Расход газа по сечению трубы и давлению. Пример расчета пропускной способности трубопровода. Выбор труб и крепежных элементов

Добавлено: 13.02.2017

Строительство плавательного водоёма всегда сопровождается прокладкой трубопроводов и установкой закладных элементов, таких как, возвратные форсунки, донные заборники, скиммеры... Если диаметр труб будет меньше необходимого, забор и подача воды будут происходить с повышенными потерями на трение, отчего насос будет испытывать нагрузки, способные вывести его из строя. Если трубы проложены диаметром большим необходимого - неоправданно повышаются расходы на строительство водоёма.

Как правильно подобрать диаметр труб?

Как правильно подобрать диаметр труб?

Возвратные форсунки, донные заборники, скиммеры, каждый имеют отверстие для подключения определенного диаметра, что первоначально определяет диаметр труб. Обычно эти подключения - 1 1/2" - 2", к которым подсоединяется труба, диаметром 50 мм. Если несколько закалдных элементов соединяются в одну линию, то общая труба должна быть большего диаметра, чем трубы, подходящие к ней.

На выбор трубы влияет также производительность насоса, которая определяет скорость и количество перекачиваемой воды.

Пропускную способность труб различного диаметра можно определить по следующей таблице:

Пропускная способность труб различного диаметра.

Диаметр, мм Площадь внутр. сечения, мм 2 Пропускная способность в м 3 /час при скорости
Наружный Внутренний 0,5 м/с 0,8 м/с 1,2 м/с 2,0 м/с 2,5 м/с
16 10 79 0,14 0,23 0,34 0,57 0,71
20 15 177 0,32 0,51 0,76 1,27 1,59
25 20 314 0,91 1,36 2,26 2,83
32 25 491 0,88 1,41 2,12 3,54 4,42
40 32 805 1,45 2,32 3,48 5,79 7,24
50 40 1257 2,26 3,62 5,43 9,05 11,31
63 50 1964 3,54 5,66 8,49 14,14 17,68
75 65 3319 5,97 9,56 14,34 23,90 29,87
90 80 5028 9,05 14,48 21,72 36,20 45,25
110 100 7857 14,14 22,63 33,94 56,57 70,71
125 110 9506 17,11 27,38 41,07 68,45 85,56
140 125 12276 22,10 35,35 53,03 88,39 110,48
160 150 17677 31,82 50,91 76,37 127,28 159,09
200 175 24061 43,31 69,29 103,94 173,24 216,54
225 200 31426 56,57 90,51 135,76 226,27 282,83
250 225 39774 71,59 114,55 171,82 286,37 357,96
315 300 70709 127,28 203,64 305,46 509,10 636,38

Для подбора диаметра турбы нам понадобиться знание следующих величин:

Расмотрим технологию подбора труб на конкретных примерах обвязки закладных элементов.

Диаметр трубы для подключения возвратных форсунок.

Например, движение воды в системе обеспечивается насосом , максимальной производительностью 16 м 3 /час. Возврат воды в плавательную чашу осуществляется через 4 возвратные форсунки - (подключение 2" наружная резьба), каждая ввинчена в с соединением D 50/63. Форсунки расположены попарно на противоположных бортах. Подберем необходимый трубопровод.

Скорость воды на подающей магистрали - 2 м/с. Форсунки делятся на две ветви по две штуки. Производительность на каждую форсунку - 4 м 3 /час, на каждую ветвь - 8 м 3 /час. Подберём диаметр общей трубы, трубы на каждую ветвь и турбы на каждую насадку. Если в таблице нет точного совпадения производительности для конкртеной скорости течения, берем ближайшую. По таблице получается:

  • при производительности 16 м 3 /час (в таблице ближайшее значение 14,14 м 3 /час) - диаметр трубы равен 63 мм;
  • при производительности 8 м 3 /час (в таблице ближайшее значение 9,05 м 3 /час) - диаметр турбы равен 50 мм;
  • при производительности 4 м3/час (в таблице ближайшее значение 3,54 м 3 /час) - диаметр трубы равен 32 мм.

Получается, что на общую подачу подходит труба, диаметром 63 мм, на каждую ветвь - диаметром 50 мм, и на каждую насадку - диаметром 32 мм. Но так, как стеновой проход расчитан на подключение 50 и 63 трубы, трубу, диаметром 32 мм не берём, а соединяем всё трубой 50 мм. К тройнику идет 63-я труба, разводка 50-й трубой.

Диаметр труб для подключения скиммеров.

Тот же насос с производительностью 16 м 3 /час забирает воду через скиммеры. в режиме фильтрации забирает обычно от 70 до 90% воды от общего потока, который всасывает насос, остальное приходится на донный слив. В нашем случае 70% производительности - это 11,2 м 3 /час. Подключение скиммер обычно это 1 1/2" или 2". Скорость потока на всасывающей линии насоса - 1.2 м/с.

По таблице получаем:

  • для этого случая достаточно трубы, диаметром 63 мм, но идеально - 75 мм;
  • в случае подключения двух скимеров, разветвление ведём 50-ой трубой.

Диаметр труб для подключения донного заборника.

30% от производительности насоса EcoX2 16000 - это 4,8 м 3 /час. По таблице для подключения донного стока достаточно трубы 50 мм. Обычно при подключении донного стока ориентируются на диаметр его присоединения. Стандартный имеет подсоединение 2", поэтому выбирают трубу 63 мм.

Расчет диаметра трубы.

Формулу для расчета оптимального диаметра трубопровода получим из формулы для расхода:

Q - расход перекачиваемой воды, м 3 /с
d - диаметр трубопровода, м
v - скорость потока, м/с

П- число пи = 3.14

Отсюда, расчетная формула для оптимального диаметра трубопровода:

d=((4*Q)/(П*v)) 1/2

Обратим внимание на то, что в этой формуле расход перекачиваемой воды выражен в м 3 /с. Производительность насосов обычно указывается в м 3 /час. Для того, чтобы перевести м 3 /час в м 3 /с, необходимо значение поделить на 3600.

Q(м 3 /с)=Q(м 3 /час)/3600

В качестве примера расчитаем оптимальный диаметр трубопровода для производительности насоса 16 м 3 /час на подающей магистрали.

Переведем производительность в м 3 /с:

Q(м 3 /с)=16 м 3 /час/3600 = 0,0044 м 3 /с

Скорость потока на подающей магистрали равна 2 м/с.

Подставляя значения в формулу получим:

d=((4*0,0044)/(3,14*2)) 1/2 ≈0,053 (м) = 53 (мм)

Получилось, что в данном случае оптимальный внутренний диаметр трубы будет равен 53 мм. Сравниваем с таблицей: для ближайшей производительности 14.14 м 3 /час при скорости протока 2 м/с подходти труба внутренним диаметром 50 мм.

При подборе труб Вы можете воспользоваться одним из описанных выше способов, мы подтвердили расчетами их равнозначность.

По материалам сайтов: waterspace com, ence-pumps ru

Нужда в классификации газопроводов пришла в нашу жизнь с повсеместным распространением технологий использования газа для нужд населения. Отопление жилых, административных, промышленных зданий, использование газа как в приготовлении пищи, так и в производстве уже давно стала для нас обыденной вещью.

Классификация газопроводов являет собой необходимые меры и правила по систематизации прокладки газовых магистралей. могут различаться как по тому, какое у них назначение, так и по ряду показателей, таких как: давление, материал, из которого он изготовлен, местоположение, объемы транспортируемого газа и другие.

Cодержание статьи

О видах классификации по назначению магистрали

В связи с характерной спецификой их использования, газовые трубы можно классифицировать сразу по нескольким направлениям. После этого для отдельно взятого газопровода можно составить ряд характеристик, определяющих его свойства и конструктивные особенности.

Об этом нам детально могут рассказать специальные таблички-привязки, расположенные вдоль всей трассы газопровода. Они представляют собой таблички-знаки размером 140х200 миллиметров, с шифрованной информацией по газопроводу.

Распространены в зеленом (для стальных вариантов) и желтом (полиэтиленовые трубы) цветовом исполнении. Таблички могут размещаться на стенах зданий, а также на специальных столбиках возле трасс. Эти указатели устанавливают на расстоянии не более 100 метров друг от друга, с соблюдением зоны прямой видимости.

При планировке газовых труб можно выделить: уличные, внутриквартальные, межцеховые и дворовые. На этом характеристика по расположению не заканчивается, ведь прокладка и врезка коммуникаций возможна на земле, под землей и над землей.

В системе газоснабжения газопроводы можно классифицировать по их прямому назначению :

  • распределительные. Это наружные газопроводы, поставляющие газ от источников газа до распределительных пунктов, а кроме того газопроводы среднего и высокого давления, подключенные к одному объекту;
  • газопровод-ввод. Это участок от присоединения к распределительному газопроводу к устройству на вводе, отключающему систему;
  • вводный газопровод. Это промежуток от отключающего устройства до непосредственно внутреннего газопровода;
  • межпоселковый. Такие коммуникации проложены вне населенных пунктов;
  • внутренний. Внутренним газопроводом считают участок который начинается от вводного газопровода до конечного агрегата, использующего газ.

Классификация газопроводов по давлению

Давление в трубе является важнейшим показателем функционирования газопровода. Рассчитав этот показатель, можно определить предел мощности газопровода, его надежность, а также степени риска, возникающие при его эксплуатации.

Газопровод, бесспорно, является потенциально опасным объектом, и потому прокладка или врезка газовых коммуникаций с давлением, превышающим допустимое, несет в себе большие риски для газотранспортной системы и безопасности окружающих людей. Правила надлежащей классификации помогут избежать аварий на взрывоопасном объекте.

Разделяют газопроводы высокого, среднего и низкого давления . Более подробная классификация газопроводов приведена ниже:

  • высокого давления категории I-a. Давление газа в таком газопроводе может превышать 1,2 МПа. Такой вид применяют для подключения к газовой системе паровых и турбинных установок, а также теплоэлектростанций. Диаметр трубы от 1000 до 1200 мм.;
  • высокого давления категории I. Показатель колеблется от 0,6 до 1,2 МПа. Используются для передачи газа в газораспределительные пункты. Диаметр трубы тот же, что и диаметр категории I-a;
  • высокого давления категории II. Показатель от 0,3 до 0,6 МПа. Поставляется в газораспределительные пункты для жилых домов и в промышленные объекты. Диаметр магистрали высокого давления от 500 до 1000 мм.;
  • среднего давления категории III. Показатель может быть в промежутке от 5 КПа до 0,3 МПа. Используются для подведения газа к газораспределительным пунктам по трубам среднего давления, находящимся на жилых зданиях. Диаметр трубы среднего давления от 300 до 500 мм.;
  • низкого давления категории IV. Допустимо давление не превышающее 5 КПа. Такой газовые трубы поставляют носитель непосредственно в жилые дома. Газопроводы низкого давления имеют диаметр трубы не более 300 мм..

Виды газопроводов по глубине заложения

Учитывая фактор городских условий, нагрузки от тяжелого транспорта, влиянию снега и дождя на грунт, глубина заложения коммуникаций в городе и их магистральных вариаций требует рассмотрения их по отдельности.

Правила прокладки газовых магистралей также зависят от вида транспортируемого газа. Трубы, поставляющие осушенные газ, можно закладывать в зону промерзания грунта. Глубина заложения определяется прежде всего вероятностью механических повреждений грунта или дорожного покрытия.

Динамические нагрузки не должны вызывать напряжения в трубах. Вместе с тем, увеличение глубины заложения прямо пропорционально влияет на стоимость ремонтно-строительных дорожных работ, необходимых при закладке труб.

  • на проездах улиц с бетонным или асфальтовым покрытием минимальная глубина заложения допускается не менее 0,8 метра, при отсутствии такого покрытия – прокладка глубиной 0,9 метра;
  • минимальная глубина заложения труб транспортирующих сухой газ принимается в 1,2 метра от поверхности земли;
  • на улицах и внутриквартальных территориях, где гарантированно отсутствует и будет отсутствовать движение транспорта, правила прокладки допускают, что глубина заложения уменьшится до 0,6 метра;
  • глубина заложения подземного газопровода зависит от наличия водяного пара и уровня промерзания грунта. При транспортировке сухого газа обычно прокладка по глубине составляет 0,8 метра.

Укладка газопровода в траншею.mp4 (видео)

Магистральные газопроводы и их охранные зоны

Магистральные газопроводы являются целыми комплексами технических сооружений, основная задача которых – транспортировка газа из места его добычи к распределительным пунктам, а далее к потребителю. В непосредственной близости к городу они переходят в местные. Последние, в свою очередь, служат для распределения газа по городу и доставки в промышленные предприятия.

Проектирование и прокладка магистральных коммуникаций должна учитывать объемы газа, мощность работающего с ним оборудования, давления газа и конечно же правила закладки магистральных газопроводов. Расположение магистрального газопровода возле объекта, который требуется газифицировать, вовсе не означает, что врезка будет применена именно к нему.

Врезка может быть проложена в нескольких километрах от газифицированного участка. Кроме того, врезка должна учитывать практическую возможность обеспечения потребителя с заданной мощностью и давлением в трубе.

Магистральные трубы имеют разную производительность. На неё влияет, прежде всего, топливно-энергетический баланс района, в котором планируется прокладка трубопровода. При этом, необходимо рационально определить годовое количество газа, учитывающее объемы ресурса, на перспективу после начала эксплуатации комплекса.

Обычно параметр производительности характеризует количество поступающего за год газа. В течение года этот показатель будет колебаться в сторону уменьшения, из-за неравномерного использования населением газа по сезонам. К тому же на это влияют еще и изменения в температуре внешней среды.

Охранная зона магистрального газопровода подразумевает участок по обе стороны газопровода, ограниченный двумя параллельными линиями. Охранные зоны для магистральных газовых труб обязательны из-за взрывоопасности таких коммуникаций. И потому должна проводиться с учетом необходимого расстояния.

Для соблюдения нужной протяженности охранных зон, нужно учесть следующие правила:

  • для магистралей высокого давл. I категории – охранная зона составляет 10 м;
  • для труб высокого давл. II категории – охранная зона составляет 7 м;
  • для магистралей среднего давл. – охранная зона составляет 4 м;
  • для труб низкого давл. – охранная зона составляет 2 м.

Пропускная способность – важный параметр для любых труб, каналов и прочих наследников римского акведука. Однако, далеко не всегда на упаковке трубы (или на самом изделии) указана пропускная способность. Кроме того, от схемы трубопровода тоже зависит, сколько жидкости пропускает труба через сечение. Как правильно рассчитать пропускную способность трубопроводов?

Методы расчета пропускной способности трубопроводов

Существует несколько методик расчета данного параметра, каждая из которых является подходящей для отдельного случая. Некоторые обозначения, важные при определении пропускной способности трубы:

Наружный диаметр – физический размер сечения трубы от одного края внешней стенки до другого. При расчетах обозначается как Дн или Dн. Этот параметр указывают в маркировке.

Диаметр условного прохода – приблизительное значение диаметра внутреннего сечения трубы, округленное до целого числа. При расчетах обозначается как Ду или Dу.

Физические методы расчета пропускной способности труб

Значения пропускной способности труб определяют по специальным формулам. Для каждого типа изделий – для газо-, водопровода, канализации – способы расчета свои.

Табличные методы расчета

Существует таблица приближенных значений, созданная для облегчения определения пропускной способности труб внутриквартирной разводки. В большинстве случаев высокая точность не требуется, поэтому значения можно применять без проведения сложных вычислений. Но в этой таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы, что характерно для старых магистралей.

Таблица 1. Пропускная способность трубы для жидкостей, газа, водяного пара
Вид жидкости Скорость (м/сек)
Вода городского водопровода 0,60-1,50
Вода трубопроводной магистрали 1,50-3,00
Вода системы центрального отопления 2,00-3,00
Вода напорной системы в линии трубопровода 0,75-1,50
Гидравлическая жидкость до 12м/сек
Масло линии трубопровода 3,00-7,5
Масло в напорной системе линии трубопровода 0,75-1,25
Пар в отопительной системе 20,0-30,00
Пар системы центрального трубопровода 30,0-50,0
Пар в отопительной системе с высокой температурой 50,0-70,00
Воздух и газ в центральной системе трубопровода 20,0-75,00

Существует точная таблица расчета пропускной способности, называемая таблицей Шевелева, которая учитывает материал трубы и множество других факторов. Данные таблицы редко используются при прокладке водопровода по квартире, но вот в частном доме с несколькими нестандартными стояками могут пригодиться.

Расчет с помощью программ

В распоряжении современных сантехнических фирм имеются специальные компьютерные программы для расчета пропускной способности труб, а также множества других схожих параметров. Кроме того, разработаны онлайн-калькуляторы, которые хоть и менее точны, но зато бесплатны и не требуют установки на ПК. Одна из стационарных программ «TAScope» – творение западных инженеров, которое является условно-бесплатным. В крупных компаниях используют «Гидросистема» - это отечественная программа, рассчитывающая трубы по критериям, влияющим на их эксплуатацию в регионах РФ. Помимо гидравлического расчета, позволяет считать другие параметры трубопроводов. Средняя цена 150 000 рублей.

Как рассчитать пропускную способность газовой трубы

Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.

Формула расчета пропускной способности газовой трубы

Максимальная пропускная способность газопроводов определяется по формуле:

Qmax = 0.67 Ду2 * p

где p - равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа;

Ду - условный проход трубы.

Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.

Qmax = 196,386 Ду2 * p/z*T

где z - коэффициент сжимаемости;

Т- температура перемещаемого газа, К;

Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки. Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод. Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.

Таблица пропускных способностей газовых труб в зависимости от давления

Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.

Максимальная скорость (W) газа в таблице - 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина.

Таблица 2. Пропускная способность газового трубопровода в зависимости от давления
Pраб.(МПа) Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20?С=293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500
0,3 670 1715 2680 6030 10720 24120 42880 67000
0,6 1170 3000 4690 10550 18760 42210 75040 117000
1,2 2175 5570 8710 19595 34840 78390 139360 217500
1,6 2845 7290 11390 25625 45560 102510 182240 284500
2,5 4355 11145 17420 39195 69680 156780 278720 435500
3,5 6030 15435 24120 54270 96480 217080 385920 603000
5,5 9380 24010 37520 84420 150080 337680 600320 938000
7,5 12730 32585 50920 114570 203680 458280 814720 1273000
10,0 16915 43305 67670 152255 270680 609030 108720 1691500

Пропускная способность канализационной трубы

Пропускная способность канализационной трубы – важный параметр, который зависит от типа трубопровода (напорный или безнапорный). Формула расчета основана на законах гидравлики. Помимо трудоемкого расчета, для определения пропускной способности канализации используют таблицы.


Для гидравлического расчета канализации требуется определить неизвестные:

  1. диаметр трубопровода Ду;
  2. среднюю скорость потока v;
  3. гидравлический уклон l;
  4. степень наполнения h/ Ду (в расчетах отталкиваются от гидравлического радиуса, который связан с этой величиной).

На практике ограничиваются вычислением значения l или h/d, так как остальные параметры легко посчитать. Гидравлический уклон в предварительных расчетах принято считать равным уклону поверхности земли, при котором движение сточных вод будет не ниже самооочищающей скорости. Значения скорости, а также максимальные значения h/Ду для бытовых сетей можно найти в таблице 3.

Юлия Петриченко, эксперт

Кроме того, существует нормированное значение минимального уклона для труб с малым диаметром: 150 мм

(i=0.008) и 200 (i=0.007) мм.

Формула объемного расхода жидкости выглядит так:

где a - это площадь живого сечения потока,

v – скорость потока, м/с.

Скорость рассчитывается по формуле:

где R – это гидравлический радиус;

С – коэффициент смачивания;

Отсюда можно вывести формулу гидравлического уклона:

По ней определяют данный параметр при необходимости расчета.

где n – это коэффициент шероховатости, имеющий значения от 0,012 до 0,015 в зависимости от материала трубы.

Гидравлический радиус считают равным радиусу обычному, но только при полном заполнении трубы. В остальных случаях используют формулу:

где А – это площадь поперечного потока жидкости,

P– смоченный периметр, или же поперечная длина внутренней поверхности трубы, которая касается жидкости.


Таблицы пропускной способности безнапорных труб канализации

В таблице учтены все параметры, используемые для выполнения гидравлического расчета. Данные выбирают по значению диаметра трубы и подставляют в формулу. Здесь уже рассчитан объемный расход жидкости q, проходящей через сечение трубы, который можно принять за пропускную способность магистрали.

Кроме того, существуют более подробные таблицы Лукиных, содержащие готовые значения пропускной способности для труб разного диаметра от 50 до 2000 мм.


Таблицы пропускной способности напорных канализационных систем

В таблицах пропускной способности напорных труб канализации значения зависят от максимальной степени наполнения и расчетной средней скорости сточной воды.

Таблица 4. Расчет расхода сточных вод, литров в секунду
Диаметр, мм Наполнение Принимаемый (оптимальный уклон) Скорость движения сточной воды в трубе, м/с Расход, л/сек
100 0,6 0,02 0,94 4,6
125 0,6 0,016 0,97 7,5
150 0,6 0,013 1,00 11,1
200 0,6 0,01 1,05 20,7
250 0,6 0,008 1,09 33,6
300 0,7 0,0067 1,18 62,1
350 0,7 0,0057 1,21 86,7
400 0,7 0,0050 1,23 115,9
450 0,7 0,0044 1,26 149,4
500 0,7 0,0040 1,28 187,9
600 0,7 0,0033 1,32 278,6
800 0,7 0,0025 1,38 520,0
1000 0,7 0,0020 1,43 842,0
1200 0,7 0,00176 1,48 1250,0

Пропускная способность водопроводной трубы

Водопроводные трубы в доме используются чаще всего. А так как на них идёт большая нагрузка, то и расчет пропускной способности водопроводной магистрали становится важным условием надежной эксплуатации.


Проходимость трубы в зависимости от диаметра

Диаметр – не самый важный параметр при расчете проходимости трубы, однако тоже влияет на ее значение. Чем больше внутренний диаметр трубы, тем выше проходимость, а также ниже шанс появления засоров и пробок. Однако помимо диаметра нужно учитывать коэффициент трения воды о стенки трубы (табличное значение для каждого материала), протяженность магистрали и разницу давлений жидкости на входе и выходе. Кроме того, на проходимость будет сильно влиять число колен и фитингов в трубопроводе.

Таблица пропускной способности труб по температуре теплоносителя

Чем выше температура в трубе, тем ниже её пропускная способность, так как вода расширяется и тем самым создаёт дополнительное трение. Для водопровода это не важно, а в отопительных системах является ключевым параметром.

Существует таблица для расчетов по теплоте и теплоносителю.

Таблица 5. Пропускная способность трубы в зависимости от теплоносителя и отдаваемой теплоты
Диаметр трубы, мм Пропускная способность
По теплоте По теплоносителю
Вода Пар Вода Пар
Гкал/ч т/ч
15 0,011 0,005 0,182 0,009
25 0,039 0,018 0,650 0,033
38 0,11 0,05 1,82 0,091
50 0,24 0,11 4,00 0,20
75 0,72 0,33 12,0 0,60
100 1,51 0,69 25,0 1,25
125 2,70 1,24 45,0 2,25
150 4,36 2,00 72,8 3,64
200 9,23 4,24 154 7,70
250 16,6 7,60 276 13,8
300 26,6 12,2 444 22,2
350 40,3 18,5 672 33,6
400 56,5 26,0 940 47,0
450 68,3 36,0 1310 65,5
500 103 47,4 1730 86,5
600 167 76,5 2780 139
700 250 115 4160 208
800 354 162 5900 295
900 633 291 10500 525
1000 1020 470 17100 855

Таблица пропускной способности труб в зависимости от давления теплоносителя

Существует таблица, описывающая пропускную способность труб в зависимости от давления.

Таблица 6. Пропускная способность трубы в зависимости от давления транспортируемой жидкости
Расход Пропускная способность
Ду трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м - мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 - 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 - 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 - 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 - 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 - 1,000 184 425 788 1724 2632 5004 10152 15768 31932
120,0 - 1,200 202 472 871 1897 2898 5508 11196 17352 35100
140,0 - 1,400 220 511 943 2059 3143 5976 12132 18792 38160
160,0 - 1,600 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 - 1,800 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 - 2,000 266 619 1151 2486 3780 7200 14580 22644 45720
220,0 - 2,200 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 - 2,400 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 - 2,600 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 - 2,800 317 742 1364 2970 4356 8566 17338 26928 54360
300,0 - 3,000 331 767 1415 3076 4680 8892 18000 27900 56160

Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)

Таблицы Ф.А и А. Ф. Шевелевых являются одним из самых точных табличных методов расчета пропускной способности водопровода. Кроме того, они содержат все нужные формулы расчета для каждого конкретного материала. Это объемный информативный материал, используемый инженерами-гидравликами чаще всего.

В таблицах учитываются:

  1. диаметры трубы – внутренний и наружный;
  2. толщина стенки;
  3. срок эксплуатации водопровода;
  4. длина магистрали;
  5. назначение труб.

Формула гидравлического расчета

Для водопроводных труб применяется следующая формула расчета:

Онлайн-калькулятор: расчет пропускной способности труб

Если у вас есть какие-то вопросы, или же вы обладаете какими-либо справочниками, в которых используются неупомянутые здесь методы –напишите в комментариях.



Последние материалы раздела:

Тело поднимают вверх по наклонной плоскости
Тело поднимают вверх по наклонной плоскости

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по...

Теплый салат со свининой по-корейски
Теплый салат со свининой по-корейски

Салат из свинины способен заменить полноценный прием пищи, ведь в нем собраны все продукты, необходимые для нормального питания – нежная мясная...

Салат с морковкой по корейски и свининой
Салат с морковкой по корейски и свининой

Морковь, благодаря присущей сладости и сочности – один из наилучших компонентов для мясных салатов. Где морковь – там и лук, это практически...