке благодаря градиенту водного потенциала. По-видимому, передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

По сосудам вода движется благодаря создающемуся в силу транспирации градиенту водного потенциала, градиенту свободной энергии (от системы с большей свободой энергии к системе с меньшей). Можно привести примерное распределение водных потенциалов, которое и вызывает передвижение воды: водный потенциал почвы (0,5 бара), корня (2 бара), стебля (5 бар), листьев (15 бар), воздуха при относительной влажности 50% (1000 бар).

Однако ни один всасывающий насос не может поднять воду на высоту больше 10м. Между тем есть деревья, у которых вода поднимается на высоту более 100м. Объяснение этому дает теория сцепления, выдвинутая русским ученым Е. Ф. Вотчалом и английским физиологом Е. Диксоном. Для лучшего понимания рассмотрим следующий опыт. В чашку с ртутью помещают заполненную водой трубку, которая заканчивается воронкой из пористого фарфора. Вся система лишена пузырьков воздуха. По мере испарения воды ртуть поднимается по трубке. При этом высота подъема ртути превышает 760мм. Это объясняется наличием сил сцепления между молекулами воды и ртути, которые в полной мере проявляются при отсутствии воздуха. Сходное положение, только еще более ярко выраженное, имеется в сосудах у растений.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту, значительно большую 10м. Расчеты показали, что благодаря наличию сродства между молекулами воды силы сцепления достигают величины - 30 бар. Это такая сила, которая позволяет поднять воду на высоту, равную 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. Силы сцепления существуют и между водой и стенками сосудов (адгезия). Стенки проводящих элементов ксилемы эластичны. В силу этих двух обстоятельств даже при недостатке воды связь между молекулами воды и стенками сосудов не нарушается.

Вода движется в растении по градиенту водного потенциала. Вода, поглощенная корневыми волосками и другими клетками эпидермиса, из клеток внешней части корня перемещается к ксилеме, занимающей центральную часть корня (рис. 6.8). Главным путем диффузии воды во внешней части корня служит апопласт — непрерывная совокупность клеточных стенок. Однако в эндодерме (цилиндрическом слое клеток, окружающем проводящую ткань) свободная диффузия по клеточным стенкам наталкивается на преграду — водонепроницаемый пробковый слой пояска Каспари. Вода должна изменить здесь свой путь и пройти сквозь мембрану и протопласт клеток эндодермы, играющей, таким образом, роль осмотического барьера между корой корня и его центральным цилиндром. У однодольных пробковеют также и внутренние тангенциальные стенки клеток, но эти стенки пронизаны порами, по которым, как по каналам, может проходить вода.

Рис. 6.7. Корешок проростка горчицы. Многочисленные тонкие выросты — корневые волоски

По ксилеме вода поднимается в надземные части растения. Ксилема состоит из нескольких типов клеток. Вода движется в ней главным образом по сосудам и трахеидам (рис. 2.6 и 6.9). И те и другие клетки прекрасно приспособлены для этой цели: они вытянуты в длину, лишены живого содержимого и внутри полые, т. е. это как бы трубки для воды. Одревесневшие вторичные клеточные стенки достаточно прочны на разрыв, чтобы выдерживать огромную разность давлений, возникающую при подъеме воды к вершинам высоких деревьев. Торцевые, а иногда и боковые стенки члеников сосудов перфорированы; сосуды, состоящие из соединенных конец в конец члеников, образуют длинные трубки, по которым легко проходит вода с растворенными в ней минеральными веществами. В трахеидах нет перфораций, и вода, для того чтобы попасть из одной трахеиды в другую, должна пройти через их торцевые стенки; однако трахеиды — очень длинные клетки, а потому и эта конструкция достаточно хорошо приспособлена для проведения воды. У цветковых растений есть и сосуды, и трахеиды; у более при-митивных форм сосудов, как правило, нет.


Рис. 6.8. Поступление воды из почвы в корень. Вода может перемещаться как по апопласту, так и по симпласту до тех пор, пока она не достигнет эндодермы. Дальнейшее передвижение по апопласту оказывается невозможным; здесь этот путь перекрыт барьером — пояском Каспари. В нижней части рисунка показан при большом увеличении поясок Каспари — водонепроницаемый барьер, заставляющий воду покинуть апопласт и устремиться через мембраны клеток эндодермы в симпласт

Листовые жилки, состоящие из тяжей ксилемы и флоэмы, образуют в листе настолько густую сеть, что любая его клетка оказывается достаточно близко от источника воды (рис. 3.9). Из ксилемы вода диффундирует в стенки клеток мезофилла. Таким образом, вода в жидкой фазе заполняет весь путь от почвы — через корень и стебель — до клеток мезофилла в листе. Суммарный поток воды направлен всегда в сторону меньшего водного потенциала, т. е. ψ максимален в почве, несколько ниже в клетках корня и самый низкий в клетках, примыкающих к эпидермимису листа. Малая величина ψ в этих последних клетках объясняется главным образом испарением воды с поверхности листа, т. е. транспирацией (которой посвящен следующий раздел). Табл. 6.2 дает представление о градиентах, обусловливающих движение воды в растении от ее поступления из почвы до испарения в атмосферу.


Рис. 6.9. А. Поперечный срез листового черешка клещевины (Ricinus communis) . Видны проводящие элементы ксилемы со спиральными утолщениями. Благодаря такому строению трубка может растягиваться по мере того, как черешок растет. (Диаметр более крупной трубки равен приблизительно 15 мкм.) Б. Продольный срез стебля Ricinus, на котором виден сосуд ксилемы и перфорированные торцевые стенки двух члеников сосуда в месте их соединения. Видны эллиптические и округлые окаймленные поры с замыкающей пленкой, но без торуса такие поры типичны для двудольных. (Диаметр сосуда равен приблизительно 21 мкм.) (С любезного разрешения Milburn J. A., Glasgow University; фотографии сделаны при помощи сканирующего электронного микроскопа.)


Таблица 6.2 Примерные значения водного потенциала (ψ) и разности водных потенциалов (Δψ) для гипотетической системы почва — растение — воздух. [Предполагаемые условия — сравнительно небольшое дерево, хорошо увлажненная почва, относительная влажность воздуха около 50% при 22 °С (ψ=-1000 бар)1)]

Вода переходит из растения в окружающий воздух главным образом в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства, и каждая клетка мезофилла хотя бы одной своей стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, и часть этих паров теряется — выходит наружу. Поскольку у большинства растений клетки эпидермиса покрыты воскообразной водонепроницаемой кутикулой, водяные пары выходят из листа в атмосферу главным образом через устьица (рис. 6.10).


Рис. 6.10. Поперечный срез листа, на котором видно открытое устьице (У) с подустьичной воздушной полостью (ВП). Обратите внимание на то, что крупные, заполненные воздухом межклетники пронизывают всю толщу листа

Движение воды в растениях

Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды в растение - корневая система. Роль этого органа, прежде всего, заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растение из большего объема почвы.

Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой. Корневая система имеет поглощающую или всасывающую зону — это зона корневых волосков. Поступив в клетку корневого волоска, вода становится частью живой системы — клетки растения — и подчиняется закономерностям, действующим в живой клетке.

Передвижение по растению определяется двумя основными двигателями водного потока в растении: нижним двигателем водного потока или корневым давлением, верхним двигателем водного потока или присасывающим действием атмосферы.

Основной силой, вызывающей поступление и передвижение воды в растении, является процесс транспирации, в результате которого возникает градиент водного потенциала. Градиент водного потенциала между клеткой и окружающим пространством создает движущую силу потока воды через мембрану. Если окружающая клетку среда представляет собой гипертонические, более концентрированные, чем клеточный сок, растворы, то вода станет выходить из клетки наружу. Это приведет к потере тургора клеткой, отделению плазмалеммы от клеточной стенки и обособлению протопласта — явлению плазмолиза.

Механизм, обеспечивающий поднятие воды по растению за счет корневого давления, — носит название нижнего концевого двигателя водного тока.

Корневое давление создается при переходе воды из коры корня в сосудистую систему корня при прохождении воды через пропускные клетки перицикла, из которых вода под давлением как бы впрыскивается в сосуды ксилемы. Доказательством этого служат явления гуттации и «плача растений».

Вода, поглощенная корневыми волосками и другими клетками эпидермиса, из клеток внешней части корня перемещается к ксилеме, занимающей центральную часть корня. Главным путем диффузии воды во внешней части корня служит аполаст - непрерывная совокупность клеточных стенок. Однако в эндодерме (цилиндрическом слое клеток, окружающем проводящую ткань) свободная диффузия по клеточным стенкам наталкивается на преграду - водонепроницаемый пробковый слой пояска Каспари. Вода должна изменить здесь свой путь и пройти сквозь мембрану и протопласт клеток эндодермы, играющей, таким образом, роль осмотического барьера между корой корня и его центральным цилиндром. У однодольных пробковеют также и внутренние тангенциальные стенки клеток, но эти стенки пронизаны порами, по которым, как по каналам, может проходить вода.

По ксилеме вода поднимается в надземные части растения. Ксилема состоит из нескольких типов клеток. Вода движется в ней главным образом по сосудам и трахеидам. И те и другие клетки прекрасно приспособлены для этой цели: они вытянуты в длину, лишены живого содержимого и внутри полые, т. е. это как бы трубки для воды. Одревесневшие вторичные клеточные стенки достаточно прочны на разрыв, чтобы выдерживать огромную разность давлений, возникающую при подъеме воды к вершинам высоких деревьев. Торцевые, а иногда и боковые стенки члеников сосудов перфорированы; сосуды, состоящие из соединенных конец в конец члеников, образуют длинные трубки, по которым легко проходит вода с растворенными в ней минеральными веществами. В трахеидах нет перфораций, и вода, для того чтобы попасть из одной тра-хеиды в другую, должна пройти через их торцевые стенки; однако трахеиды - очень длинные клетки, а потому и эта конструкция достаточно хорошо приспособлена для проведения воды.

У цветковых растений есть и сосуды, и трахеиды; у более примитивных форм сосудов, как правило, нет.

Листовые жилки, состоящие из тяжей ксилемы и флоэмы, образуют в листе настолько густую сеть, что любая его клетка оказывается достаточно близко от источника воды. Из ксилемы вода диффундирует в стенки клеток мезофилла. Таким образом, вода в жидкой фазе заполняет весь путь от почвы - через корень и стебель - до клеток мезофилла в листе.

Новое в блогах

Суммарный поток воды направлен всегда в сторону меньшего водного потенциала, т. е. максимален в почве, несколько ниже в клетках корня и самый низкий в клетках, примыкающих к эпидермису листа. Малая величина показателя в этих последних клетках объясняется главным образом испарением воды с поверхности листа.

Вода переходит из растения в окружающий воздух главным образом в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства, и каждая клетка мезофилла хотя бы одной своей стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, и часть этих паров теряется - выходит наружу. Поскольку у большинства растений клетки эпидермиса покрыты воскообразной водонепроницаемой кутикулой, водяные пары выходят из листа в атмосферу главным образом через устьица.

Гуттация — это выделение капельно-жидкой влаги листьями через гидатоды в условиях затрудненного испарения. Плач растения — это вытекание пасоки (воды с растворенными в ней минеральными веществами, находящейся в ксилеме) из стеблей растений со срезанными побегами. Гуттация обычно имеет место в условиях высокой влажности воздуха, когда «выключен»верхний концевой двигатель водного токатранспирация — физиологический процесс испарения воды надземными органами растений. Он осуществляется в основном из листьев через устьица и кутикулу.

Вода составляет до 95% массы растений, в ней или с ее использованием протекают все процессы жизнедеятельности. Поэтому вода необходимое условие для жизни организма. При недостатке воды у растения нарушается обмен веществ.

  • Вода обеспечивает поток питательных и минеральных веществ по проводящей системе растения.
  • Прорастание семян зависит от наличия воды.
  • Вода участвует в процессе фотосинтеза.
  • Водные растворы, наполняющие клетки и межклетники, обеспечивают растению упругость, таким образом растение сохраняет свою форму.

Растение обязательно должно поглощать воду. Иначе, рано или поздно, жизнь его прервется. Обычно растение поглощает воду исключительно своей корневой системой из почвы. В этом участвуют корневые волоски корней. Листья же через устьица испаряют воду. Смысл поглощения излишек воды, чтобы потом ее испарить, по большей части сводится к тому, что ток воды обеспечивает перенос веществ.

Если испарение воды растением превышает поступление воды, то у растения наблюдается увядание. Так нередко бывает днем, когда жарко. Ночью растение восполняет недостаток, так как испарение в это время суток снижено.

Вода в растение поглощается путем осмоса. При осмосе вода, в которой меньше растворенных веществ как бы засасывается в более насыщенные веществами растворы.

Как происходит водный обмен у растений: процессы и движение воды по растениях

Клеточные растворы растений более насыщенные, поэтому клетки впитывают воду.

В результате постоянного поглощения и испарения воды в растении существует постоянный водный обмен, включающий три этапа: поглощение воды корнями, передвижение ее по сосудам проводящей ткани, испарение воды листьями. Ток воды идет через все органы растения. Сколько растение всасывает воды, приблизительно столько оно его испаряет. Лишь доли процента от поступившей воды идут на синтез веществ. Это достаточно большие объемы воды. Так, например, только одно растение пшеницы в поле испаряет около 50 г воды в сутки.

Когда корни поглощают воду, они вместе с ней поглощают и растворенные минеральные соли. Когда вода испаряется, то соли в ней уже отсутствуют, они остаются в растении и используются в обмене веществ.

Водный ток идет снизу вверх. Его сила зависит от интенсивности всасывания корней и испарения листьями. Водный ток объединяет все органы растения, переносит различные соединения, питает клетки водой.

Новое в блогах

Нижний и верхний концевые двигатели. Корневое давление, его механизм и значение в жизни растений

В результате активной работы ионных на-сосов в корне и осмотического (пассивного) поступления во-ды в сосуды ксилемы в сосудах развивается гидростатическое давление, получившее название корневого давления. Оно обеспе-чивает поднятие ксилемного раствора по сосудам ксилемы из корня в надземные части. Показано, что у растений, обитаю-щих в холодных и плохо аэрируемых почвах, а также в резуль-тате действия ядов и ингибиторов корневое давление снижено. Механизм поднятия воды по растению вследствие разви-вающегося корневого давления называют нижним концевым двигателем.

Верхний концевой двигатель, обеспечиваю-щий передвижение воды вверх по растению, создается и под-держивается высокой сосущей силой транспирирующих клеток листовой паренхимы.

Транспирация - это физиологический процесс испарения во-ды растением. Основным органом транспирации является лист.

Растение имеет очень большую листовую поверхность, что создает огромную поверхность испарения. В результате потери воды клетками листьев в них снижается водный потенциал, т. е. возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из ксилемы жилок и передвижению воды по ксилеме из корней в листья.

Сила верхнего концевого двига-теля будет тем больше, чем активнее транспирация. Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы исполь-зуется не метаболическая энергия, а энергия внешней среды - температура и движение воздуха.

Предыдущая12345678910111213Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Клетки растений используют осмос для увелечения обьема вакуоли, чтобы она распирала стенки клетки(тугурное давление).Клетки растений делают это путем запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ.

Осмос через полупроницаемую мембрану. Частицы растворителя (синие) способны пересекать мембрану, частицы растворённого вещества (красные) - нет.

В этой главе мы разобрались с осмосом- одним из важнейших устройств для транспорта воды.

2.3. Транспирация, как механизм транспорта воды

Начало изучении транспирации началось с XVIII века, но научный подход к обьянению этого явления начался в середине XIX века.Одним из первым исследователям транспирации был Г.Моль (1856), который докозал, что величина устьичных отверстий определяется тургором замыкающих клеток и зависит от света, тепла и влажности воздуха. Также он проводил эксперементы в результате которых он доказал, что рисутствие в замыкающих клетках хлоро-пластов, синтезирующих осмотические вещества, и таким образом влияющих на работу устьиц и на транспирацию.

Исследовательская работа:движение воды в растениях

Другими учеными, изучающими транспирацию были. Унгер (1857), опубликовавший в 1862 г. большую работу о транспирации. С. Швенденер (1883) высказал мысль, что устьица обеспечивают не только испарение, но и усвоение СОг- Представление об активной роли замыкающих, а не прилегающих к ним эпидермальных клеток, как это считал Дейтгеб (1886), окончательно утвердил сын Чарлза Дарвина Ф. Дарвин (1898). Действие различных лучей спектра на работу устьиц первым исследовал Коль (1895). Он установил, что красные и синие лучи, т. е. лучи, поглощенные хлорофиллом, вызывают открывание устьиц. Кроме устьичной транспирации в 1878 г. была обнаружена еще и кутикулярная (Хенель). Определения количеств испаряемой воды (Га-берландт, 1877; Хенель, 1879, 1880) показали, что эта величина различна в зависимости от природы самого растения и условий его произрастания. Но обо всем по порядку.

Транспирация — процесс потери растениями воды в виде пара. Основной орган для транспирации — лист. Аналогом транспирации является физический процесс испарения. Транспирация- один из важнейших факторов водного режима растений, так как испарение создает определенный энергетический импульс, который является причиной передвижения воды по растению. В связи с этим транспирация определяет скорость поглощения воды растением и вызывает водный дефицит в листьях. Также из-за потери воды в ходе процесса транспирации возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов и передвижению воды по ксилеме из корней в листья. Процесс транспирации может осуществляться лишь при полном отключении нижнего концевого двигателя для работы верхнего концевого двигателя.Науке известно два вида транспирации: кутикулярная и устьичная. Кутикулярная транспирация представляет собой механтзм, в котором листья должны иметь однослойный эпедермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет, тем самым уменьшают потери воды за счет транспирации.Устьичная транспирация. Транспирация через устьица идет почти с такой же скоростью, как и обычная.Транспирация спасает растения от перегрева.

Итак, подведем итог. Мы узнали что транспирация в своей основе является физическим процессом испарения, который контролируется физическими факторами. Однако транспирация — это и физиологический процесс, который находится под влиянием таких внутренних факторов, как строение и расположение листьев, поведение устьиц. Транспирация обычно происходит в две стадии: испарение воды из клеточных стенок в межклетники и диффузия водяного пара в наружную атмосферу

2.4. Корневое давление, как механизм транспорта воды

Корневое давление – один из наиболее изучаемых физиологических процессов. Впервые оно было описано английским ученым С. Гельсом в 1727 году. Интерес к изучению механизмов этого явления не ослабевает. В России одним из первых подробно исследовал экссудацию знаменитый физиолог Д. А. Сабинин. Вначале он рассматривал корневую систему как осмотический аппарат, но позднее пришел к выводу о том, что экссудация является сложным физиологическим процессом, тесно связанным с метаболизмом клеток и их полярностью. В настоящее время все большее число ученых- физиологов растений признает осмотическую концепцию экссудации недостаточной для объяснения работы корня. на основании проведенных многочисленных опытов показано, что деятельность корневой системы складывается из двух составляющих: осмотической и метаболической. Корневое давление – это давление в проводящих сосудах корней, обеспечивающее наряду с транспирацией снабжение водой надземных органов. Оно возникает главным образом в результате повышения осмотического давления в сосудах корня (обычно 1-3 атмосферы) над осмотическим давлением почвенного раствора как следствие активного выделения клетками корня минеральных и органических веществ в сосуды. Обратному току жидкости из сосудов препятствует слой клеток эндодермы с опробковевшими (пропитанными суберином) оболочками. Результатом высокого корневого давления является «плач» растений, а также хорошо известное жителям Беларуси, США, Канады и других стран весеннее вытекание сока при надрезе стволов у березы и клена. Корневое давление имеет огромное значение также в поглощении воды растением в весеннее время до распускания листьев и у проростков при подземном прорастании. Велика его роль в восстановлении разорванных тяжей в сосудах ксилемы, по которым идет восходящий ток воды (от корней – к листьям). В ночные часы корневое давление ликвидирует возникший за день водный дефицит. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу этих двух двигателей.

Опыт, демонстрирующий корневое давление

3. Заключение

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта — спам опубликован не будет



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...