Расчет потерь тепла с изолированными трубопроводами. Определение потерь тепла в тепловых сетях

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома .

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

Санитарно-гигиенические требования:

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру : для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома . Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи .

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q - это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2);
  • ΔT - это разница между температурой на улице и в комнате (°С);
  • R - это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Материал и толщина стены

Сопротивление теплопередаче R m .

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

0.592
0.502
0.405
0.187

Сруб из бревна Ø 25
Ø 20

0.550
0.440

Сруб из бруса

Толщ. 20 сантиметров
Толщ. 10 сантиметров

0.806
0.353

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

0.476
0.709

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Деревянные полы

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Тип окна

R T

q . Вт/м2

Q . Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К

0.32
0.34
0.53
0.59

156
147
94
85

250
235
151
136

Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

0.42
0.44
0.53
0.60
0.45
0.47
0.55
0.67
0.47
0.49
0.58
0.65
0.49
0.52
0.61
0.68
0.52
0.55
0.65
0.72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
. Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
. Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной -30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых , а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

24
-26
-28
-30

76
83
87
89

75
81
83
85

70
75
78
80

66
71
75
76

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

24
-26
-28
-30

91
97
102
104

90
96
101
102

82
87
91
94

79
87
89
91

Рубленая стена (25 см)
с внутр. обшивкой

24
-26
-28
-30

61
65
67
70

60
63
66
67

55
58
61
62

52
56
58
60

Рубленая стена (20 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (18 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (10 см)
с внутр. обшивкой

24
-26
-28
-30

87
94
98
101

85
91
96
98

78
83
87
89

76
82
85
87

Каркасная стена (20 см)
с керамзитовымзаполнением

24
-26
-28
-30

62
65
68
71

60
63
66
69

55
58
61
63

54
56
59
62

Стена из пенобетона (20 см)
с внутр. штукатуркой

24
-26
-28
-30

92
97
101
105

89
94
98
102

87
87
90
94

80
84
88
91

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Пример 1.

Угловая комната (1 этаж)


Характеристики комнаты:

  • 1 этаж.
  • площадь комнаты - 16 м 2 (5х3.2).
  • высота потолка - 2.75 м.
  • наружных стен - две.
  • материал и толщина наружных стен - брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна - два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы - деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура -30 °С.
  • требуемая температура в комнате +20 °С.
  • Площадь наружных стен за вычетом окон: S стен (5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: S окон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: S пола = 5х3.2 = 16 м 2
  • Площадь потолка: S потолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Q стен = 18.94х89 = 1686 Вт.
  • Q окон = 3.2х135 = 432 Вт.
  • Q пола = 16х26 = 416 Вт.
  • Q потолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Q суммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)


Характеристики комнаты:

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна - 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура -30°С.
  • требуемая температура в комнате +20°С.
  • Площадь торцевых наружных стен за вычетом окон: S торц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: S скатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: S бок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: S окон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: S потолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Q торц.стен = 12х89 = 1068 Вт.
  • Q скатов.стен = 8.4х142 = 1193 Вт.
  • Q бок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Q окон = 6.4х135 = 864 Вт.
  • Q потолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Q суммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С. Т внутр. =20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

12
25
50
75

0.15
0.3
0.65
1.0

12
25
50
75

6
12
24
36

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

1.0
0.65
0.45

75
50
34

17
23
26

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

2.5
1.5
0.9

190
110
70

7
10
13

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

10
15
20

0.6
0.9
1.2

45
68
90

10
15
20

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери ).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре -25 °С необходимо 213 Вт на 1 м 2 общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - этот показатель будет составлять: при -25 °С - 173 Вт на м 2 общей площади, а при -30 °С - 177 Вт.

Для уменьшения расхода теплоты необходим строгий учет тепловых потерь в технологическом оборудовании и тепловых сетях . Тепловые потери зависят от типа оборудования и трубопроводов, правильной их эксплуатации и вида изоляции.

Тепловые потери (Вт) рассчитывают по формуле

В зависимости от типа оборудования и трубопровода суммарное термическое сопротивление составляет:

для изолированного трубопровода с одним слоем изоляции:

для изолированного трубопровода с двумя слоями изоляции:

для технологических аппаратов с многослойными плоскими или цилиндрическими стенками диаметром более 2 м:

для технологических аппаратов с многослойными плоскими или цилиндрическими стенками диаметром менее 2 м:

сителя к внутренней стенке трубопровода или аппарата и от наружной поверхности стенки в окружающую среду, Вт/(м 2 - К); Х тр, ?. ст, Xj — теплопроводность соответственно материала трубопровода, изоляции, стенок аппарата, /-го слоя стенки, Вт/(м. К); 5 СТ. — толщина стенки аппарата, м.

Коэффициент теплоотдачи определяют по формуле

или по эмпирическому уравнению

Перенос теплоты от стенок трубопровода или аппарата в окружающую среду характеризуется коэффициентом а н [Вт/(м 2 К)], который определяют по критериальным или эмпирическим уравнениям:

по критериальным уравнениям:

Коэффициенты теплоотдачи а в и а н рассчитывают по критериальным или эмпирическим уравнениям. Если горячим теплоносителем является горячая вода или конденсирующийся пар, то а в > а н, т. е. R B < R H , и величиной R B можно пренебречь. Если горячим теплоносителем является воздух или перегретый пар, то а в [Вт/(м 2 - К)] рассчитывают по критериальным уравнениям:

по эмпирическим уравнениям:

Тепловая изоляция аппаратов и трубопроводов изготовлена из материалов с малой теплопроводностью. Хорошо подобранная тепловая изоляция позволяет снизить потери теплоты в окружающее пространство на 70 % и более. Кроме того, она повышает производительность тепловых установок, улучшает условия труда.

Тепловая изоляция трубопровода состоит в основном из одного слоя, покрытого сверху для прочности слоем листового металла (кровельная сталь, алюминий и др.), сухой штукатурки из цементных растворов и пр. В случае использования покровного слоя из металла его термическим сопротивлением можно пренебречь. Если покровным слоем является штукатурка, то ее теплопроводность незначительно отличается от теплопроводности теплоизоляции. В этом случае толщина покровного слоя составляет, мм: для труб с диаметром менее 100 мм — 10; для труб с диаметром 100—1000 мм — 15; для труб с большим диаметром — 20.

Толщина тепловой изоляции и покровного слоя не должна превышать предельной толщины, зависящей от массовых нагрузок на трубопровод и его габаритных размеров. В табл. 23 приведены значения предельной толщины изоляции паропроводов, рекомендуемые нормами проектирования тепловой изоляции.

Тепловая изоляция технологических аппаратов может быть однослойной или многослойной. Потери теплоты через тепловую

изоляцию зависят от вида материала. Теплопотери в трубопроводах рассчитывают на 1 и 100 м длины трубопроводов, в технологическом оборудовании — на 1 м 2 поверхности аппарата.

Слой загрязнений на внутренних стенках трубопроводов создает дополнительное термическое сопротивление переносу теплоты в окружающее пространство. Термические сопротивления R (м. К/Вт) при движении некоторых теплоносителей имеют следующие значения:

В трубопроводах, подающих технологические растворы к аппаратам и горячие теплоносители к теплообменным установкам, имеются фасонные части, в которых теряется часть теплоты потока. Местные потери теплоты (Вт/м) определяют по формуле

Коэффициенты местных сопротивлений фасонных частей трубопроводов имеют следующие значения:

При составлении табл. 24 расчет удельных тепловых потерь проводился для стальных бесшовных трубопроводов (давление < 3,93 МПа). При расчете тепловых потерь исходили из следующих данных: тем-

пература воздуха в помещении была принята равной 20 °С; скорость его при свободной конвекции — 0,2 м/с; давление пара — 1x10 5 Па; температура воды — 50 и 70 °С; теплоизоляция выполнена в один слой из асбестового шнура, = 0,15 Вт/(м. К); коэффициент теплоотдачи а„ = 15 Вт/(м 2 - К).

Пример 1. Расчет удельных тепловых потерь в паропроводе.

Пример 2. Расчет удельных тепловых потерь в неизолированном трубопроводе.

Заданные условия

Трубопровод стальной диаметром 108 мм. Диаметр условного прохода d y = 100 мм. Температура пара 110°С, окружающей среды 18 °С. Теплопроводность стали X = 45 Вт/(м. К).

Полученные данные свидетельствуют о том, что использование тепловой изоляции сокращает тепловые потери на 1 м длины трубопровода в 2,2 раза.

Удельные тепловые потери, Вт/м 2 , в технологических аппаратах кожевенного и валяльно-войлочного производства составляют:

Пример 3. Расчет удельных тепловых потерь в технологических аппаратах.

1. Барабан «Гигант» изготовлен из лиственницы.

2. Сушилка фирмы «Хирако Кинзоку».

3. Баркас для крашения беретов. Изготовлен из нержавеющей стали [к = 17,5 Вт/(м-К)]; теплоизоляции нет. Габаритные размеры баркаса 1,5 х 1,4 х 1,4 м. Толщина стенки 8 СТ = 4 мм. Температура процесса t = = 90 °С; воздуха в цехе / ср = 20 °С. Скорость воздуха в цехе v = 0,2 м/с.

Коэффициент теплоотдачи а может бьггь рассчитан следующим образом: а = 9,74 + 0,07 At. При / ср = 20 °С а составляет 10—17 Вт/(м 2 . К).

Если поверхность теплоносителя аппарата открыта, удельные тепловые потери от этой поверхности (Вт/м 2) рассчитывают по формуле

Индустриальная служба «Каприкорн» (Великобритания) предлагает использовать систему «Алплас» для уменьшения тепловых потерь с открытых поверхностей теплоносителей. Система основана на применении полых полипропиленовых плавающих шариков, почти полностью покрывающих поверхность жидкости. Опыты показали, что при температуре воды в открытом резервуаре 90 °С тепловые потери при использовании слоя шариков снижаются на 69,5 %, двух слоев — на 75,5 %.

Пример 4. Расчет удельных тепловых потерь через стенки сушильной установки.

Стенки сушильной установки могут быть изготовлены из различных материалов. Рассмотрим следующие конструкции стенок:

1. Два слоя стали толщиной 5 СТ = 3 мм с расположенной между ними изоляцией в виде асбестовой плиты толщиной 5 И = 3 см и теплопроводностью Х и = 0,08 Вт/(м. К).

В.Л. Звягинцев, главный инженер Сумского государственного университета, г. Сумы, Украина.

Занимаясь вопросами теплоснабжения автору данной статьи неоднократно доводилось сталкиваться с различной регламентирующей документацией в этой сфере, в том числе с самым солидным и профессиональным документом - КТМ - 204 Украины 244-94 «Нормы и указания по нормированию затрат топлива и тепловой энергии на отопление жилых и общественных зданий, а также на хозяйственно бытовые потребности Украины.»

Автор критиковал несовершенство документа КТМ - 204 Украины 244-94 по двум вопросам, по причине отсутствия примера по использованию таблицы 7.1, стр.76-105 и отсутствие четкого примера по использованию пункта 3.1.8. стр. 41 для определения тепловых потерь в тепловых сетях.

Приведенные ниже примеры эти секреты раскрывают, они важны при разработке тарифов на тепловую энергию, для проведения энергоаудита теплоснабжающих предприятий, для разработки тепловых схем населенных пунктов, для системного расчета реализованной тепловой энергии и тепловых нагрузок жилых домов в сложившихся условиях, когда часть квартир в домах отключилось от центрального отопления. И, наконец, настоящая статья и примеры раскрывают теорию вопроса в деталях, поэтому читателя ожидают интересные выводы и факты.

ПРИМЕР 1.

Методика определяет реализованную тепловую энергию в тепловой сети по табличным значениям для г.Глухова Сумской области. Расчет ведется в соответствии с методикой КТМ - 204 Украины 244-94 (таблица 7.1)

В представленных расчетах значение общей отапливаемой площади здания складывается из двух составных:

Fобщ. = Fпол. + Fкомм,

где Fпол. - расчетная полезная отапливаемая площадь квартир, м2 (смотри технические паспорта на жилые дома);

Fкомм - расчетная коммунальная отапливаемая площадь помещений общего пользования в жилом доме (смотри технические паспорта на жилые дома).

Определение объемов реализованной тепловой энергии и тепловой нагрузки для жилых домов:

Qреал. = (Fпол. + Fкомм.) х Kуд., (Гкалчас)

где Куд. - коэффициент, который учитывает удельную плановую нагрузку на 1 м2 площади в год, Гкалм2*год (смотри таблица 7.1.)

Реализованная тепловая энергия на проектную площадь равняется 23656,0 Гкал/год, в том числе на коммунальное отопление 6410,1 х 0,19570 = 1254,5 Гкалгод, на отопление полезной площади квартир 23656,0 - 1254,5 = 22401,5 Гкалгод.

Подключенная тепловая нагрузка на отопление жилых домов определяется:

Qподкл. = / , Гкал/час

где Qреал. - реализованная тепловая энергия за отопительный сезон (за год) на отопление, Гкал;

tв. - внутренняя расчетная температура воздуха в помещениях здания, принимается +20оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

tн.р. - наружная расчетная температура воздуха, принимается -25оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010);

24 - количество часов в сутках;

nсут. - количество дней отопительного сезона (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010)

tср. - наружная средняя расчетная температура воздуха за отопительных сезон, принимаем -1,4 оС (смотри ДСТУ - НБВ.1.1-27:2010 Строительная климатология. - действует от 01.01.2010).

Таблица.1 Результаты расчета суммарной тепловой нагрузки жилых домов.

Qподкл. = (23656,0 х 45)/(24 х 187 х 21,4) = 11,084 Гкал/час

Qподкл.ком. = (1254,5 х 45)/(24 х 187 х 21,4) = 0,588 Гкал/час

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 23656 / 120876,6 = 0,19570 Гкал/м2;

За отопительный сезон Qs.ком. = 1254,5 / 114466,6 = 0,01096 Гкалм2;

За отопительный сезон Qs.пол. = 22401,5 / 114466,6 = 0,19570 Гкал/м2;

За сутки Qs.сут. = 0,19570 /187 = 0,001046 Гкал/м2;

За час Qs.час = 0,001046 / 24 = 0,0000436 Гкал/м2.

Для определения средней нормативной тепловой нагрузки брались величины отапливаемой площади, которые были уточнены при проведении энергетического обследования.

Реализованная тепловая энергия отапливаемых площадей, которые остались на центральном отоплении, равняются 18450,6 Гкал/год, в том числе на коммунальное отопление 6410 х 0,19844 = 1272,0 Гкал/год, на отопление полезной площади квартир 18450,6 - 1272,0 = 1717,6 Гкал/год.

Qподкл. = (18450,6 х 45) / (24 х 187 х 21,4) = 8,645 Гкал /час

Qподкл.ком. = (1272,0 х 45)/(24 х 187 х 21,4) = 0,596 Гкал/час

Нормы затрат тепловой энергии на 1 м2 отапливаемой площади для населения:

Qs = Qподкл. / F, Гкал/м2

За отопительный сезон Qs.общ. = 18450,6 / 92977,0 = 0,19844 Гкал/м2;

За отопительный сезон Qs.ком. = 1272,0 / 114466,6 = 0,01111 Гкалм2;

За отопительный сезон Qs.пол. = 17178,6 / 86566,9 = 0,19844 Гкал/м2;

За сутки Qs.сут. = 0,19844 /187 = 0,001061 Гкал/м2;

За час Qs.час = 0,001061 / 24 = 0,0000442 Гкал/м2.

Таблица.2 Результаты расчета суммарной тепловой нагрузки жилых домов, по площади, которая осталась.

ПРИМЕР 2

Расчет тепловых потерь в тепловых сетях ведется согласно методики, определенной в п.3.1.8 стр.41 КТМ -204 Украины 244-94.

Методика в КТМ -204 Украины 244-94 определяет средние потери тепловой энергии в тепловых сетях.

Для определения среднего значения тепловых потерь в тепловой сети, автор предлагает рассчитывать эту величину по среднему потребителю магистрали, а именно, определение радиуса до балансовой средней тепловой нагрузки (Rб.с.т.н.) системы теплоснабжения источника (котельная, ТЭЦ) по формуле:

Rб.с.т.н = ∑Qподкл. / 2, Гкал/час,

∑ Rб.с.т.н = 11,084 / 2 = 5,542 Гкал/час

где Rб.с.т.н - расстояние от источника до потребителя, сумма подключенной тепловой нагрузки которого была прибавлена последней до величины 5,542 Гкал/час по длине магистрального и распределительного подающего трубопровода;

∑Qподкл. - сумма проектных (фактических) тепловых нагрузок потребителей источника, Гкал/час.

Rб.с.т.н. в реальности протяженности тепловой сети магистрали равно 1200 м.

Согласно п. 3.1.8 стр.41 КТМ -204 Украины 244-94 и разработанной автором таблицы 3 полученный результат соответствует тепловым потерям 5,4 %.

Таблица 3. Удельные и тепловые потери в водяных тепловых сетях.

Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Удельные потери,qуд. 0,7 0,64 0,63 0,60 0,58 0,57 0,55 0,53 0,52 0,48 0,47 0,45 0,43 0,42 0,40
Тепловые потери, qт.п. 0,7 1,3 1,9 2,4 2,9 3,4 3,9 4,2 4,7 4,8 5,2 5,4 5,6 5,9 6,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Удельные потери,qуд. 0,38 0,36 0,34 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32
Тепловые потери, qт.п. 6,1 6,1 6,1 6,1 6,4 6,7 7,0 7,4 7,7 8,0 8,3 8,6 9,0 9,3 9,6
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Удельные потери,qуд. 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,31 0,30 0,29 0,29
Тепловые потери, qт.п. 9,9 10,2 10,6 10,9 11,2 11,5 11,8 12,2 12,5 12,8 13,0 13,0 13,0 13,0 13,0
Длина тепл. сети,

Тепловые Lм,Rб.с.т.н.

Сотни метров, n = L/100м
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Удельные потери,qуд. 0,28 0,28 0,27 0,27 0,26 0,26 0,25 0,25 0,24 0,24 0,23 0,23 0,22 0,22 0,22
Тепловые потери, qт.п. 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0 13,0

Таблица 3 имеет продолжение. По данным таблицы 3 можно построить график удельных потерь и график тепловых потерь в водяных тепловых сетях.

График удельных и тепловых потерь в водяных тепловых сетях.

Особенности предлагаемого графика удельных тепловых потерь и графика тепловых потерь в водяных теплових сетях:

- График совпадает с цифрами КТМ -204 Украины 244-94 в следующих точках:

до 500 м - 2,9 %; до 1000 м - 4,8%; максимальне тепловые потери - 13%.

График имеет не одну а две кривые: удельных теплових потер и теплових потер на каждые 100 м водяной тепловой сети.

Кривая теплових потерь идет на увеличение и имеет одну точку излома на расстоянии 4,1 км, где тепловые потери в водяной тепловой сети достигают 13% и дальше не увеличиваются и не уменьшаются.

Кривая графика удельных теплових потер не совпадает с величинами, указанными в КТМ -204 Украины 244-94, где на расстоянии 1000 м удельные тепловые потери составляют 0,48% и скачком не могут энергетически быстро вырасти до 0,6%, на самом деле удельные тепловые потери продолжают уменьшаться до расстояния 1,9 км до 0,32%, где график имеет первую точку излома на относительно горизонтальную кривую. Другая точка излома графика имеет место на расстоянии 4,1 км, где удельные тепловые потери начинают снова уменьшаться. График удельных тепловых потерь в бесконечности не пересекает ось нуля, поэтому график тепловых потерь в водяных тепловых сетях далее не увеличивается и составляет 13% по формуле qт.п. = n х qуд., при условии

n = Lтепловой сети / 100 м.

ВЫВОДЫ:

1. Сегодня тепловые потери в водяных теплових сетях рекомендуется рассчитывать по «Методическим указаним по определению теплових потер в водяных теплових сетях» - РД 34.09.25 от 01.01.1998года.

С точки зрения автора оба расчета теплових потерь в водяных теплових сетях пока имеют право на жизнь, но предлагаемый способ рассчета ясен и краток на базе КТМ -204 Украины 244-94, а рассчет на базе РД 34.09.25 от 01.01.1998года очень громоздкий, поэтому приводит к не объективной оценке в большую сторону в два и болем раза.

Положения РД 34.09.25 от 01.01.1998года были известны и ранее (смотри, например, В.И.Манюк и другие «Справочник по наладке и эксплуатации водяных теплових сетей», Москва, Стройиздат, 1982 год), однако в КТМ -204 Украины 244-94 и предшествующих документах СССР эта версия не нашла применения. Очевидно, по причинам того, что инстументальные замеры для заполнения таблиц РД 34.09.25 от 01.01.1998года выполнялись десятки лет назад приметивными приборами. Содержание РД 34.09.25 от 01.01.1998года противоречиво по принципиальным вопросам. Например, в формуле 7 удельные тепловые потери через тепловую изоляцию трубопровода водяной тепловой сети измеряются в Вт/м или Ккал/(м*час), те же единицы стоят в таблицях 1 и 2 в Вт/м2 или Ккал/(м2*час). Таблицы 3,4,5 плотности теплового потока только усложняют и запутывают и до того уже сложные расчеты по формуле 7. По устаревшим данням таблицы 4 можно сделать вывод, что современная тепловая изоляция трубопроводов при бесканальной прокладке уступает примерно в два раза тепловым потерям через тепловую изоляцию в водяных трубопроводах со старой изоляцией в непроходных каналах и надземной (воздушной) прокладке.

2. Предлагаемая усовершенствованная простая методика (пример 2) на базе КТМ -204 Украины 244-94 расчета тепловых потерь в водяных тепловых сетях утверждает и доказывает, что в водяных тепловых сетях потери тепловой энергии не превышают 13% независимо от тепловой мощности источника.

3. Вместе с тем, предлагаемая методика (пример 1) на базе КТМ -204 Украины 244-94 утверждает и доказывает, что большие и иногда основные тепловые потери тепловой энергии в системе теплоснабжения источника находятся внутри отапливаемых зданий, например, в виде потребленной коммунальной тепловой энергии в жилых домах в объемах от 8 до 19%, расходуемых на отопление холлов, лестничных площадок, коридоров вне квартир, площадок мусоропроводов, лифтовых шахт, помещений колясочных и т.д .

4. Наряду с устранением теплових потерь в водяных теплових сетях необходимо равноценно устранять коммунальные тепловые потери в отапливаемых жилых домах, даже когда в доме установлен тепловой счетчик, который учитывает и потребление коммунальной тепловой энергии.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2 °C/Вт

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть .

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля:

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна: значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при?T = 40 °С

стены: панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Выберите город Выберите город Брест Витебск Волгоград Днепропетровск Екатеринбург Запорожье Казань Киев Луганск Львов Минск Москва Нижний Новгород Новосибирск Одесса Омск Пермь Рига Ростов-на-Дону Самара Санкт-Петербург Симферополь Уфа Харьков Челябинск Чернигов t нар = - o C

Введите температуру воздуха в помещении; t вн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада По умолчанию Без вентилируемой воздушной прослойки С вентилируемой воздушной прослойкой α =

Площадь наружных стен, кв.м.

Толщина первого слоя, м.

Толщина второго слоя, м.

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Выберите остекление

По умолчанию Однокамерный стеклопакет Двухкамерный стеклопакет Однокамерный стеклопакет с селективным покрытием Двухкамерный стеклопакет с аргоновым заполнением Двойное остекление в раздельных переплетах Два однокамерных стеклопакета в спаренных переплетах k =

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

По умолчанию Мансарда. Между потолком и кровлей воздушная прослойка Мансарда. Кровля плотно прилегает к потолку Потолок под неотапливаемым чердаком α =

Введите площадь потолка, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

По умолчанию Над холодным подвалом, сообщающимся с наружным воздухом Над неотапливаемым подвалом со световыми проемами в стенах Над неотапливаемым подвалом без световых проемов в стенах Над техническим подпольем ниже уровня земли Пол на грунте α =

Введите площадь пола, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. развернуть (откроется в новом окне)

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

Коэффициенты теплопроводности строительных материалов взяты по , приложение 3 для нормального влажностного режима нормальной зоны влажности.

03.12.2017 - скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 - добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение . В поле t нар ставим температуру холодной комнаты, в нашем случае гаража, со знаком "-". -(-5) = +5 . Вид фасада выбираем "по умолчанию". Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно.



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...