Как определяется прочность бетонной конструкции? Прочность бетонных конструкций

Класс бетона (В) - показатель прочности бетона на сжатие и определяется значениями от 0,5 до 120, которые показывают выдерживаемое давление в мегапаскалях (МПа), с вероятностью 95%. Например, класс бетона В50 означает, что данный бетон в 95 случаев из 100 выдержит давление на сжатие до 50 МПа.

По прочности на сжатие бетоны подразделяют на классы:

  • Теплоизоляционные (В0,35 - B2).
  • Конструкционно-теплоизоляционные (В2,5 - В10).
  • Конструкционные бетоны (В12,5 - В40).
  • Бетоны для усиленных конструкций (от В45 и выше).

Класс бетона по прочности на осевое растяжение

Обозначается "Bt" и соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 и принимается в пределах от Bt 0,4 до Bt 6.

Марка бетона

Наряду с классом прочность бетона также задается маркой и обозначается латинской буквой "М" . Цифры означают предел прочности на сжатие в кгс/см 2 .

Разница между маркой и классом бетона не только в единицах измерения прочности (МПа и кгс/см 2), но и в гарантии подтверждения этой прочности. Класс бетона гарантирует 95%-ю обеспеченность прочности, в марках используется среднее значение прочности.

Класс бетона прочности по СНБ

Обозначается буквой "С". Цифры характеризуют качество бетона: значение нормативного сопротивления / гарантированная прочность (на осевое сжатие, Н/мм 2 (МПа)).

Например, С20/25: 20 - значение нормативного сопротивления fck, Н/мм 2 , 25 - гарантированная прочность бетона fс, Gcube, Н/мм 2 .

Применение бетонов в зависимости от прочности

Класс бетона по прочности Ближайшая марка бетона по прочности Применение
В0,35-B2,5 М5-М35 Применяется для подготовительных работ и не несущих конструкций
В3,5-B5 М50-М75 Применяется для подготовительных работ перед заливкой монолитных плит и лент фундаментов. Также в дорожном строительстве в качестве бетонной подушки и для установки бордюрного камня. Изготовляется на известняковом, гравийном и гранитном щебне.
В7,5 М100 Применяется для подготовительных работ перед заливкой монолитных плит и лент фундаментов. Также в дорожном строительстве в качестве бетонной подушки, для установки бордюрного камня, для изготовлении дорожных плит, фундаментов, отмосток, дорожек и т.д. Может быть использован для малоэтажного строительства (1-2 этажа). Изготовляется на известняковом, гравийном и гранитном щебне.
B10-В12,5
М150 Применяется для изготовления конструктива: перемычки и т.п. Не целесообразно использовать в качестве дорожного покрытия. Может быть использован для малоэтажного строительства (2-3 этажа). Изготовляется на известняковом, гравийном и гранитном щебне.
В15-В22,5 М200-М300 Прочность бетона марки м250 вполне достаточна для решения большинства строительных задач: фундаменты, изготовление бетонных лестниц, подпорных стен, площадок, и т.д. Используется при монолитном строительстве (около 10 этажей). Изготовляется на известняковом, гравийном и гранитном щебне.
В25-В30 М350-М400 Применяется для изготовления монолитных фундаментов, свайно-ростверковых ЖБК, плит перекрытий, колонн, ригелей, балок, монолитных стен, чаш бассейнов и иных ответственных конструкций. Используется при высотном монолитном строительстве (30 этажей). Наиболее используемый бетон при производстве ЖБИ. В частности, из конструкционного бетона м-350 делают аэродромные дорожные плиты ПАГ, предназначенные для эксплуатации в условиях экстремальных нагрузок. Многопустотные плиты перекрытий тоже производятся из этой марки бетона. Производство возможно на гравийном и гранитном щебне.
Применяется для изготовления мостовых конструкций, гидротехнических сооружений, банковских хранилищ, специальных ЖБК и ЖБИ: колонн, ригелей, балок, чаш бассейнов и иных конструкций со спецтребованиями.
Применяется для изготовления мостовых конструкций, гидротехнических сооружений, специальных ЖБК, колонн, ригелей, балок, банковских хранилищ, метро, плотин, дамб и иных конструкций со спецтребованиями. Во всех рецептурах, паспортах и сертификатах обозначается как бетон М550. В просторечии за ним укрепилась цифра 500.
Применяется для изготовления мостовых конструкций, гидротехнических сооружений, специальных ЖБК, колонн, ригелей, балок, банковских хранилищ, метро, плотин, дамб и иных конструкций со спецтребованиями.

Средняя прочность бетона

Среднюю прочность бетона (R) каждого класса определяют при нормативном коэффициенте вариации. Для конструктивных бетонов v=13,5%, для теплоизоляционных бетонов v=18%.

R = В /

где В - значение класса бетона, МПа;
0,0980665 - переходной коэффициент от МПа к кг/см 2 .

Таблица соответствия классов и марок

Класс бетона по прочности (С) по СНБ Класс бетона по прочности (B) по СНиП (МПа) Средняя прочность бетона данного класса R
Ближайшая марка бетона по прочности М (кгс/см 2) Отклонение ближайшей марки бетона от средней прочности класса R - M/R*100%
МПа кгс/см 2
- В 0,35
0,49
5,01 М5 +0,2
- В 0,75 1,06 10,85 М10 +7,8
- В 1 1,42 14,47 М15 -0,2
- В 1,5 2,05 20,85 М25 -1,9
- В 2 2,84 28,94 М25 +13,6
- В 2,5 3,21 32,74 М35 -6,9
- В 3,5 4,50 45,84 М50 -9,1
- В 5 6,42 65,48 М75 -14,5
- В 7,5 9,64 98,23 М100 -1,8
С8/10 В10 12,85 130,97 М150 -14,5
С10/12,5 В12,5 16,10 163,71 М150 +8,4
С12/15 В15 19,27 196,45 М200 -1,8
С15/20 В20 25,70 261,93 М250 +4,5
С18/22,5 В22,5 28,90 294,5 М300 +1,9
С20/25 В25 32,40 327,42 М350 -6,9
С25/30 В30 38,54 392,90 М400 -1,8
С30/35 В35 44,96 458,39 М450 +1,8
С32/40 В40 51,39 523,87 М550 -5,1
С35/45 В45 57,82 589,4 М600 +1,8
С40/50 В50 64,24 654,8 М700 +6,9
С45/55 В55 70,66 720,3 М700 -2,8

Нарастание прочности бетона во времени . Опыты показывают, что прочность бетона увеличивается во времени и этот процесс может продолжаться годами (рис. 1.3). Однако степень повышения прочности связана с температурно-влажностными условиями окружающей среды и составом бетона. Наиболее быстрый рост прочности наблюдается в начальный период.


Рост прочности бетона напрямую связан с его старением и поэтому зависит, по существу, от тех же факторов.

Существует целый ряд предложений по установлению зависимости между прочностью бетона R и его возрастом. Для нормальных условий твердения бетона на портландцементе наиболее простой является логарифмическая зависимость, предложенная Б.Г. Скрамтаевым:

При сроках твердения, превышающих 7...8 сут, эта формула даёт удовлетворительные результаты.

Повышение температуры и влажности среды значительно ускоряют процесс твердения бетона. С этой целью железобетонные изделия на заводах подвергают специальной тепловлажностной обработке при температуре 80 ..90 °С и влажности 90... 100 % или автоклавной обработке при давлении пара около 0,8 МПа и температуре 170 °С В последнем случае проектная прочность бетона может быть получена уже через 12 часов.

При температурах ниже +5 °С твердение бетона существенно замедляется, а при температуре бетонной смеси -10 °С практически прекращается. За 28 сут твердения при температуре -5 °С бетон набирает не более 8 % прочности бетона, твердеющего в нормальных условиях, при температуре 0 °С - 40...50 %, при +5 °С - 70...80%. После оттаивания бетонной смеси твердение бетона возобновляется, но конечная прочность его всегда оказывается ниже прочности бетона, твердевшего в нормальных условиях. Бетоны прочность которых к моменту замерзания составляла не менее 60% от R28, после оттаивания в течение 28 суток набирают проектную прочность.

При хранении бетона в воде наблюдается более интенсивный рост прочности. В значительной степени это объясняется тем, что в бетоне не образуются поры от испарения воды, в которых давление паров воды направлено из бетона наружу. При водяном хранении давление направлено от внешней среды в бетон.

Прочность бетона при центральном сжатии . Как следует из опытов, ссли бетонный кубнк из плотного бетона имеет достаточно однородное строение и правильную геометрическую форму, то разрушаясь под действием равномерно распределённой нагрузки он приобретает форму двух усеченных пирамид, сложенных малыми основаниями (рис. 1.4, а). Подобный характер разрушения (разрушение от среза) обусловлен значительным влиянием сил трения, которые развиваются между подушками пресса и торцовыми поверхностями образца. Эти силы направлены внутрь образца и препятствуют свободному развитию поперечных деформаций, создавая своеобразную обойму. Эффект обоймы по мере удаления от торцов образца уменьшается.


Если устранить влияние сил трения поверхностей касания (например, введением смазки на торцевых гранях образца), то разрушение приобретает иной характер (рис. 1.4, б): в образце возникают трещины, параллельные направлению сжатия. Теперь трение уже не препятствует развитию поперечных деформаций образца и разрушение происходит при гораздо меньшей (до 40 %) сжимающей нагрузке. Образцы-кубы из ячеистого и крупнопористого бетонов разрушаются по продольным поверхностям даже при наличии трения по опорным граням, поскольку связи между их структурными элементами ослаблены пустотами и порами.

Предел прочности на сжатие при испытании кубика подсчитывается делением разрушающей силы Nu на площадь грани кубика А.

В ряде стран (США и др.) вместо кубика принят образец цилиндрической формы высотой 12”(305 мм) и диаметром 6”(152 мм). Для одного и того же бетона прочность цилиндрического образца таких размеров составляет 0,8...0,9 от прочности кубика с размером ребра 150 мм.

Прочность кубиков из бетона одного и того же состава зависит от размеров образца и уменьшается с увеличением размеров. Так, прочность кубика из тяжёлого бетона с ребром 300 мм составляет примерно 80% от прочности кубика с ребром 150 мм, а кубика с ребром 200 мм - 90%. Это объясняется как снижением эффекта обоймы при увеличении размеров образца и расстояния между его торцами, так и влиянием размеров образца на скорость твердения (чем крупнее образец, тем медленнее он набирает прочность на воздухе) и на вероятное наличие в нём внешних и внутренних дефектов (чем образец крупнее, тем, как правило, этих дефектов больше и прочность ниже).

Однако следует иметь в виду, что хотя кубиковая прочность и принята за эталон показателя прочности бетона (т.е. ее необходимо иметь для производственного контроля), она является условной характеристикой и не может быть непосоедственно использована в расчётах прочности железобетонных конструкций. Реальные конструкции (или их зоны), работающие на сжатие, по форме и размерам отличаются от кубика. В связи с этим, на основании многочисленных экспериментов установлены были эмпирические зависимости между кубиковой прочностью (классом) бетона и его прочностными характеристиками в различных условиях работы, приближающихся к работе реальных конструкций.

Опыты с бетонными образцами, имеющими форму призмы с квадратным основанием а и высотой h (рис. 1 4, в), показали, что с увеличением отношения h/a прочность при центральном сжатии Rb уменьшается (рис. 1.4, г) и при h/a > 3 становится почти стабильной и равной, в зависимости от класса бетона, 0,7...0,9В. Это связано с тем, что в соответствии с принципом Сен-Венана напряжения, вызванные силами трения по опорным граням, существенны только в окрестности, размеры которой соизмеримы с размерами нагруженной грани. Таким образом, в призмах с высотой, превышающей двойной размер сечения, средняя часть свободна от влияния сил трения. Именно в средней по высоте части призм перед разрушением появляются продольные трещины, распространяющиеся вверх и вниз к опорным граням. Гибкость бетонного образца оказывает влияние при испытаниях только при h/a > 8.

В соответствии с указаниями ГОСТ 10180-78 прочность бетона при центральном сжатии Rh определяют испытаниями до разрушения бетонных образцов-призм с отношением высоты к стороне основания h/a = 3...4. Нагрузку подают ступенями по 0,1 Nu с постоянной скоростью (0,6 ± 0,2) МПа/с и с 4...5 минутными выдержками после каждой ступени.

В большинстве случаев результаты таких испытаний совершенно чётко свидетельствуют о том, что разрушение образцов происходит от преодоления сопротивления отрыву (рис 1.4, г). Однако в ряде случаев (наиболее характерно для бетонов низкой прочности, отличающихся, начальными неоднородностями, вызывающими развитие микроразрушений на ранних стадиях загружения) образец разрушается по наклонной поверхности без нарушения целостности материала вне этой поверхности. Казалось бы, можно рассматривать такие случаи как результат разрушения от среза, так как на любой площадке, пересекающей продольную ось образца под острым углом, при его нагружении возникают как нормальные, так и касательные напряжения. Но повидимому, это, всё-таки не так. И прежде всего потому, что наклон поверхности разрушения к продольной оси призмы не 45 °, что соответствовало бы направлению действия максимальных касательных напряжений, а значительно меньше (рис. 1.5). Кроме того, поверхность разрушения явно неровная, она проходит через многочисленные продольные трещины и часто совпадает с ними.

Конечно, после развития разрывов в отдельных зонах на ослабленный материал оказывают влияние касателиные напряжения, но в целом, хотя разрушение бетона здесь и носит сложный характер, определяющее значение опять-таки принадлежит сопротивлению отрыва.

Между кубиковой и призменной прочностью существует прямо пропорциональная зависимость. На основании опытных данных для тяжёлых и лёгких бетонов призменная прочность колеблется от 0,78R (для бетонов высоких классов) до 0,83R (для бетонов низких классов), для ячеистых бетонов - соответственно от 0,87R до 0,94R.

Величину Rh используют при расчёте прочности сжатых бетонных и железобетонных конструкций (колонн, стоек, сжатых элементов ферм и т. д.), изгибаемых конструкций (балок, плит) и конструкций, работающих на некоторые другие виды воздействий, например, кручение, косой изгиб, косое внецентренное сжатие и т. д.

Прочность бетона при сжатии при данной активности цемента зависит, в общем случае, от количества цемента, физико-механических свойств цементного камня и заполнителей, концентрации их в единице объема материала и прочности сцепления, а также от формы и крупности зерен заполнителей.

Увеличение количества цемента повышает плотность (отношение массы тела к его объёму) бетона, способствуя непрерывному заполнению пустот между инертными и обеспечивая тем самым создание полного несущего скелета из цементного камня. Увеличение же плотности бетона ведет, при прочих равных условиях, к повышению его прочности. Расход цемента в бетонах для несущих железобетонных конструкций колеблется в зависимости от класса бетона и активности (марки) цемента в пределах 250 до 600 кгс/м3.

Прочность цементного камня зависит не только от прочности цемента, но и от водоцементного отношения. С повышением В/Ц увеличивается пористость цементного камня, и, следовательно, падает прочность бетона.

Обычно прочность инертных в конструктивных тяжёлых бетонах выше прочности цементного камня, поэтому на прочность таких бетонов влияет лишь форма и состав зёрен заполнителей. Так, в частности, из-за лучшего сцепления раствора с угловатыми зёрнами щебня бетон на щебне примерно на 10...15% прочнее бетона на гравии. Хуже в этом отношении ведут себя лёгкие бетоны. Так как прочность инертных в лёгких бетонах (как правило) ниже, чем цементного камня, на прочность таких бетонов влияют ещё и свойства заполнителей. Причём, в отличие от плотных пористые заполнители снижают прочность бетона и тем значительнее, чем больше отличаются Еа и Ra от Ес и Rc.

Таким образом, если прочность обычных тяжёлых бетонов зависит от ограниченного числа факторов и её можно выражать (что и делают) как функцию акти вности цемента и водоцементного отношения, то для описания прочности лёгких бетонов для каждого вида заполнителей приходится подбирать корреляционные зависимости.

Прочность бетона при растяжении . Прочность бетона при растяжении зависит от прочности на растяжение цементного камня и его сцепления с зёрнами заполнителя.

Истинная прочность бетона при растяжении определяется его сопротивлением осевому растяжению. Предел прочности при осевом растяжении сравнительно невысоки составляет (0,05...0,1) Rb. Столь невысокая прочность объясняется неоднородностью структуры и чрезмерно ранним нарушением сплошности бетона, что способствует концентрации напряжений, особенно при действии растягивающих усилий. Величину Rbt можно определять по эмпирической формуле Фере, предложенной в своё время для бетонов низкой прочности. В настоящее время эту зависимость распространяют и на бетоны класса В45.

Прочность бетона при осевом растяжении устанавливают испытанием на разрыв образцов с рабочим участком в виде призмы достаточной длины, чтобы обеспечить равномерное распределение внутренних усилий в его средней части (рис. 1.6, а). Концевые участки таких образцов расширены для крепления в захватах. Нагрузку прикладывают равномерно со скоростью 0,05...0,08 МПа/с.


Основной недостаток испытаний на осевое растяжение - трудности, возникающие при центрировании образца, и связанный с этим большой разброс опытных данных. Так, например, захват образца в разрывной машине может создавать условия, неблагоприятные для равномерного распределения усилия по его сечению, а неоднородность структуры бетона приводит к тому, что действительная (физическая) ось образца не будет совпадать с геометрической. Оказывает влияние на результаты испытаний и напряжённое состояние бетона, вызванное его усадкой.

Чаще всего сопротивление бетона растяжению оценивают испытанием на изгиб бетонных балочек сечением 150 х 150 мм (рис. 1.6, б). Разрушение в этом случае наступает вследствие исчерпания сопротивления растянутой зоны, причём эпюра напряжений в ней из-за неупругих свойств бетона криволинейного очертания (рис.1.7, а).

С повышением класса бетона возрастает и его прочность при растяжении, однако не столь интенсивно, как при сжатии.

Влияние различных факторов, зависящих от состава бетона и его структуры, сказывается на Rht обычно в том же направлении, что и на Rh, хотя и в неодинаковых количественных соотношениях. Так, например, повышение расхода цемента на приготовление бетона при прочих равных условиях увеличивает сопротивление разрыву в значительно меньшей степени, чем сопротивление сжатию. То же можно сказать и в отношении активности цемента. Совсем по другому обстоит дело с гранулометрическим составом заполнителей и, в частности, видом его зёрен. Так, замена гравия щебнем мало отражаясь на сопротивлении бетона сжатию, заметно увеличивает сопротивление его разрыву, и т.д.

Влияние масштабного фактора также обнаруживается при определении Rbt. Общие теоретические соображения, основанные на статистической теории хрупкой прочности, приводят к заключению, что и в этом случае следует ожидать уменьшения прочности с увеличением размеров образцов. Однако недостатки современной техники испытания бетонных образцов на растяжение (создающие рассеяние показателей тем больше, чем меньше размеры сечения) нередко искажают общую закономерность.

Величину Rbt используют, прежде всего, при расчёте конструкций и сооружений, к которым предъявляют требования трещиностойкости (например, водонапорные трубы, резервуары для хранения жидкостей, стенки автоклавов и др.).

Прочность бетона при срезе и скалывании . В соответствии с теорией сопротивления материалов действующие на элементарную площадку полные напряжения разлагаются на нормальную составляющую о и касательную составляющую т, стремящуюся срезать (сколоть) тело по рассматриваемому сечению или сдвинуть одну сторону элементарного прямоугольного параллелепипеда по отношению к другой. Поэтому напряжения т и называют напряжениями среза, скалывания или напряжениями при сдвиге.

Помимо совместного действия нормальных и касательных напряжений возможен и особый случай, известный в теории сопротивления материалов под названием чистого среза, когда о = 0 и на площадке действуют лишь скалывающие напряжения т.

В железобетонных конструкциях чистый срез практически не встречается, обычно он сопровождается действием нормальных сил.

Для экспериментального определения прочности бетона при срезе Rbsh, т.е. его предельного сопротивления по плоскости, в которой действуют только касательные напряжения, довольно долго пользовались методикой нагружения, показанной на рис. 1.8, а.


Однако решение этой задачи методами теории упругости показывает, что в плоскости АВ касательные напряжения отсутствуют. Сечение же оказывается растянутым.

Наибольшее количество опытных данных было получено при испытании по схеме, предложенной Е. Мёршем (рис. 1.8, б). Это очень простая и потому заманчивая схема, однако, как видно из характера распределения главных растягивающих напряжений в образце и касательных напряжений по сечению АВ, такой образец, кроме среза, испытывает изгиб и местное сжатие (смятие) под прокладками.

Наилучшим образом обеспечивают условия, близкие к чистому срезу, испытания по схеме А. А. Гвоздева (рис. 1.8, в). Однако и здесь картина траекторий главных напояжений говорит о том, что напряжённое состояние образца отлично от состояния, соответствующего чистому срезу. В плоскости среза действуют растягивающие и касательные напряжения, причём в местах вырезов в образце наблюдают концентрацию напряжений.

Предел прочности бетона при чистом срезе можно определять по эмпирической формуле

где k - коэффициент, в зависимости от класса бетона равный 0,5...1,0.

Существенное значение при срезе имеет сопротивление крупных зёрен заполнителя, которые, попадая в плоскость среза, работают как своего рода шпонки. Уменьшение прочности заполнителей в лёгких бетонах того же класса приводит поэтому к понижению предела прочности при срезе. Предел прочности бетона при чистом срезе используют в некоторых современных методиках расчёта прочности железобетонных конструкций по наклонным сечениям.

С сопротивлением скалыванию можно встретиться при изгибе железобетонных балок до появления в них наклонных трещин. Распределение скалывающих напряжений при изгибе принимают по параболе (как для однородного изотропного тела). Опытами установлено, что предел прочности бетона па скалывание в 1,5...2 раза выше, чем при осевом растяжении, поэтому для балок без преднапряжения расчёт на скалывание сводится, по существу, к определению главных растягивающих напряжений, действующих под углом 45° к оси балки.

Влияние на прочность бетона длительных и многократно повторных нагрузок. Одним из важнейших показателей прочности бетона следует считать его длительное сопротивление (длительную прочность), определяемое из опытов с длительным нагружением, в процессе которого бетонный образец может разрушиться при напряжениях меньших, чем его предельное сопротивление. Пределом длительного сопротивления бетона называют наибольшие напряжения, которые он может выдержать неограниченно долгое время без разрушения (для строительных конструкций это десятки лет и более).

На основании опытов принято считать, что статические напряжения, значения которых не превышают 0,8 Rb, не вызывают разрушения образца при любой длительности действия нагрузки, так как развитие возникающих в бетоне микроразрушений со временем прекращается. Если же образец нагружен большими напряжениями, то появившиеся нарушения структуры будут развиваться, и, в зависимости от уровня напряжений, через определённое время он разрушится.

Таким образом, предел длительной прочности определяется, по существу, характером структурных изменений, вызванных продолжительно действующей нагрузкой. Если процессы нарушения структуры не нейтрализуются процессами исчезновения и видоизменения дефектов, предел длительной прочности превзойден, если нейтрализуются - образец может неограниченно долго сопротивляться действующим напряжениям. Примерная граница, выше которой образец разрушается, а ниже - не разрушается, соответствует напряжениям Rvcrc. Аналогичная картина наблюдается и при растяжении.

В последние годы предложен ряд формул, позволяющих более дифференцированно подходить к оценке относительного предела длительной прочности бетона. Так, для старых тяжёлых бетонов обычных классов хорошие результаты дает формула


Если же бетон тех же классов нагружать в среднем возрасте, когда процессы твердения продолжают ещё оказывать влияние на параметр R, то длительную прочность можно определять по формуле

Поскольку параметры R зависят главным образом от класса бетона, его возраста в момент нагружения, роста прочности и условий влагообмепа с окружающей средой, можно считать, что и предел длительной прочности зависит в основном от тех же факторов. Так, например, относительное значение длительной прочности бетона, нагруженного в достаточно раннем возрасте, выше чем старого или малотвердеющего (прошедшего тепловлажностную обработку), а высокопрочного выше, чем бетона низкой или средней прочности.

Степень снижения длителыюй прочности зависит от продолжительности и режима предшествующих силовых воздействий. Так, длительная прочность бетона при сжатии, если он ранее находился в условиях длительного сжатия (до напряжений не более 0,6 Rh), повышается, а при растяжении - снижается.

При действии многократно повторных (подвижных или пульсирующих) нагрузок, в частности, при стационарных гармонических внешних воздействиях, предел длительной прочности бетона снижается еще больше, чем при продолжительном действии статической нагрузки. Предел прочности бетона понижается в зависимости от числа циклов нагружения, величины максимальных напряжений и характеристики цикла.

Предел прочности бетона при действии многократно повторных нагрузок называют пределом выносливости. Наибольшее напряжение, которое бетон выдерживает за бесконечно большое число повторных нагружений без разрушения, называют абсолютным пределом выносливости. Практически за предел выносливости бетона принимают максимальное напряжение, которое образец выдерживает при количестве циклов повторных нагружений, равном (2...5) 106 или 107. Это напряжение называют ограниченным пределом выносливости. Для бетона база испытаний принята равной 2 106 циклов. С увеличением ее происходит постоянное снижение предела выносливости, однако после 2 - 106 циклов изменения незначительны.


Опытные данные свидетельствуют о том, что если многократно повторно действующие напряжения превышают предел выносливости, хотя и не превышают предел длительной прочности, то при достаточном повторении циклов нагружения происходит разрушение образца. При этом разрушающие напряжения (длительная динамическая прочность) тем ниже и ближе к пределу выносливости, чем большее число циклов нагружения действовало на образец.


Зависимость относительного предела выносливости Rbj/Rb от числа циклов повторения нагрузки имеет криволинейный характер (рис. 1.9), приближаясь асимптотически к абсолютному пределу выносливости бетона, равному нижней границе микротрещинообразования.

При уменьшении относительный предел выносливости бетона снижается (рис. 1.10), с увеличением скорости нагружения повышается, но незначительно. Водонасыщение снижает относительный предел выносливости бетона. С увеличением возраста бетона отношение Rbf/Rb несколько увеличивается. Практический интерес представляют опытные данные о зависимости степени снижения прочности бетона при воздействии асимметричной циклической нагрузки от нижней границы микротрещинообразования в бетоне. В соответствии с этими данными значения предела выносливости пропорциональны изменению и, следовательно, отношение Rhj/Rh тем выше, чем выше прочность бетона.

Данными о пределе выносливости необходимо располагать при расчёте железобетонных подкрановых балок, шпал, станин мощных прессов и станков, фундаментов под неуравновешенные двигатели и другое оборудование, а также при расчёте элементов мостовых конструкций и разного типа транспортных, крановых и разгрузочных эстакад.

Влияние на прочность бетона высоких и низких температур. Различие в коэффициентах линейного расширения цементного камня п заполнителей при изменении температуры окружающей среды в пределах до 100 °С (т. е. стеснённые условия деформирования бетона при темперагурных воздействиях) не вызывает сколько-нибудь заметных напряжений и практически не отражается на прочности бетона.

Воздействие же на бетон повышенных температур (до 250...300 °С) приводит к заметному изменению его прочности, причём прочность зависит от степени водопасыщения бетона. С увеличением водонасы- щения бетона при воздействии повышенных температур усиливаются процессы влаго- и газообмена, миграции влаги, происходит интенсивное высыхание бетона и образование в нем микротрещин (главным образом вследствие значительных температурных и усадочных напряжений), возрастают значения температурного коэффициента.

При действии высоких температур дело обстоит ещё хуже. При температурах свыше 250...300 °С объёмные деформации цементного камня и заполнителей меняются. Причём, если для гранита и песчаника объёмные деформации при температуре около 500 °С резко возрастают, то для цементного камня они достигают максимума при температуре около 300 °С, а затем уменьшаются. Столь резкая разница в деформациях вызывает внутренние напряжения, разрывающие цементный камень, что влечёт за собой понижение механической прочности бетона вплоть до его разрушения. Поэтому при продолжительном действии высоких температур обычные бетоны не применяются.

Температурные напряжения можно уменьшить соответствующим подбором цемента и заполнителей. Для жаростойких бетонов применяют заполнители с малым коэффициентом линейного расширения: бой красного кирпича, доменные шлаки, диабазы и др. В качестве вяжущего используют глинозёмистый цемент или портландцемент с тонкомолотыми добавками из хромита или шамота. Для особо высоких температур (1000... 1300 °С) применяют бетоны на глинозёмистом цементе с шамотом или хромитом в качестве заполнителя.

При замораживании бетона (т. е. при действии низких температур) прочность его повышается, а при оттаивании - снижается. Определяющее влияние на прочность бетона оказывают температура замораживания и степень водонасышения бетона при его замораживании и оттаивании. Изменение прочности связано с условиями кристаллизации льда в порах бетона и возникновением в них внутреннего избыточного давления при переходе в лёд с увеличением объёма (до 10%).

Температура замерзания воды зависит от размеров пор и капилляров, в которых она замерзает. Чем меньше диаметр капилляров, тем ниже температура замерзания воды. Исследования показывают, что вода, содержащаяся в порах, замерзает не вся одновременно, а постепенно, по мере понижения температуры. Содержание льда в бетоне существенно зависит от характера его пористости. Все это говорит о том, что с понижением температуры замораживания возрастает давление в порах бетона и ускоряется его разрушение.

Существенным фактором, влияющим на прочность бетона, является наличие дефектов в его структуре в виде микро- и макротрещин. Замерзание воды в трещине и создание уже небольшого давления на её стенки вызывает концентрацию напряжений в тупике трещины и приводит к её дальнейшему прорастанию в материале.

В процессе разрушения бетона при его замораживании и оттаивании важную роль играют верхняя и нижняя условные границы микротрещинообразования.

Поскольку основной путь проникновения воды в бетон зависит от системы капилляров, повышение морозостойкости бетона следует искать, повидимому, в улучшении его структуры - уменьшении общей пористости и формировании в нём закрытой пористости вместо открытой (введение в бетон газообразующих и воздухововлекающих добавок).

Прочность при сжатии – важное механическое свойство. Характеризуется пределом прочности породы при сжатии в сухом состоянии. Действующий стандарт на блоки подразделяет породы по Этому показателю на три класса: прочные (свыше 80 МПа), средней прочности (40-80 МПа), и низкопрочные (5-40 МПа).

Рис. 16. Схема гидравлического пресса для испытаний образцов на сжатие

Стандарт на камни бортовые (ГОСТ 6666-81) допускает изготовление этой продукции из горных пород с пределом прочности при сжатии не ниже, МПа: для изверженных пород – 90, метаморфических и осадочных – 60. Стандарт на камни брусчатые (ГОСТ 23668-79) допускает изготовление их из изверженных пород с пределом прочности не ниже 100 МПа. Стеновые камни из горных пород (ГОСТ 4001 – 84) в зависимости от предела прочности при сжатии подразделяются на 14 марок (от 4 до 400).

1 – станина; 2 – гидроцилиндр; 3 – поршень, 4 – нижняя плита; 5 – испытываемый образец камня; в – верхняя плита; 7 – установочный винт; 8 – манометры; 9 – насос

Определение предела прочности горных пород при сжатии производят на пяти образцах кубической формы с ребром 40-50 мм или цилиндрах диаметром и высотой 40 – 50 мм. Каждый образец перед испытанием очищают щеткой от рыхлых частиц, пыли и высушивают до постоянной массы. Затем тщательно обрабатывают на шлифовальном станке грани образцов, к которым будет приложена нагрузка, для обеспечения их параллельности. После этого образцы измеряют штангенциркулем, устанавливают в центре опорной плиты пресса (рис. 16), имеющей разметку для центровки образцов, и прижимают верхней плитой пресса, которая должна плотно прилегать по всей поверхности верхней грани образцов.

Нагрузку на образец при испытании увеличивают непрерывно и постоянно со скоростью, обеспечивающей его разрушение через 20-60 с после начала испытаний. Величина разрушающей нагрузки должна составлять не менее 10 % от предельно развиваемого прессом усилия. Момент разрушения образца устанавливают по началу обратного движения указательной стрелки силоизмерителя при работающем нагружающем устройстве.

Предельную (разрушающую) нагрузку определяют по положению -фиксирующей стрелки пресса. Если она отсутствует, надо внимательно следить за указательной стрелкой. За предельную нагрузку принимают наибольшее число делений, достигнутое движущейся стрелкой. При испытаниях образцов низкопрочных пород разрушение более продолжительно и нередко наблюдается плавный сброс нагрузки; в этом случае за предельную нагрузку принимают наибольшее число делений по шкале, которое было достигнуто указательной стрелкой.

Для вычисления предела прочности при сжатии определяют разрушающее усилие непосредственно по силоизмерителю или по тарировочным таблицам, прилагаемым прессу. При использовании манометров разрушающее усилие может быть определено как произведение площади поршня пресса на максимальное давление масла в прессе в момент разрушения образца (по показанию манометра).

Предел прочности образца при сжатии R сж, МПа, вычисляют с точностью до I МПа по формуле

R сж = P(10*F),

где P – разрушающее усилие пресса, Н; F – площадь поперечного сечения образца, м 2 .

Предел прочности породы при сжатии вычисляют как среднее арифметическое результатов испытаний пяти образцов. Значения этого показателя для большинства видов облицовочного камня, используемого в строительстве, даны в приложении.

Кроме предела прочности горных пород при сжатии в сухом состоянии, в процессе проведения испытания обычно определяют также и значение этого показателя у пород в водонасыщенном состоянии, что необходимо для оценки размягчения породы. Эти испытания проводятся аналогично вышеописанным (испытания сухих образцов) с той лишь разницей, что перед раздавливанием на прессе образцы выдерживаются в сосуде с водой комнатной температуры в течение 48 ч.

ГОСТ 18105-2010

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ

Правила контроля и оценки прочности

Concretes. Rules for control and assessment of strength


Текст Сравнения ГОСТ 18105-2010 с ГОСТ Р 53231-2008 см. по ссылке .
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 91.100.30

Дата введения 2012-09-01

Предисловие

Предисловие

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и МСН 1.01-01-2009* "Система межгосударственных нормативных документов в строительстве. Основные положения"
________________
* Документ не приводится. За дополнительной информацией обратитесь по ссылке


Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ - филиал Федерального государственного унитарного предприятия "НИЦ Строительство")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (приложение Д к протоколу N 37 от 7 октября 2010 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ISO 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Азербайджан

Госстрой

Армения

Министерство градостроительства

Казахстан

Агентство по делам строительства и жилищно-коммунального хозяйства

Киргизия

Госстрой

Молдова

Министерство строительства и регионального развития

Россия

Департамент регулирования градостроительной деятельности Министерства регионального развития

Таджикистан

Агентство по строительству и архитектуре при Правительстве

Узбекистан

Госархитектстрой

Украина

Министерство регионального развития и строительства

4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 марта 2012 г. N 28-ст межгосударственный стандарт ГОСТ 18105-2010 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2012 г.

5 В настоящем стандарте учтены основные нормативные положения европейского стандарта ЕН 206-1:2000* "Бетон - Часть 1. Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия" (EN 206-1:2000 "Concrete - Part 1: Specification, performance, production and conformity", NEQ) в части контроля и оценки прочности бетона
________________
* Доступ к международным и зарубежным документам можно получить, перейдя по ссылке . - Примечание изготовителя базы данных.

6 ВЗАМЕН ГОСТ 18105-86

7 ПЕРЕИЗДАНИЕ. Август 2018 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на все виды бетонов, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетонной смеси, готовой к применению (далее - БСГ), бетона монолитных, сборно-монолитных и сборных бетонных и железобетонных конструкций при проведении производственного контроля прочности бетона.

Правила настоящего стандарта могут быть использованы при проведении обследований бетонных и железобетонных конструкций, а также при экспертной оценке качества бетонных и железобетонных конструкций.

Выполнение требований настоящего стандарта гарантирует обеспечение принятых при проектировании расчетных и нормативных сопротивлений бетона конструкций.

2 Нормативные ссылки

В настоящем стандарте приведены ссылки на следующие стандарты:

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают БСГ или конструкцию.

Примечание - В зависимости от вида прочности в проектном возрасте устанавливают следующие классы бетона по прочности:

- класс бетона по прочности на сжатие;

- класс бетона по прочности на осевое растяжение;

- класс бетона по прочности на растяжение при изгибе.

3.1.2 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях БСГ или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности.

3.1.3 фактический класс бетона по прочности: Значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии.

3.1.4 фактическая прочность бетона: Среднее значение прочности бетона в партиях БСГ или конструкций, рассчитанное по результатам ее определения в контролируемой партии.

3.1.5 проба бетонной смеси: Объем БСГ одного номинального состава, из которого одновременно изготавливают одну или несколько серий контрольных образцов.

3.1.6 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы БСГ или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения фактической прочности одного вида.

3.1.7 партия бетонной смеси: Объем БСГ одного номинального состава, изготовленный или уложенный за определенное время.

3.1.8 партия монолитных конструкций: Часть монолитной конструкции, одна или несколько монолитных конструкций, изготовленных за определенное время.

3.1.9 партия сборных конструкций: Конструкции одного типа, последовательно изготовленные по одной технологии в течение не более одних суток из материалов одного вида.

3.1.10 контролируемый участок конструкции: Часть конструкции, на которой проводят определение единичного значения прочности бетона неразрушающими методами.

3.1.11 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности этой конструкции более чем на 15%.

3.1.12 анализируемый период: Период времени, за который вычисляют среднее значение коэффициента вариации прочности бетона для партий БСГ или конструкций, изготовленных за этот период.

3.1.13 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии БСГ или конструкций.

3.1.14 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схемам А и В.

3.1.15 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей партии и предыдущих проконтролированных партий БСГ или конструкций при контроле по схеме Б.

3.1.16 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной в соответствии с коэффициентом вариации за предыдущий анализируемый период.

3.1.17 текущий контроль: Контроль прочности бетона партии БСГ или конструкций, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам контроля этой партии.

3.1.18 разрушающие методы определения прочности бетона: Определение прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570 .

3.1.19 прямые неразрушающие методы определения прочности бетона: Определение прочности бетона по "отрыву со скалыванием" и "скалыванию ребра" по ГОСТ 22690 .

3.1.20 косвенные неразрушающие методы определения прочности бетона: Определение прочности бетона по предварительно установленным градуировочным зависимостям между прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов, и косвенными характеристиками прочности, определяемыми по ГОСТ 22690 и ГОСТ 17624 .

3.1.21 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время.

3.1.22 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:

- для БСГ - среднее значение прочности бетона пробы бетонной смеси;

- для сборных конструкций - среднее значение прочности бетона пробы бетонной смеси или среднее значение прочности бетона участка конструкции, или среднее значение прочности бетона одной конструкции;

- для монолитных конструкций - среднее значение прочности бетона участка конструкции или бетона одной конструкции.

3.2 Обозначения

Проектный класс прочности бетона, МПа;

- фактический класс прочности бетона, МПа;

, , - единичное, минимальное и максимальное значения прочности бетона в партии, МПа;

- фактическая средняя прочность бетона отдельной партии, МПа;

, - требуемая средняя прочность бетона БСГ или конструкции в контролируемой партии или в контролируемом периоде, МПа;

- среднеквадратическое отклонение прочности бетона в контролируемой партии, МПа;

- среднеквадратическое отклонение прочности бетона в контролируемой партии по результатам ее определения неразрушающими методами, МПа;

- рассчитанное среднеквадратическое отклонение используемой градуировочной зависимости, МПа;

- среднеквадратическое отклонение построенной градуировочной зависимости, МПа;

- среднеквадратическое отклонение разрушающих или прямых неразрушающих методов, использованных при построении градуировочной зависимости, МПа;

- текущий коэффициент вариации прочности бетона в партии, %;

- средний коэффициент вариации прочности бетона за анализируемый период, %;

- скользящий коэффициент вариации прочности бетона за анализируемый период, %;

- размах прочности бетона в партии, МПа;

- число единичных значений прочности бетона в партии;

- коэффициент для расчета (при 6);

- коэффициент корреляции градуировочной зависимости;

- коэффициент требуемой прочности;

- коэффициент для расчета и ;

- коэффициент для расчета и .

4 Основные положения

4.1 Контроль и оценку прочности бетона на предприятиях и в организациях, производящих БСГ, сборные, сборно-монолитные и монолитные бетонные и железобетонные конструкции, следует проводить статистическими методами с учетом характеристик однородности бетона по прочности.

Приемка бетона путем сравнения его фактической прочности с требуемой без учета характеристик однородности бетона по прочности не допускается.

4.2 Контролю подлежат все виды нормируемой прочности:

- прочность в проектном возрасте - для БСГ, сборных, сборно-монолитных и монолитных конструкций;

- отпускная и передаточная прочность - для сборных конструкций;

- прочность в промежуточном возрасте - для БСГ и монолитных конструкций (при снятии несущей опалубки, нагружении конструкций до достижения ими проектной прочности и т.д.).

В случае, если нормируемая отпускная или передаточная прочность бетона сборных конструкций или прочность бетона в промежуточном возрасте для БСГ или монолитных конструкций составляет 90% и более значения проектного класса, контроль прочности в проектном возрасте не проводят.

4.3 Контроль прочности бетона по каждому виду нормируемой прочности, указанному в 4.2, проводят по одной из следующих схем:

- схема А - определение характеристик однородности бетона по прочности, когда используют не менее 30 единичных результатов определения прочности, полученных при контроле прочности бетона предыдущих партий БСГ или сборных конструкций в анализируемом периоде;

- схема Б - определение характеристик однородности бетона по прочности, когда используют не менее 15 единичных результатов определения прочности бетона в контролируемой партии БСГ или сборных конструкций и предыдущих проконтролированных партиях в анализируемом периоде;

- схема В - определение характеристик однородности бетона по прочности, когда используют результаты неразрушающего контроля прочности бетона одной текущей контролируемой партии конструкций, при этом число единичных значений прочности бетона должно соответствовать требованиям 5.8;

- схема Г - без определения характеристик однородности бетона по прочности, когда при изготовлении отдельных конструкций или в начальный период производства невозможно получить число результатов определения прочности бетона, предусмотренное схемами А и Б, или при проведении неразрушающего контроля прочности бетона без построения градуировочных зависимостей, но с использованием универсальных зависимостей путем их привязки к прочности бетона контролируемой партии конструкций.

Примечание - В исключительных случаях (при невозможности проведения сплошного контроля прочности бетона монолитных конструкций с использованием неразрушающих методов) допускается определять прочность бетона по контрольным образцам, изготовленным на строительной площадке и твердевшим в соответствии с требованиями 5.4, или по контрольным образцам, отобранным из конструкций. При этом фактический класс прочности бетона в партии конструкций при 15 рассчитывают по формуле (11), при <15 - по формуле (13).

4.4 Контроль прочности бетона проводят:

- для БСГ- по схемам А, Б, Г;

- для сборных конструкций - по схемам А, Б, В, Г;

- для монолитных конструкций - по схемам В, Г.

4.5 В качестве характеристик однородности бетона по прочности, используемых для определения требуемой прочности бетона или фактического класса бетона , вычисляют коэффициенты вариации прочности бетона:

- средний - для всех партий БСГ и сборных конструкций за анализируемый период - при контроле по схеме А;

- скользящий - средний для контролируемой и последних предыдущих партий - при контроле по схеме Б;

- текущий - для текущей партии БСГ и конструкций - при контроле по схеме В.

4.6 При контроле и оценке прочности бетона БСГ на предприятии-изготовителе:

- по схеме А:

определяют фактическую прочность бетона и текущий коэффициент вариации прочности бетона в каждой партии, изготовленной в течение анализируемого периода,

рассчитывают средний коэффициент вариации прочности бетона за анализируемый период,

определяют по 7.1 требуемую прочность бетона для следующего контролируемого периода,

проводят по 8.2 оценку прочности бетона каждой партии, изготовленной в контролируемом периоде;

- по схеме Б:



рассчитывают характеристики однородности бетона по прочности: текущий коэффициент вариации прочности бетона и скользящий коэффициент вариации прочности бетона ,

определяют требуемую прочность бетона в контролируемой партии,



- по схеме Г:

определяют фактическую прочность бетона в каждой партии, изготовленной в контролируемом периоде,




4.7 При контроле и оценке прочности бетона сборных конструкций:

- по схеме А:

определяют фактическую прочность бетона в каждой партии конструкций, изготовленной в анализируемом периоде,

рассчитывают характеристики однородности бетона по прочности - текущий коэффициент вариации прочности бетона в каждой партии и средний коэффициент вариации прочности за анализируемый период,

определяют по 7.1 требуемую прочность бетона для следующего контролируемого периода по характеристикам однородности прочности бетона за анализируемый период,

проводят по 8.2 оценку прочности бетона каждой партии конструкций, изготовленной в контролируемом периоде;

- по схеме Б:

определяют фактическую прочность бетона в контролируемой партии,

рассчитывают характеристики однородности бетона по прочности - текущий коэффициент вариации прочности бетона и скользящий коэффициент вариации прочности бетона в контролируемой партии,

определяют по 7.1 требуемую прочность бетона в контролируемой партии,

проводят по 8.2 оценку прочности бетона в текущей контролируемой партии;

- по схеме В:

определяют фактическую прочность бетона в контролируемой партии,

рассчитывают текущий коэффициент вариации прочности бетона в контролируемой партии,

определяют по 7.1 требуемую прочность бетона для контролируемой партии,

проводят по 8.2 оценку прочности бетона в контролируемой партии;

- по схеме Г:

определяют фактическую прочность бетона в контролируемой партии,

определяют по 7.1 требуемую прочность бетона ,

проводят по 8.2 оценку прочности бетона в контролируемой партии.

4.8 При контроле и оценке прочности бетона партий монолитных конструкций:

- по схеме В:

определяют неразрушающими методами фактическую прочность бетона в контролируемой партии,

рассчитывают текущий коэффициент вариации прочности бетона в контролируемой партии с учетом погрешности применяемых неразрушающих методов при определении прочности по 6.5,

определяют по 7.3 и 7.4 фактический класс бетона по прочности ,

проводят по 8.3 оценку фактического класса бетона по прочности в контролируемой партии;

- по схеме Г:

определяют неразрушающими или разрушающими методами (в исключительных случаях - см. 4.3) фактическую прочность бетона в контролируемой партии,

определяют по 7.5 фактический класс бетона по прочности в контролируемой партии,

проводят по 8.3 оценку прочности бетона в контролируемой партии.

5 Определение прочности бетона

5.1 В состав партии БСГ следует включать БСГ одного номинального состава по ГОСТ 27006 , приготовленную по одной технологии.

В состав партии сборных или монолитных конструкций включают конструкции, изготовленные из бетонной смеси одного номинального состава, отформованные по одной технологии.

Продолжительность изготовления партии БСГ или конструкций должна быть:

- не менее одной смены - для БСГ и сборных конструкций и одних суток - для монолитных конструкций;

- не более одного месяца - для БСГ и одной недели - для сборных и монолитных конструкций.

Допускается при контроле по схемам А и Б объединять в одну партию БСГ разного номинального состава и одного класса бетона по прочности, если выполняются следующие условия:

- максимальный из средних значений коэффициент вариации прочности бетонов объединенных составов за анализируемый период не превышает 13%;

- разность между максимальными и минимальными значениями коэффициента вариации прочности бетонов объединяемых составов за анализируемый период не превышает 2%;

- наибольшая крупность заполнителя в объединяемых составах отличается не более чем в два раза, а расход цемента в этих составах - не более чем на 10% среднего значения.

Условия объединения составов бетона проверяют один раз в год по результатам определения характеристик однородности бетона по прочности отдельно для каждого номинального состава за два последних контролируемых периода.

При объединении в одну партию БСГ различных составов значение коэффициента вариации прочности бетона в первый контролируемый период определяют как среднеарифметическое значение коэффициентов вариации для отдельных номинальных составов.

5.2 При определении прочности бетона по контрольным образцам отбирают не менее двух проб БСГ от каждой партии и не менее одной пробы:

в смену - на предприятии - изготовителе сборных конструкций;

в сутки - на предприятии - изготовителе БСГ и строительной площадке при изготовлении монолитных конструкций.

В исключительных случаях (см. 4.3) при определении прочности бетона монолитных конструкций по контрольным образцам число проб бетона, отбираемых от каждой партии конструкции, должно быть не менее шести.

5.3 Из каждой пробы бетонной смеси изготавливают серии контрольных образцов для определения каждого вида нормируемой прочности, указанной в 4.2.

Число образцов в серии принимают по ГОСТ 10180 .

Допускается изготавливать серии контрольных образцов для определения прочности бетона сборных конструкций в проектном возрасте не из каждой пробы, а не менее чем из двух проб, отбираемых от одной партии в неделю при классе бетона по прочности В30 и ниже, и четырех проб, отбираемых от двух партий в неделю при классе бетона по прочности В35 и выше.

При контроле прочности ячеистого бетона из готовых конструкций каждой партии или из блоков, изготовленных одновременно с конструкциями, выпиливают или выбуривают пробы бетона не менее чем на двух участках.

5.4 Контрольные образцы бетона сборных конструкций должны твердеть в одинаковых с конструкциями условиях до определения отпускной или передаточной прочности. Последующее твердение образцов, предназначенных для определения прочности бетона в проектном возрасте, должно проходить в нормальных условиях при температуре (20±3)°С и относительной влажности воздуха (95±5)%.

Контрольные образцы из БСГ, предназначенной для изготовления монолитных конструкций, должны твердеть на предприятии - изготовителе бетонной смеси в нормальных условиях.

Контрольные образцы, изготовленные на строительной площадке при осуществлении входного контроля прочности бетона партий БСГ, должны твердеть в нормальных условиях.

Контрольные образцы, изготовленные на строительной площадке для контроля и оценки прочности бетона партий монолитных конструкций по 4.3, должны твердеть в условиях, предусмотренных проектом производства работ или технологическим регламентом на производство монолитных бетонных и железобетонных конструкций данного объекта строительства.

5.5 Контроль прочности бетона косвенными неразрушающими методами проводят с обязательным использованием градуировочных зависимостей, предварительно установленных в соответствии с требованиями ГОСТ 22690 и ГОСТ 17624 .

5.6 При контроле отпускной и передаточной прочности бетона сборных конструкций неразрушающими методами число контролируемых конструкций каждого вида принимают не менее 10% или не менее 12 конструкций из партии. Если партия состоит из 12 конструкций и менее, проводят сплошной контроль. При этом число контролируемых участков должно быть не менее одного на 4 м длины линейных конструкций и не менее одного на 4 м площади плоских конструкций.

5.7 При контроле прочности бетона монолитных конструкций в промежуточном возрасте неразрушающими методами контролируют не менее одной конструкции каждого вида (колонна, стена, перекрытие, ригель и т.д.) из контролируемой партии.

5.8 При контроле прочности бетона монолитных конструкций в проектном возрасте неразрушающими методами проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии. При этом число контролируемых участков должно быть не менее:

- трех на каждую захватку - для плоских конструкций (стен, перекрытий, фундаментных плит);

- одного на 4 м длины (или трех на захватку) - для каждой линейной горизонтальной конструкции (балка, ригель);

- шести на каждую конструкцию - для линейных вертикальных конструкций (колонна, пилон).

Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.

Число измерений, проводимых на каждом контролируемом участке, принимают по ГОСТ 17624 или ГОСТ 22690 .

Примечание - При проведении обследований и экспертной оценке качества линейных вертикальных конструкций число контролируемых участков должно быть не менее четырех.

5.9 Фактическую прочность бетона в партии , МПа, рассчитывают по формуле

где - единичное значение прочности бетона, МПа;

Общее число единичных значений прочности бетона в партии.

За единичное значение прочности бетона принимают:

- при контроле по образцам - среднюю прочность серий образцов, изготовленных из одной пробы БСГ, для контроля одного вида нормируемой прочности, указанной в 4.2;

- при контроле неразрушающими методами - среднюю прочность бетона контролируемого участка или зоны конструкции или среднюю прочность бетона отдельной конструкции.

Правило выбора единичного значения прочности бетона при применении неразрушающих методов в зависимости от вида конструкций приведено в приложении А.

5.10 Прочность бетона определяют по результатам испытаний образцов по ГОСТ 10180 и ГОСТ 28570 или неразрушающими методами по ГОСТ 17624 и ГОСТ 22690 .

Прочность бетона сборных конструкций в проектном возрасте и прочность бетона на растяжение определяют только по контрольным образцам.

6 Определение характеристик однородности бетона по прочности

6.1 Продолжительность анализируемого периода для определения характеристик однородности бетона по прочности по схемам А и Б устанавливают от одной недели до трех месяцев.

Число единичных значений прочности бетона в течение этого периода в зависимости от выбранной схемы контроля принимают по 4.3.

6.2 Для каждой партии БСГ или конструкций вычисляют среднеквадратическое отклонение и текущий коэффициент вариации прочности бетона . Указанные характеристики вычисляют для всех видов нормируемой прочности, указанных в 4.2.

Допускается для сборных конструкций коэффициент вариации прочности бетона в проектном возрасте не вычислять, а принимать равным 85% коэффициента вариации отпускной прочности.

6.3 Среднеквадратическое отклонение прочности бетона в партии , МПа, рассчитывают по формуле

6.4 При числе единичных значений прочности бетона в партии от двух до шести значение среднеквадратического отклонения допускается рассчитывать по формуле

Коэффициент принимают по таблице 1.

Таблица 1 - Коэффициент

Число единичных значений

Коэффициент

6.5 При контроле прочности бетона неразрушающими методами, если в качестве единичного значения принимают прочность участка, зоны или отдельной конструкции, среднеквадратическое отклонение прочности бетона в партии рассчитывают по формуле

где определяют по формуле

где принимают равным:

- для метода отрыва со скалыванием - 0,04 средней прочности бетона участков, использованных при построении градуировочной зависимости при анкерном устройстве с глубиной заделки 48 мм; 0,05 средней прочности - при глубине 35 мм; 0,06 средней прочности - при глубине 30 мм; 0,07 средней прочности - при глубине 20 мм;

- для разрушающих методов - 0,02 средней прочности испытанных образцов.

Значение определяют при построении градуировочной зависимости по формуле (6). Значение должно быть не менее 0,7.

где и - значения прочности бетона участков (или серий образцов), определяемой разрушающими и неразрушающими методами при установлении градуировочной зависимости.

6.6 Текущий коэффициент вариации прочности бетона в партии БСГ или конструкций определяют по формуле

6.7 При контроле по схеме А среднее значение коэффициента вариации прочности бетона , а при контроле по схеме Б - скользящий коэффициент вариации прочности бетона за анализируемый период рассчитывают по формуле

где - коэффициенты вариации прочности бетона в каждой -й партии;

- число единичных значений прочности бетона в каждой -й партии;

- общее число единичных значений прочности бетона за анализируемый период.

При контроле по схеме В текущий коэффициент вариации прочности бетона в контролируемой партии рассчитывают по формуле (7).

6.8 При контроле нерегулярно выпускаемых партий БСГ и сборных конструкций допускается коэффициент вариации прочности бетона принимать равным коэффициенту вариации прочности бетона, изготовленного из БСГ другого состава при условии ее изготовления по одной технологии, из одинаковых материалов и отличающегося по прочности не более чем на два класса.

7 Определение требуемой прочности и фактического класса бетона по прочности

7.1 Требуемую прочность бетона каждого вида для БСГ и сборных конструкций, МПа, рассчитывают по формуле

При контроле по схемам А и В коэффициент принимают по таблице 2 в зависимости от среднего коэффициента вариации прочности бетона за анализируемый период или текущего коэффициента вариации прочности бетона контролируемой партии ; при контроле по схеме Б коэффициент рассчитывают по формуле

где коэффициент принимают по таблице 3 в зависимости от общего числа единичных значений прочности бетона в проконтролированных партиях БСГ или конструкций, по которым рассчитан скользящий коэффициент вариации прочности .

При контроле по схеме Г коэффициент принимают по таблице 4.

Число единичных значений прочности бетона

Коэффициент

>30 до 60 включ.

Таблица 4 - Коэффициент требуемой прочности при контроле по схеме Г

Вид бетона

Коэффициент

Все виды бетонов (кроме плотного силикатного и ячеистого)

Плотный силикатный

Ячеистый

7.2 При контроле по схеме А продолжительность контролируемого периода, в течение которого может использоваться значение требуемой прочности, определенное в анализируемом периоде, следует принимать от одной недели до одного месяца.

7.3 Фактический класс бетона по прочности монолитных конструкций при контроле по схеме В рассчитывают по формуле

Значение коэффициента принимают по таблице 2.

7.4 Фактический класс бетона по прочности отдельных вертикальных монолитных конструкций при контроле по схеме В рассчитывают по формуле

где - коэффициент, принимаемый по таблице 5 в зависимости от числа единичных значений .

Таблица 5 - Коэффициент

7.5 Фактический класс бетона по прочности монолитных конструкций при контроле по схеме Г принимают равным 80% средней прочности бетона конструкций, но не более минимального частного значения прочности бетона отдельной конструкции или участка конструкции, входящих в контролируемую партию:

8 Приемка бетона по прочности

8.1 Приемку партий БСГ и конструкций проводят:

- по прочности в промежуточном и проектном возрасте - для БСГ и монолитных конструкций;

- по отпускной, передаточной и проектной прочности - для бетона сборных конструкций.

8.2 Партия БСГ и партия сборных конструкций подлежат приемке по прочности бетона, если фактическая прочность бетона в партии не ниже требуемой прочности , а минимальное единичное значение прочности - не менее величины и не менее нормируемого класса бетона по прочности.

8.3 Партия монолитных конструкций подлежит приемке по прочности бетона, если фактический класс бетона по прочности в каждой отдельной конструкции этой партии не ниже проектного класса бетона по прочности :

8.4 Контроль прочности бетона сборных конструкций в проектном возрасте проводят периодически по 5.3 сравнением требуемой прочности бетона в проектном возрасте со средней прочностью бетона в этом возрасте всех проконтролированных за неделю партий.

Прочность бетона сборных конструкций в проектном возрасте признают соответствующей требованиям, если выполняются условия по 8.2. Результаты проверки относятся ко всем партиям бетона, изготовленным за неделю.

В случае нарушения указанных условий изготовитель обязан в трехдневный срок после окончания всех испытаний сообщить об этом потребителю.

8.5 Возможность использования (или необходимость усиления) партий конструкций, фактическая прочность или фактический класс бетона по прочности которых не соответствует требованиям 8.2-8.4, должна быть согласована с проектной организацией объекта строительства.

8.6 Значения требуемой прочности бетона БСГ и сборных конструкций должны быть указаны в документе о качестве партий БСГ по ГОСТ 7473 и сборных конструкций - по ГОСТ 13015 .

8.7 Значения фактического класса прочности бетона каждой монолитной конструкции должны быть приведены в документе о результатах текущего контроля или документе о результатах обследования.

Приложение А (обязательное). Выбор единичного значения прочности бетона при неразрушающем контроле

Приложение А
(обязательное)

За единичное значение прочности бетона при неразрушающем контроле принимают:

- при контроле сборных конструкций (плоских и многопустотных плит перекрытий и покрытий, дорожных плит, панелей внутренних несущих стен, стеновых блоков, а также напорных и безнапорных труб) - среднюю прочность бетона конструкции, вычисленную как среднеарифметическое значение прочности бетона контролируемых участков конструкции;

- при контроле других видов конструкций - среднюю прочность бетона конструкции или контролируемого участка или зоны конструкции, или части монолитной и сборно-монолитной конструкции.

УДК 691.32:620.17:006.354

МКС 91.100.30

Ключевые слова: бетон, правила контроля и оценки прочности, однородность бетона по прочности, приемка бетона по прочности

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2018

Универсальным стройматериалом является бетон прочность и другие характеристики которого позволяют использовать его для строительства и ремонта объектов широкого спектра применения – от недвижимости до объектов стратегического назначения. Антикоррозийная стойкость материала больше, чем у дерева или металла, бетон отлично сопротивляется влажности и любым агрессивным средам при условии, что правильно подобрана марка и рассчитаны другие параметры.

При этом учитывается прочность, влагопроницаемость, класс материала, и т.д. Конструкции из бетона лучше всего выдерживают нагрузки по сжатию, поэтому, если к бетонной поверхности прикладывается усилие на растяжение приходится иметь дело с упрочнением бетонных узлов другими материалами.

Класс бетона – что это

Свойство прочности бетона называется классом. Это параметр, который означает предельные параметры при теоретическом ухудшении качества, если прочность оценивается как стандартная. Класс бетона согласно гост указывается в проектной документации к объекту. Соотношение свойств бетона точнее всего отображает специальная справочная таблица, которая выводит прочность бетонного раствора в зависимости от пропорций компонентов, активности содержание цемента.

Условно определяется прочность бетона в кгс/ч или мпа. На него влияют и сторонние факторы – качество воды, чистоту и фракцию песка, возможные отклонения от технологического процесса приготовления бетона, условия укладки и затвердевания. Это отражается в том, что одинаково промаркированный бетон может отличаться по прочности.


Разновидности бетона

Разновидностей бетона может быть настолько много, насколько возможно менять пропорции компонентов без потери качества раствора и конечного продукта, которое зависит от точности соблюдения соотношений веществ в смеси. В строительном деле наиболее распространен бетон, приготовленный на портландцементе марки M 400 или M 500. Классифицируют разновидности бетона по целевому применению и по типу вяжущего, а также по влиянию высоких температур. Влияет и предел прочности бетона плюс плотность.

Состав бывает рабочим и номинальным. Номинальный бетон замешивается на сухих компонентах, рабочий состав основан на увеличении влажности заполнителей.

Основным физическим и эксплуатационным показателем качества бетона является его прочность.

Тяжелые марки классифицируются на следующие подвиды:

  1. Для сборных ж/б объектов;
  2. Для объектов с быстрым отвердеванием бетонной смеси;
  3. Высокопрочные бетонные смеси;
  4. Смеси, приготовленные на основе мелких заполнителей бетона;
  5. Бетоны для гидротехнических объектов.

В легкие бетоны добавляют пористые заполнители – туф, керамзит, пемзу, шлак, аглопорит, и т.д. Такие показатели состава смеси считаются основными при строительстве ограждений и несущих бетонных конструкций и делают их легче без потери прочности. Главные свойства бетонов влияющие на прочность конструкции – плотность и пористость. В зависимости от плотности бетон может быть:

  1. Особо легким (плотность ≤ 500 кг/м 3);
  2. Легким (плотность ≥ 500-1800 кг/м 3).

Легкие смеси – это:

  1. Поризованные смеси, которые приготавливаются на основе крупнопористых заполнителей без добавления песка. Пористости добиваются введением во все пустоты газообразующих или воздухововлекающих компонентов. Также пористым состав делают заблаговременным введением пены;
  2. Крупнопористые бетоны готовятся с добавлением крупнофракционных заполнителей, таких, как керамзит, натуральные мелко- и крупнопористые вещества. Материал отличается высокой жесткостью и нерасслаиваемостью;
  3. Ячеистые бетоны состоят из большого количества воздушных пор (85%). Химически полученный ячеистый бетон называют газобетоном, бетонную смесь, полученную механическим способом, называют пенобетоном.

Основные критерии и параметры бетонов
Для классификации бетонов по классу и марке берут значение средней прочности, а также показатели температура, морозоустойчивость материала, подвижность и водонепроницаемость вещества.

Как пользоваться классом или маркой? Эти параметры означают, что по их значениям можно определить в зависимости от времени качество и прочность материала.


Марки и классы бетонов

Эти характеристики зависят от объема вяжущего в рабочем составе. Чем больше эти значения, тем быстрее твердеет состав, и тем сложнее его укладывать. Прочность схватившегося бетона проверяется лабораторными испытаниями неразрушающим методом сжатия бетона прессом на исследуемых образцах.

От типа строительного объекта зависит марка используемого бетона. Например, средний показатель марки, при котором строительство дома будет считаться надежным и долговечным – M 100, M 150. Самая популярная марка – M 200. При конструировании монолитных оснований сооружений бетон M 350 считается лучшим, так как он может выдерживать любые расчетные нагрузки. Такой бетон заливают на фундаменты площадки монолитной конструкции и массивные сооружения.

Класс – это прочность материала, измеряемая в кг/см 2 или в Мпа. Прочность обеспечивается по классу не ниже 0,95 для любых значений в диапазоне В1-В60. В процессе набора прочности класс может изменяться.

Марка – нормативный параметр, обеспечивающий среднюю прочность бетона в кгс/см 2 или в Мпа х 10. Для бетона тяжелых марок эти значения находятся в диапазоне от M 50 до M 800. Чем более прочные бетоны, тем выше цифры в обозначении марки.

Эта зависимость выражается следующими формулами: В = R х 0,778, или R = В / 0,778, при условии, что значение прочности бетона может варьироваться в пределах n = 0,135, а коэффициент обеспеченности t = 0,95 при температуре 15 – 25 0 С. При повышении температуры поверхности твердение ускоряется.


Соответствие класса морозостойкости и водонепроницаемости

Параметры эксплуатации Морозостойкость Водонепроницаемость Товарный бетон, марка
Цикличная заморозка и размораживание при насыщении влагой и при температуре:
В условиях низких температур ≥ -40 0 С F 150 W 2 БCГ В 20 ПЗ F 150 W 4 (М 250)
≥ -20 0 С/-40 0 С F 100
≥ -5 0 С/-20 0 С F 75 БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -5 0 С F 50 БCГ В 15 ПЗ F 100 W 4 (М 200)
Цикличная заморозка и размораживание при периодическом насыщении влагой и влиянии внешних факторов:
≥ -40 0 С F 100 БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -20 0 С/-40 0 С F 50 БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -5 0 С/-20 0 С БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -5 0 С БCГ В 15 ПЗ F 100 W 4 (М 200)
Цикличная заморозка и размораживание при отсутствии насыщения влагой:
≥ -40 0 С F 75 БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -20 0 С/-40 0 С БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -5 0 С/-20 0 С БCГ В 15 ПЗ F 100 W 4 (М 200)
≥ -5 0 С БCГ В 15 ПЗ F 100 W 4 (М 200)

Каждая марка бетона имеет ограничения по водопроницаемости, которое помогает понять степень максимального давления воды на бетон. В индивидуальном строительстве чаще находит применение пользование приблизительной водонепроницаемостью бетона. Основные марки бетона по влагопроницаемости:

  1. W 4 – нормальная влагопроницаемость, при которой уровень поглощаемой бетоном влаги не превышает норму;
  2. W 6 – пониженная влагопроницаемость;
  3. W 8 – низкая влагопроницаемость;
  4. Марки выше W 8 обладают повышенной гидрофобностью.

Прочность бетонов по сжатию

Основное свойство – прочность бетона на сжатие, которую отображают в мпа или кгс/см 2 (килограммах на квадратный сантиметр). Этот показатель зависит в основном от таких свойств стройматериала:

  1. Качества раствора и соотношений компонентов;
  2. От условий приготовления;
  3. От объема воды и соотношения воды к цементу;
  4. От размера заполнителей и формы зерна;
  5. От технологии укладки;
  6. От технологии трамбовки;
  7. От возраста бетона – его прочность со временем растет.

Показателем прочности для бетона является время его сохранности при прикладывании усилий на сжатие. Прочность считается самым важным параметром при определении качества бетонных смесей. Так, класс бетона В 15, марка М 200 означает среднюю устойчивость на сжатие 15 МПа (200 кгс/м 2), класс В 25 – это устойчивость в 25 МПа (250 кгс/м 2), и т.д. Существует справочная таблица, отражающая показатели прочности бетона на сжатие:


Лабораторные условия твердения бетона – это исследования образцовых кубов под прессом. При увеличении давления отмечают начало разрушения куба – это и будет предел его прочности, который является определяющим условием при назначении класса бетону. Через 28 дней прочность бетона считается начальной, то есть, такой, при которой можно начинать его эксплуатацию.

По марке прочность на сжатие можно определить так: бетон M 800 обладает самой большой прочностью, марка M 15 – наименьшей.
Прочность бетона на изгиб

Чем выше марка, тем выше прочность бетона при изгибающих усилиях. При сравнении характеристики по растяжению и изгибу имеют меньшие значения, чем, несущая способность бетонной конструкции. Молодой бетон имеет отношение растяжение-изгиб/нагрузочная способность, как 1/20, но во времени происходит взросление бетона, и соотношение повышается до 1/8, в результате чего получается бетон более высокого качества.

Прочность на изгибающие усилия рассчитывается по формуле: R изг = 0,1 P L / b h 2 , где:

  1. L – расстояние между балками;
  2. Р – суммарная масса нагрузки и только, плюс масса бетона;
  3. h и b – высота и ширина сечения балки;

Значение прочности отображается как B tb плюс число в диапазоне от 0,4 до 8.


Осевое растяжение бетонного образца

Такую характеристику, как растяжение бетона по оси, обычно не принимают в расчет. По осевому растяжению можно определять способность бетона выдерживать колебания температур и влажности без растрескивания и разрушения бетона.

Рассчитать этот параметр можно растягиванием бетонных балок на исследовательском оборудовании. При этом наблюдается разрушение балки при воздействии противоположных сил растяжения. Повысить значение осевого растяжения можно добавлением в смесь мелкозернистых заполнителей.

Передаточная прочность бетона


Передаточная прочность – это значение прочности бетона для напряженных конструкций при передаче на них натяжений от арматуры. Для реальных условий ее значение принимается ≤ 70% от марки бетона, в пределах 15-20 Мпа для разных типов армирования.

Таблица прочности бетона обновлено: Ноябрь 24, 2018 автором: Артём



Последние материалы раздела:

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...

На рождество ходят крестным ходом вокруг церкви
На рождество ходят крестным ходом вокруг церкви

Крестный ход — это давно зародившаяся традиция верующих православных людей, заключающийся в торжественном шествии во главе со священнослужителями,...